SlideShare a Scribd company logo
(I)Graphs of the Form y                                           f  x
The graph of y    f  x  can be sketched by first drawing y  f  x 
and noticing;
(I)Graphs of the Form y                                               f  x
The graph of y        f  x  can be sketched by first drawing y  f  x 
and noticing;
   f  x  is only defined if f  x   0
y  f x
            y




            1



                 x

            -1
y  f x
            y




            1



                 x

            -1
(I)Graphs of the Form y                                               f  x
The graph of y        f  x  can be sketched by first drawing y  f  x 
and noticing;
   f  x  is only defined if f  x   0
   f  x   0 for all x in the domain
(I)Graphs of the Form y                                                      f  x
The graph of y          f  x  can be sketched by first drawing y  f  x 
and noticing;
   f  x  is only defined if f  x   0
   f  x   0 for all x in the domain
   f  x   f  x  if f  x   1 and   f  x   f  x  if f  x   1
y  f x
            y




            1



                 x

            -1
y  f x
            y




            1



                 x

            -1
y  f x
            y




            1



                 x

            -1
(I)Graphs of the Form y                                                      f  x
The graph of y          f  x  can be sketched by first drawing y  f  x 
and noticing;
   f  x  is only defined if f  x   0
   f  x   0 for all x in the domain
   f  x   f  x  if f  x   1 and   f  x   f  x  if f  x   1
 dy f  x 
           implies;
 dx   f x
(I)Graphs of the Form y                                                      f  x
The graph of y          f  x  can be sketched by first drawing y  f  x 
and noticing;
   f  x  is only defined if f  x   0
   f  x   0 for all x in the domain
   f  x   f  x  if f  x   1 and   f  x   f  x  if f  x   1
 dy f  x 
           implies;
 dx   f x

      stationary points must still be stationary points
(I)Graphs of the Form y                                                      f  x
The graph of y          f  x  can be sketched by first drawing y  f  x 
and noticing;
   f  x  is only defined if f  x   0
   f  x   0 for all x in the domain
   f  x   f  x  if f  x   1 and   f  x   f  x  if f  x   1
 dy f  x 
           implies;
 dx   f x

      stationary points must still be stationary points

      there are critical points where f  x   0
y  f x
            y




                 y   f x
            1



                          x

            -1
y  f x
            y




                 y   f x
            1



                          x

            -1
y  f x
            y




                 y   f x
            1



                          x

            -1
y




1
     y 2  f x


             x

-1
y




1
     y 2  f x


             x

-1
y




1
     y 2  f x


             x

-1

More Related Content

PDF
X2 t07 06 roots of functions (2012)
PDF
X2 T04 05 curve sketching - powers of functions
PDF
Exercise #8 notes
PDF
Hw8
PDF
Hw9
PPT
Calc 3.6b
PDF
Exercise #10 notes
PDF
Exercise #9 notes
X2 t07 06 roots of functions (2012)
X2 T04 05 curve sketching - powers of functions
Exercise #8 notes
Hw8
Hw9
Calc 3.6b
Exercise #10 notes
Exercise #9 notes

What's hot (9)

PDF
X2 T04 04 curve sketching - reciprocal functions
PDF
ลิมิต
PDF
X2 T04 03 cuve sketching - addition, subtraction, multiplication and division
PDF
Escola naval 2016
PDF
Fuvest 2009 - aberta
PDF
X2 T04 07 curve sketching - other graphs
PDF
Fuvest 2012 - aberta
PDF
11X1 T17 07 approximations
X2 T04 04 curve sketching - reciprocal functions
ลิมิต
X2 T04 03 cuve sketching - addition, subtraction, multiplication and division
Escola naval 2016
Fuvest 2009 - aberta
X2 T04 07 curve sketching - other graphs
Fuvest 2012 - aberta
11X1 T17 07 approximations
Ad

Viewers also liked (7)

PDF
Компания Xango в цифрах
PDF
Xen desktop5.6machine creation servicesによる仮想デスクトップの効率的な展開
DOCX
Xabiso Rani's CV
PDF
XA32758397
PPTX
Xamarin Mobile App Development - Tecordeon Software Profile
PPTX
Xamarin.Forms (Northern VA Mobile C# Developers Group 8/13/14)
Компания Xango в цифрах
Xen desktop5.6machine creation servicesによる仮想デスクトップの効率的な展開
Xabiso Rani's CV
XA32758397
Xamarin Mobile App Development - Tecordeon Software Profile
Xamarin.Forms (Northern VA Mobile C# Developers Group 8/13/14)
Ad

Similar to X2 T04 06 curve sketching - roots of functions (20)

PDF
X2 T07 05 powers of functions (2011)
PDF
X2 t07 05 powers of functions (2012)
PDF
X2 T07 07 other graphs (2011)
PDF
X2 t07 07 other graphs (2012)
PDF
X2 t07 07 other graphs (2013)
PDF
X2 t07 04 reciprocal functions (2012)
PDF
X2 T07 04 reciprocal functions (2011)
PDF
X2 t07 06 roots of functions (2013)
PDF
X2 t07 03 addition, subtraction, multiplication & division (2012)
PDF
X2 t07 02 transformations (2012)
PDF
X2 T07 02 transformations (2011)
PDF
X2 T07 03 addition, subtraction, multiplication & division (2011)
PPTX
Graphing linear relations and functions
PPTX
2 1 relationsfunctions
PPT
Exponential functions
PDF
Lesson 1: Functions and their representations (slides)
PDF
Lesson 1: Functions and their representations (slides)
PPTX
7 functions
PDF
Math for 800 09 functions
PDF
Lesson 51
X2 T07 05 powers of functions (2011)
X2 t07 05 powers of functions (2012)
X2 T07 07 other graphs (2011)
X2 t07 07 other graphs (2012)
X2 t07 07 other graphs (2013)
X2 t07 04 reciprocal functions (2012)
X2 T07 04 reciprocal functions (2011)
X2 t07 06 roots of functions (2013)
X2 t07 03 addition, subtraction, multiplication & division (2012)
X2 t07 02 transformations (2012)
X2 T07 02 transformations (2011)
X2 T07 03 addition, subtraction, multiplication & division (2011)
Graphing linear relations and functions
2 1 relationsfunctions
Exponential functions
Lesson 1: Functions and their representations (slides)
Lesson 1: Functions and their representations (slides)
7 functions
Math for 800 09 functions
Lesson 51

More from Nigel Simmons (20)

PPT
Goodbye slideshare UPDATE
PPT
Goodbye slideshare
PDF
12 x1 t02 02 integrating exponentials (2014)
PDF
11 x1 t01 03 factorising (2014)
PDF
11 x1 t01 02 binomial products (2014)
PDF
12 x1 t02 01 differentiating exponentials (2014)
PDF
11 x1 t01 01 algebra & indices (2014)
PDF
12 x1 t01 03 integrating derivative on function (2013)
PDF
12 x1 t01 02 differentiating logs (2013)
PDF
12 x1 t01 01 log laws (2013)
PDF
X2 t02 04 forming polynomials (2013)
PDF
X2 t02 03 roots & coefficients (2013)
PDF
X2 t02 02 multiple roots (2013)
PDF
X2 t02 01 factorising complex expressions (2013)
PDF
11 x1 t16 07 approximations (2013)
PDF
11 x1 t16 06 derivative times function (2013)
PDF
11 x1 t16 05 volumes (2013)
PDF
11 x1 t16 04 areas (2013)
PDF
11 x1 t16 03 indefinite integral (2013)
PDF
11 x1 t16 02 definite integral (2013)
Goodbye slideshare UPDATE
Goodbye slideshare
12 x1 t02 02 integrating exponentials (2014)
11 x1 t01 03 factorising (2014)
11 x1 t01 02 binomial products (2014)
12 x1 t02 01 differentiating exponentials (2014)
11 x1 t01 01 algebra & indices (2014)
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 01 log laws (2013)
X2 t02 04 forming polynomials (2013)
X2 t02 03 roots & coefficients (2013)
X2 t02 02 multiple roots (2013)
X2 t02 01 factorising complex expressions (2013)
11 x1 t16 07 approximations (2013)
11 x1 t16 06 derivative times function (2013)
11 x1 t16 05 volumes (2013)
11 x1 t16 04 areas (2013)
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 02 definite integral (2013)

Recently uploaded (20)

PDF
O7-L3 Supply Chain Operations - ICLT Program
PDF
Abdominal Access Techniques with Prof. Dr. R K Mishra
PDF
Chinmaya Tiranga quiz Grand Finale.pdf
PDF
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
PDF
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
PDF
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
PDF
Yogi Goddess Pres Conference Studio Updates
PPTX
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
PPTX
Lesson notes of climatology university.
PDF
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
PDF
Computing-Curriculum for Schools in Ghana
PDF
Trump Administration's workforce development strategy
PDF
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
PPTX
Cell Structure & Organelles in detailed.
DOC
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
PDF
STATICS OF THE RIGID BODIES Hibbelers.pdf
PPTX
Cell Types and Its function , kingdom of life
PDF
RMMM.pdf make it easy to upload and study
PPTX
master seminar digital applications in india
PDF
2.FourierTransform-ShortQuestionswithAnswers.pdf
O7-L3 Supply Chain Operations - ICLT Program
Abdominal Access Techniques with Prof. Dr. R K Mishra
Chinmaya Tiranga quiz Grand Finale.pdf
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
Yogi Goddess Pres Conference Studio Updates
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
Lesson notes of climatology university.
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
Computing-Curriculum for Schools in Ghana
Trump Administration's workforce development strategy
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
Cell Structure & Organelles in detailed.
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
STATICS OF THE RIGID BODIES Hibbelers.pdf
Cell Types and Its function , kingdom of life
RMMM.pdf make it easy to upload and study
master seminar digital applications in india
2.FourierTransform-ShortQuestionswithAnswers.pdf

X2 T04 06 curve sketching - roots of functions

  • 1. (I)Graphs of the Form y  f  x The graph of y  f  x  can be sketched by first drawing y  f  x  and noticing;
  • 2. (I)Graphs of the Form y  f  x The graph of y  f  x  can be sketched by first drawing y  f  x  and noticing;  f  x  is only defined if f  x   0
  • 3. y  f x y 1 x -1
  • 4. y  f x y 1 x -1
  • 5. (I)Graphs of the Form y  f  x The graph of y  f  x  can be sketched by first drawing y  f  x  and noticing;  f  x  is only defined if f  x   0  f  x   0 for all x in the domain
  • 6. (I)Graphs of the Form y  f  x The graph of y  f  x  can be sketched by first drawing y  f  x  and noticing;  f  x  is only defined if f  x   0  f  x   0 for all x in the domain  f  x   f  x  if f  x   1 and f  x   f  x  if f  x   1
  • 7. y  f x y 1 x -1
  • 8. y  f x y 1 x -1
  • 9. y  f x y 1 x -1
  • 10. (I)Graphs of the Form y  f  x The graph of y  f  x  can be sketched by first drawing y  f  x  and noticing;  f  x  is only defined if f  x   0  f  x   0 for all x in the domain  f  x   f  x  if f  x   1 and f  x   f  x  if f  x   1 dy f  x    implies; dx f x
  • 11. (I)Graphs of the Form y  f  x The graph of y  f  x  can be sketched by first drawing y  f  x  and noticing;  f  x  is only defined if f  x   0  f  x   0 for all x in the domain  f  x   f  x  if f  x   1 and f  x   f  x  if f  x   1 dy f  x    implies; dx f x  stationary points must still be stationary points
  • 12. (I)Graphs of the Form y  f  x The graph of y  f  x  can be sketched by first drawing y  f  x  and noticing;  f  x  is only defined if f  x   0  f  x   0 for all x in the domain  f  x   f  x  if f  x   1 and f  x   f  x  if f  x   1 dy f  x    implies; dx f x  stationary points must still be stationary points  there are critical points where f  x   0
  • 13. y  f x y y f x 1 x -1
  • 14. y  f x y y f x 1 x -1
  • 15. y  f x y y f x 1 x -1
  • 16. y 1 y 2  f x x -1
  • 17. y 1 y 2  f x x -1
  • 18. y 1 y 2  f x x -1