SlideShare a Scribd company logo
(I)Graphs of the Form y                                               f  x
The graph of y        f  x  can be sketched by first drawing y  f  x 
and noticing;
   f  x  is only defined if f  x   0
y  f x
            y




            1



                 x

            -1
(I)Graphs of the Form y                                                      f  x
The graph of y          f  x  can be sketched by first drawing y  f  x 
and noticing;
   f  x  is only defined if f  x   0
   f  x   0 for all x in the domain
   f  x   f  x  if f  x   1 and   f  x   f  x  if f  x   1
y  f x
            y




            1



                 x

            -1
(I)Graphs of the Form y                                                      f  x
The graph of y          f  x  can be sketched by first drawing y  f  x 
and noticing;
   f  x  is only defined if f  x   0
   f  x   0 for all x in the domain
   f  x   f  x  if f  x   1 and   f  x   f  x  if f  x   1
 dy f  x 
           implies;
 dx   f x

      stationary points must still be stationary points

      there are critical points where f  x   0
X2 t07 06 roots of functions (2012)
y  f x
            y




                 y   f x
            1



                          x

            -1
y  f x
            y




                 y   f x
            1



                          x

            -1
y




1
     y 2  f x


             x

-1

More Related Content

PDF
X2 T04 06 curve sketching - roots of functions
PDF
X2 T04 05 curve sketching - powers of functions
PDF
X2 T04 04 curve sketching - reciprocal functions
PDF
Hw8
PDF
Exercise #8 notes
PDF
Hw9
PDF
Exercise #10 notes
PPT
Calc 3.6b
X2 T04 06 curve sketching - roots of functions
X2 T04 05 curve sketching - powers of functions
X2 T04 04 curve sketching - reciprocal functions
Hw8
Exercise #8 notes
Hw9
Exercise #10 notes
Calc 3.6b

What's hot (10)

PDF
Exercise #9 notes
PPT
3.1 extrema on an interval
PDF
ลิมิต
PDF
Escola naval 2016
PDF
11X1 T14 04 areas
DOCX
Radical functions
PDF
Portes lògiques llistat funcions
PDF
X2 T04 07 curve sketching - other graphs
PDF
Cônicas 1
PDF
X2 T04 03 cuve sketching - addition, subtraction, multiplication and division
Exercise #9 notes
3.1 extrema on an interval
ลิมิต
Escola naval 2016
11X1 T14 04 areas
Radical functions
Portes lògiques llistat funcions
X2 T04 07 curve sketching - other graphs
Cônicas 1
X2 T04 03 cuve sketching - addition, subtraction, multiplication and division
Ad

Similar to X2 t07 06 roots of functions (2012) (20)

PDF
X2 T07 06 roots of functions (2011)
PDF
X2 T07 05 powers of functions (2011)
PDF
X2 t07 05 powers of functions (2012)
PDF
X2 T07 07 other graphs (2011)
PDF
X2 t07 07 other graphs (2012)
PDF
X2 t07 07 other graphs (2013)
PDF
X2 t07 06 roots of functions (2013)
PDF
X2 t07 04 reciprocal functions (2012)
PDF
X2 T07 04 reciprocal functions (2011)
PDF
X2 t07 03 addition, subtraction, multiplication & division (2012)
PDF
X2 T07 03 addition, subtraction, multiplication & division (2011)
PDF
X2 t07 02 transformations (2012)
PDF
X2 T07 02 transformations (2011)
PPTX
Graphing linear relations and functions
PPTX
2 1 relationsfunctions
PDF
College algebra 7th edition by blitzer solution manual
PDF
PDF
Math for 800 09 functions
PDF
Lesson 51
PDF
Applying the derivative
X2 T07 06 roots of functions (2011)
X2 T07 05 powers of functions (2011)
X2 t07 05 powers of functions (2012)
X2 T07 07 other graphs (2011)
X2 t07 07 other graphs (2012)
X2 t07 07 other graphs (2013)
X2 t07 06 roots of functions (2013)
X2 t07 04 reciprocal functions (2012)
X2 T07 04 reciprocal functions (2011)
X2 t07 03 addition, subtraction, multiplication & division (2012)
X2 T07 03 addition, subtraction, multiplication & division (2011)
X2 t07 02 transformations (2012)
X2 T07 02 transformations (2011)
Graphing linear relations and functions
2 1 relationsfunctions
College algebra 7th edition by blitzer solution manual
Math for 800 09 functions
Lesson 51
Applying the derivative
Ad

More from Nigel Simmons (20)

PPT
Goodbye slideshare UPDATE
PPT
Goodbye slideshare
PDF
12 x1 t02 02 integrating exponentials (2014)
PDF
11 x1 t01 03 factorising (2014)
PDF
11 x1 t01 02 binomial products (2014)
PDF
12 x1 t02 01 differentiating exponentials (2014)
PDF
11 x1 t01 01 algebra & indices (2014)
PDF
12 x1 t01 03 integrating derivative on function (2013)
PDF
12 x1 t01 02 differentiating logs (2013)
PDF
12 x1 t01 01 log laws (2013)
PDF
X2 t02 04 forming polynomials (2013)
PDF
X2 t02 03 roots & coefficients (2013)
PDF
X2 t02 02 multiple roots (2013)
PDF
X2 t02 01 factorising complex expressions (2013)
PDF
11 x1 t16 07 approximations (2013)
PDF
11 x1 t16 06 derivative times function (2013)
PDF
11 x1 t16 05 volumes (2013)
PDF
11 x1 t16 04 areas (2013)
PDF
11 x1 t16 03 indefinite integral (2013)
PDF
11 x1 t16 02 definite integral (2013)
Goodbye slideshare UPDATE
Goodbye slideshare
12 x1 t02 02 integrating exponentials (2014)
11 x1 t01 03 factorising (2014)
11 x1 t01 02 binomial products (2014)
12 x1 t02 01 differentiating exponentials (2014)
11 x1 t01 01 algebra & indices (2014)
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 01 log laws (2013)
X2 t02 04 forming polynomials (2013)
X2 t02 03 roots & coefficients (2013)
X2 t02 02 multiple roots (2013)
X2 t02 01 factorising complex expressions (2013)
11 x1 t16 07 approximations (2013)
11 x1 t16 06 derivative times function (2013)
11 x1 t16 05 volumes (2013)
11 x1 t16 04 areas (2013)
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 02 definite integral (2013)

Recently uploaded (20)

PDF
A systematic review of self-coping strategies used by university students to ...
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PDF
Practical Manual AGRO-233 Principles and Practices of Natural Farming
PDF
Chinmaya Tiranga quiz Grand Finale.pdf
PDF
LNK 2025 (2).pdf MWEHEHEHEHEHEHEHEHEHEHE
PPTX
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
PDF
Computing-Curriculum for Schools in Ghana
PPTX
Microbial diseases, their pathogenesis and prophylaxis
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
PDF
GENETICS IN BIOLOGY IN SECONDARY LEVEL FORM 3
PDF
Supply Chain Operations Speaking Notes -ICLT Program
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PDF
LDMMIA Reiki Yoga Finals Review Spring Summer
PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PPTX
UNIT III MENTAL HEALTH NURSING ASSESSMENT
PDF
Weekly quiz Compilation Jan -July 25.pdf
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PPTX
202450812 BayCHI UCSC-SV 20250812 v17.pptx
PDF
Yogi Goddess Pres Conference Studio Updates
PDF
Microbial disease of the cardiovascular and lymphatic systems
A systematic review of self-coping strategies used by university students to ...
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
Practical Manual AGRO-233 Principles and Practices of Natural Farming
Chinmaya Tiranga quiz Grand Finale.pdf
LNK 2025 (2).pdf MWEHEHEHEHEHEHEHEHEHEHE
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
Computing-Curriculum for Schools in Ghana
Microbial diseases, their pathogenesis and prophylaxis
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
GENETICS IN BIOLOGY IN SECONDARY LEVEL FORM 3
Supply Chain Operations Speaking Notes -ICLT Program
Final Presentation General Medicine 03-08-2024.pptx
LDMMIA Reiki Yoga Finals Review Spring Summer
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
UNIT III MENTAL HEALTH NURSING ASSESSMENT
Weekly quiz Compilation Jan -July 25.pdf
Final Presentation General Medicine 03-08-2024.pptx
202450812 BayCHI UCSC-SV 20250812 v17.pptx
Yogi Goddess Pres Conference Studio Updates
Microbial disease of the cardiovascular and lymphatic systems

X2 t07 06 roots of functions (2012)

  • 1. (I)Graphs of the Form y  f  x The graph of y  f  x  can be sketched by first drawing y  f  x  and noticing;  f  x  is only defined if f  x   0
  • 2. y  f x y 1 x -1
  • 3. (I)Graphs of the Form y  f  x The graph of y  f  x  can be sketched by first drawing y  f  x  and noticing;  f  x  is only defined if f  x   0  f  x   0 for all x in the domain  f  x   f  x  if f  x   1 and f  x   f  x  if f  x   1
  • 4. y  f x y 1 x -1
  • 5. (I)Graphs of the Form y  f  x The graph of y  f  x  can be sketched by first drawing y  f  x  and noticing;  f  x  is only defined if f  x   0  f  x   0 for all x in the domain  f  x   f  x  if f  x   1 and f  x   f  x  if f  x   1 dy f  x    implies; dx f x  stationary points must still be stationary points  there are critical points where f  x   0
  • 7. y  f x y y f x 1 x -1
  • 8. y  f x y y f x 1 x -1
  • 9. y 1 y 2  f x x -1