Inequalities & Graphs
Inequalities & Graphs
                 x2
e.g. i  Solve     1
                x2
Inequalities & Graphs
                 x2
e.g. i  Solve     1
                x2
Inequalities & Graphs
                 x2
e.g. i  Solve     1
                x2
Inequalities & Graphs
                 x2
e.g. i  Solve     1
                x2
Inequalities & Graphs
                 x2
e.g. i  Solve     1
                x2      Oblique asymptote:
Inequalities & Graphs
                 x2
e.g. i  Solve     1                       x2         4
                x2      Oblique asymptote:      x2
                                            x2        x2
Inequalities & Graphs
                 x2
e.g. i  Solve     1                       x2         4
                x2      Oblique asymptote:      x2
                                            x2        x2
Inequalities & Graphs
                 x2
e.g. i  Solve     1                       x2         4
                x2      Oblique asymptote:      x2
                                            x2        x2
Inequalities & Graphs
                 x2
e.g. i  Solve     1
                x2
Inequalities & Graphs
                 x2
e.g. i  Solve     1
                x2
Inequalities & Graphs
                 x2
e.g. i  Solve     1         x2
                x2                1
                              x2
                             x2  x  2
                           x2  x  2  0
                          x  2 x  1  0
                         x  2 or x  1
Inequalities & Graphs
                 x2
e.g. i  Solve     1          x2
                x2                 1
                               x2
                              x2  x  2
                            x2  x  2  0
                           x  2 x  1  0
                           x  2 or x  1

                                x2
                                    1
                               x2
                         x  2 or  1  x  2
(ii) (1990)




Consider the graph y  x
(ii) (1990)




Consider the graph y  x
a) Show that the graph is increasing for all x  0
(ii) (1990)




Consider the graph y  x
a) Show that the graph is increasing for all x  0
                             dy
   Curve is increasing when     0
                             dx
(ii) (1990)




Consider the graph y  x
a) Show that the graph is increasing for all x  0
                             dy
   Curve is increasing when     0
                             dx
    y x
   dy     1
      
   dx 2 x
(ii) (1990)




Consider the graph y  x
a) Show that the graph is increasing for all x  0
                             dy
   Curve is increasing when     0
                             dx
    y x
   dy     1
      
   dx 2 x
  dy
  0 for x  0
  dx
(ii) (1990)




Consider the graph y  x
a) Show that the graph is increasing for all x  0
                             dy
   Curve is increasing when     0
                             dx
    y x                              at x  0, y  0
 dy   1
    
 dx 2 x
 dy
  0 for x  0
 dx
(ii) (1990)




Consider the graph y  x
a) Show that the graph is increasing for all x  0
                             dy
   Curve is increasing when     0
                             dx
    y x                              at x  0, y  0
   dy     1                            when x  0, y  0
      
   dx 2 x
  dy
  0 for x  0
  dx
(ii) (1990)




Consider the graph y  x
a) Show that the graph is increasing for all x  0
                             dy
   Curve is increasing when     0
                             dx
    y x                              at x  0, y  0
   dy     1                            when x  0, y  0
      
   dx 2 x
  dy
  0 for x  0                   curve is increasing for x  0
  dx
b) Hence show that;
                      n
                         2
  1  2    n   xdx  n n
                  0
                         3
b) Hence show that;
                      n
                         2
  1  2    n   xdx  n n
                  0
                         3
b) Hence show that;
                      n
                         2
  1  2    n   xdx  n n
                  0
                         3


             As x is increasing;
             Area outer rectangles  Area under curve
b) Hence show that;
                      n
                         2
  1  2    n   xdx  n n
                  0
                         3


             As x is increasing;
             Area outer rectangles  Area under curve
                                    n
                  1  2    n   xdx
                                    0
b) Hence show that;
                      n
                         2
  1  2    n   xdx  n n
                  0
                         3


             As x is increasing;
             Area outer rectangles  Area under curve
                                     n
                  1  2    n   xdx
                                     0
                                           n
                                    2 x x
                                   
                                    3    0
                                          
                                    2
                                    n n
                                    3
b) Hence show that;
                      n
                         2
  1  2    n   xdx  n n
                  0
                         3


             As x is increasing;
             Area outer rectangles  Area under curve
                                     n
                  1  2    n   xdx
                                     0
                                           n
                                    2 x x
                                   
                                    3    0
                                          
                                    2
                                    n n
                                    3
                                    n
                                       2
               1  2    n   xdx  n n
                                0
                                       3
c) Use mathematical induction to show that;
                4n  3
  1  2  n         n for all integers n  1
                  6
c) Use mathematical induction to show that;
                4n  3
  1  2  n         n for all integers n  1
                  6
Test: n = 1
c) Use mathematical induction to show that;
                4n  3
  1  2  n         n for all integers n  1
                  6
Test: n = 1
 L.H .S  1
        1
c) Use mathematical induction to show that;
                4n  3
  1  2  n         n for all integers n  1
                  6
Test: n = 1
                                                      41  3
 L.H .S  1                                   R.H .S          1
                                                         6
        1
                                                      7
                                                    
                                                      6
c) Use mathematical induction to show that;
                4n  3
  1  2  n         n for all integers n  1
                  6
Test: n = 1
                                                      41  3
 L.H .S  1                                   R.H .S          1
                                                         6
        1
                                                      7
                                                    
                                                      6
                         L.H .S  R.H .S
c) Use mathematical induction to show that;
                4n  3
  1  2  n         n for all integers n  1
                  6
Test: n = 1
                                                      41  3
 L.H .S  1                                   R.H .S          1
                                                         6
        1
                                                      7
                                                    
                                                      6
                       L.H .S  R.H .S
                   Hence the result is true for n = 1
c) Use mathematical induction to show that;
                4n  3
  1  2  n         n for all integers n  1
                  6
Test: n = 1
                                                       41  3
 L.H .S  1                                   R.H .S           1
                                                          6
        1
                                                       7
                                                     
                                                       6
                        L.H .S  R.H .S
                    Hence the result is true for n = 1
Assume the result is true for n  k where k is a positive integer
c) Use mathematical induction to show that;
                4n  3
  1  2  n         n for all integers n  1
                  6
Test: n = 1
                                                       41  3
 L.H .S  1                                   R.H .S           1
                                                          6
        1
                                                       7
                                                     
                                                       6
                        L.H .S  R.H .S
                    Hence the result is true for n = 1
Assume the result is true for n  k where k is a positive integer
                                        4k  3
              i.e. 1  2    k                 k
                                           6
c) Use mathematical induction to show that;
                4n  3
  1  2  n         n for all integers n  1
                  6
Test: n = 1
                                                       41  3
 L.H .S  1                                   R.H .S           1
                                                          6
        1
                                                       7
                                                     
                                                       6
                        L.H .S  R.H .S
                    Hence the result is true for n = 1
Assume the result is true for n  k where k is a positive integer
                                        4k  3
               i.e. 1  2    k                k
                                           6
Prove the result is true for n  k  1
c) Use mathematical induction to show that;
                4n  3
  1  2  n         n for all integers n  1
                  6
Test: n = 1
                                                       41  3
 L.H .S  1                                   R.H .S           1
                                                          6
        1
                                                       7
                                                     
                                                       6
                        L.H .S  R.H .S
                    Hence the result is true for n = 1
Assume the result is true for n  k where k is a positive integer
                                        4k  3
                i.e. 1  2    k               k
                                           6
Prove the result is true for n  k  1
                                            4k  7
        i.e. Prove 1  2    k  1                k 1
                                               6
Proof:
Proof:   1  2  k 1  1  2  k  k 1
Proof:   1  2  k 1  1  2  k  k 1
                          4k  3
                                k  k 1
                            6
Proof:   1  2  k 1  1  2  k  k 1
                          4k  3
                                 k  k 1
                            6
                        
                           4k  3 k  6 k  1
                                   2


                                     6
Proof:   1  2  k 1  1  2  k  k 1
                          4k  3
                                 k  k 1
                            6
                        
                           4k  3 k  6 k  1
                                    2


                                      6
                           16k 3  24k 2  9k  6 k  1
                        
                                        6
Proof:   1  2  k 1  1  2  k  k 1
                          4k  3
                                  k  k 1
                            6
                        
                           4k  3 k  6 k  1
                                     2


                                       6
                           16k 3  24k 2  9k  6 k  1
                        
                                         6
                            k  116k 2  8k  1  1  6 k  1
                        
                                             6
Proof:   1  2  k 1  1  2  k  k 1
                          4k  3
                                  k  k 1
                            6
                        
                           4k  3 k  6 k  1
                                     2


                                       6
                           16k 3  24k 2  9k  6 k  1
                        
                                         6
                            k  116k 2  8k  1  1  6 k  1
                        
                                             6
                         
                            k  14k  12  1  6 k  1
                                          6
Proof:   1  2  k 1  1  2  k  k 1
                          4k  3
                                  k  k 1
                            6
                        
                           4k  3 k  6 k  1
                                     2


                                       6
                           16k 3  24k 2  9k  6 k  1
                        
                                         6
                            k  116k 2  8k  1  1  6 k  1
                        
                                              6
                         
                            k  14k  12  1  6 k  1
                                           6
                         
                            k  14k  1  6 k  1
                                            2


                                         6
Proof:   1  2  k 1  1  2  k  k 1
                          4k  3
                                   k  k 1
                             6
                        
                            4k  3 k  6 k  1
                                      2


                                        6
                            16k 3  24k 2  9k  6 k  1
                        
                                           6
                             k  116k 2  8k  1  1  6 k  1
                        
                                               6
                         
                             k  14k  12  1  6 k  1
                                            6
                         
                             k  14k  1  6 k  1
                                             2


                                          6
                           4k  1 k  1  6 k  1
                         
                                          6
                         
                           4k  7  k  1
                                    6
Hence the result is true for n = k +1 if it is also true for n =k
Hence the result is true for n = k +1 if it is also true for n =k
Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2,
and since the result is true for n = 2 then it is also true for n =2+1 i.e.
n=3, and so on for all positive integral values of n
Hence the result is true for n = k +1 if it is also true for n =k
Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2,
and since the result is true for n = 2 then it is also true for n =2+1 i.e.
n=3, and so on for all positive integral values of n
d) Use b) and c) to estimate;
   1  2    10000 to the nearest hundred
Hence the result is true for n = k +1 if it is also true for n =k
Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2,
and since the result is true for n = 2 then it is also true for n =2+1 i.e.
n=3, and so on for all positive integral values of n
d) Use b) and c) to estimate;
   1  2    10000 to the nearest hundred
           2                          4n  3
             n n  1  2  n              n
           3                            6
Hence the result is true for n = k +1 if it is also true for n =k
Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2,
and since the result is true for n = 2 then it is also true for n =2+1 i.e.
n=3, and so on for all positive integral values of n
d) Use b) and c) to estimate;
    1  2    10000 to the nearest hundred
            2                          4n  3
              n n  1  2  n               n
            3                            6
2                                          410000  3
  10000 10000  1  2    10000                    10000
3                                                6
Hence the result is true for n = k +1 if it is also true for n =k
Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2,
and since the result is true for n = 2 then it is also true for n =2+1 i.e.
n=3, and so on for all positive integral values of n
d) Use b) and c) to estimate;
    1  2    10000 to the nearest hundred
            2                          4n  3
              n n  1  2  n               n
            3                            6
2                                          410000  3
  10000 10000  1  2    10000                    10000
3                                                6
          666700  1  2    10000  666700
Hence the result is true for n = k +1 if it is also true for n =k
Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2,
and since the result is true for n = 2 then it is also true for n =2+1 i.e.
n=3, and so on for all positive integral values of n
d) Use b) and c) to estimate;
    1  2    10000 to the nearest hundred
            2                          4n  3
              n n  1  2  n               n
            3                            6
2                                          410000  3
  10000 10000  1  2    10000                    10000
3                                                6
          666700  1  2    10000  666700
 1  2    10000  666700 to the nearest hundred
Hence the result is true for n = k +1 if it is also true for n =k
Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2,
and since the result is true for n = 2 then it is also true for n =2+1 i.e.
n=3, and so on for all positive integral values of n
d) Use b) and c) to estimate;
    1  2    10000 to the nearest hundred
            2                          4n  3
              n n  1  2  n               n
            3                            6
2                                          410000  3
  10000 10000  1  2    10000                    10000
3                                                6
          666700  1  2    10000  666700
 1  2    10000  666700 to the nearest hundred


                            Exercise 10F

More Related Content

PDF
TABLA DE DERIVADAS
PDF
11 X1 T02 10 shifting curves II
PDF
Pc12 sol c03_3-5
PDF
sol pg 104 # 1,2,3.
PDF
Sect1 4
PDF
sol pg 89
PPT
02 search problems
KEY
0203 ch 2 day 3
TABLA DE DERIVADAS
11 X1 T02 10 shifting curves II
Pc12 sol c03_3-5
sol pg 104 # 1,2,3.
Sect1 4
sol pg 89
02 search problems
0203 ch 2 day 3

What's hot (15)

KEY
1003 ch 10 day 3
KEY
1008 ch 10 day 8
PDF
Chapter 15
PDF
iTute Notes MM
PDF
Day 6 multiplying binomials
PDF
09 trial melaka_s2
PDF
calculo vectorial
ZIP
Sol Purcell Ingles
PDF
Slides September 16
PDF
Day 1 adding polynomials
PDF
Actividad 4 calculo diferencial
PDF
Lesson 54
PDF
Chapter 16
KEY
0308 ch 3 day 8
1003 ch 10 day 3
1008 ch 10 day 8
Chapter 15
iTute Notes MM
Day 6 multiplying binomials
09 trial melaka_s2
calculo vectorial
Sol Purcell Ingles
Slides September 16
Day 1 adding polynomials
Actividad 4 calculo diferencial
Lesson 54
Chapter 16
0308 ch 3 day 8
Ad

Viewers also liked (9)

PDF
Xavier trias sube los precios de tmb
PDF
X 09 Mwy 101 1
PPT
xbrl overview by liv watson
PPTX
Proyectos emprendedores de Portugal, Polonia, Noruega, Alemania,
PDF
Xaraktiristika Epeksergastwn
PPT
Xavier Ruiz
 
PDF
Xen app65stepbystep仮想デスクトップ環境の構築
KEY
18 tendencias de consumo actuales
Xavier trias sube los precios de tmb
X 09 Mwy 101 1
xbrl overview by liv watson
Proyectos emprendedores de Portugal, Polonia, Noruega, Alemania,
Xaraktiristika Epeksergastwn
Xavier Ruiz
 
Xen app65stepbystep仮想デスクトップ環境の構築
18 tendencias de consumo actuales
Ad

Similar to X2 T08 03 inequalities & graphs (2011) (20)

PDF
X2 T08 03 inequalities & graphs
PPTX
Algebra solving no animations
PDF
Ccp q2 review for benchmark 2013 one used didn't get to slope intercept
PDF
11 x1 t02 10 shifting curves ii (2013)
PDF
11X1 T02 10 shifting curves ii (2011)
PDF
11 x1 t02 10 shifting curves ii (2012)
PDF
M5 4 ps2 sy1112
PDF
Functionworksheet1
PPTX
AMU - Mathematics - 1996
PDF
Nov. 17 Rational Inequalities
PDF
Lesson 21: Curve Sketching (Section 10 version)
PPT
Algebra Revision.ppt
PPTX
Inequalities quadratic, fractional & irrational form
PDF
11X1 T01 09 completing the square (2011)
PDF
11X1 t01 08 completing the square (2012)
PPTX
Lecture complex fractions
PDF
Chapter 1
PPTX
4.3.3 find x intercepts by factoring
X2 T08 03 inequalities & graphs
Algebra solving no animations
Ccp q2 review for benchmark 2013 one used didn't get to slope intercept
11 x1 t02 10 shifting curves ii (2013)
11X1 T02 10 shifting curves ii (2011)
11 x1 t02 10 shifting curves ii (2012)
M5 4 ps2 sy1112
Functionworksheet1
AMU - Mathematics - 1996
Nov. 17 Rational Inequalities
Lesson 21: Curve Sketching (Section 10 version)
Algebra Revision.ppt
Inequalities quadratic, fractional & irrational form
11X1 T01 09 completing the square (2011)
11X1 t01 08 completing the square (2012)
Lecture complex fractions
Chapter 1
4.3.3 find x intercepts by factoring

More from Nigel Simmons (20)

PPT
Goodbye slideshare UPDATE
PPT
Goodbye slideshare
PDF
12 x1 t02 02 integrating exponentials (2014)
PDF
11 x1 t01 03 factorising (2014)
PDF
11 x1 t01 02 binomial products (2014)
PDF
12 x1 t02 01 differentiating exponentials (2014)
PDF
11 x1 t01 01 algebra & indices (2014)
PDF
12 x1 t01 03 integrating derivative on function (2013)
PDF
12 x1 t01 02 differentiating logs (2013)
PDF
12 x1 t01 01 log laws (2013)
PDF
X2 t02 04 forming polynomials (2013)
PDF
X2 t02 03 roots & coefficients (2013)
PDF
X2 t02 02 multiple roots (2013)
PDF
X2 t02 01 factorising complex expressions (2013)
PDF
11 x1 t16 07 approximations (2013)
PDF
11 x1 t16 06 derivative times function (2013)
PDF
11 x1 t16 05 volumes (2013)
PDF
11 x1 t16 04 areas (2013)
PDF
11 x1 t16 03 indefinite integral (2013)
PDF
11 x1 t16 02 definite integral (2013)
Goodbye slideshare UPDATE
Goodbye slideshare
12 x1 t02 02 integrating exponentials (2014)
11 x1 t01 03 factorising (2014)
11 x1 t01 02 binomial products (2014)
12 x1 t02 01 differentiating exponentials (2014)
11 x1 t01 01 algebra & indices (2014)
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 01 log laws (2013)
X2 t02 04 forming polynomials (2013)
X2 t02 03 roots & coefficients (2013)
X2 t02 02 multiple roots (2013)
X2 t02 01 factorising complex expressions (2013)
11 x1 t16 07 approximations (2013)
11 x1 t16 06 derivative times function (2013)
11 x1 t16 05 volumes (2013)
11 x1 t16 04 areas (2013)
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 02 definite integral (2013)

Recently uploaded (20)

PDF
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 2).pdf
PPTX
What’s under the hood: Parsing standardized learning content for AI
PPTX
Introduction to pro and eukaryotes and differences.pptx
PDF
International_Financial_Reporting_Standa.pdf
PDF
Skin Care and Cosmetic Ingredients Dictionary ( PDFDrive ).pdf
PDF
semiconductor packaging in vlsi design fab
PPTX
B.Sc. DS Unit 2 Software Engineering.pptx
PDF
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
PDF
Environmental Education MCQ BD2EE - Share Source.pdf
PPTX
A powerpoint presentation on the Revised K-10 Science Shaping Paper
PPTX
Computer Architecture Input Output Memory.pptx
PDF
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
PDF
What if we spent less time fighting change, and more time building what’s rig...
PDF
Uderstanding digital marketing and marketing stratergie for engaging the digi...
PPTX
Share_Module_2_Power_conflict_and_negotiation.pptx
PDF
Journal of Dental Science - UDMY (2021).pdf
PDF
1.3 FINAL REVISED K-10 PE and Health CG 2023 Grades 4-10 (1).pdf
PDF
My India Quiz Book_20210205121199924.pdf
PDF
Complications of Minimal Access-Surgery.pdf
DOCX
Cambridge-Practice-Tests-for-IELTS-12.docx
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 2).pdf
What’s under the hood: Parsing standardized learning content for AI
Introduction to pro and eukaryotes and differences.pptx
International_Financial_Reporting_Standa.pdf
Skin Care and Cosmetic Ingredients Dictionary ( PDFDrive ).pdf
semiconductor packaging in vlsi design fab
B.Sc. DS Unit 2 Software Engineering.pptx
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
Environmental Education MCQ BD2EE - Share Source.pdf
A powerpoint presentation on the Revised K-10 Science Shaping Paper
Computer Architecture Input Output Memory.pptx
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
What if we spent less time fighting change, and more time building what’s rig...
Uderstanding digital marketing and marketing stratergie for engaging the digi...
Share_Module_2_Power_conflict_and_negotiation.pptx
Journal of Dental Science - UDMY (2021).pdf
1.3 FINAL REVISED K-10 PE and Health CG 2023 Grades 4-10 (1).pdf
My India Quiz Book_20210205121199924.pdf
Complications of Minimal Access-Surgery.pdf
Cambridge-Practice-Tests-for-IELTS-12.docx

X2 T08 03 inequalities & graphs (2011)

  • 2. Inequalities & Graphs x2 e.g. i  Solve 1 x2
  • 3. Inequalities & Graphs x2 e.g. i  Solve 1 x2
  • 4. Inequalities & Graphs x2 e.g. i  Solve 1 x2
  • 5. Inequalities & Graphs x2 e.g. i  Solve 1 x2
  • 6. Inequalities & Graphs x2 e.g. i  Solve 1 x2 Oblique asymptote:
  • 7. Inequalities & Graphs x2 e.g. i  Solve 1 x2 4 x2 Oblique asymptote:  x2 x2 x2
  • 8. Inequalities & Graphs x2 e.g. i  Solve 1 x2 4 x2 Oblique asymptote:  x2 x2 x2
  • 9. Inequalities & Graphs x2 e.g. i  Solve 1 x2 4 x2 Oblique asymptote:  x2 x2 x2
  • 10. Inequalities & Graphs x2 e.g. i  Solve 1 x2
  • 11. Inequalities & Graphs x2 e.g. i  Solve 1 x2
  • 12. Inequalities & Graphs x2 e.g. i  Solve 1 x2 x2 1 x2 x2  x  2 x2  x  2  0  x  2 x  1  0 x  2 or x  1
  • 13. Inequalities & Graphs x2 e.g. i  Solve 1 x2 x2 1 x2 x2  x  2 x2  x  2  0  x  2 x  1  0 x  2 or x  1 x2 1 x2 x  2 or  1  x  2
  • 14. (ii) (1990) Consider the graph y  x
  • 15. (ii) (1990) Consider the graph y  x a) Show that the graph is increasing for all x  0
  • 16. (ii) (1990) Consider the graph y  x a) Show that the graph is increasing for all x  0 dy Curve is increasing when 0 dx
  • 17. (ii) (1990) Consider the graph y  x a) Show that the graph is increasing for all x  0 dy Curve is increasing when 0 dx y x dy 1  dx 2 x
  • 18. (ii) (1990) Consider the graph y  x a) Show that the graph is increasing for all x  0 dy Curve is increasing when 0 dx y x dy 1  dx 2 x dy   0 for x  0 dx
  • 19. (ii) (1990) Consider the graph y  x a) Show that the graph is increasing for all x  0 dy Curve is increasing when 0 dx y x at x  0, y  0 dy 1  dx 2 x dy   0 for x  0 dx
  • 20. (ii) (1990) Consider the graph y  x a) Show that the graph is increasing for all x  0 dy Curve is increasing when 0 dx y x at x  0, y  0 dy 1 when x  0, y  0  dx 2 x dy   0 for x  0 dx
  • 21. (ii) (1990) Consider the graph y  x a) Show that the graph is increasing for all x  0 dy Curve is increasing when 0 dx y x at x  0, y  0 dy 1 when x  0, y  0  dx 2 x dy   0 for x  0  curve is increasing for x  0 dx
  • 22. b) Hence show that; n 2 1  2    n   xdx  n n 0 3
  • 23. b) Hence show that; n 2 1  2    n   xdx  n n 0 3
  • 24. b) Hence show that; n 2 1  2    n   xdx  n n 0 3 As x is increasing; Area outer rectangles  Area under curve
  • 25. b) Hence show that; n 2 1  2    n   xdx  n n 0 3 As x is increasing; Area outer rectangles  Area under curve n 1  2    n   xdx 0
  • 26. b) Hence show that; n 2 1  2    n   xdx  n n 0 3 As x is increasing; Area outer rectangles  Area under curve n 1  2    n   xdx 0 n 2 x x  3 0  2  n n 3
  • 27. b) Hence show that; n 2 1  2    n   xdx  n n 0 3 As x is increasing; Area outer rectangles  Area under curve n 1  2    n   xdx 0 n 2 x x  3 0  2  n n 3 n 2  1  2    n   xdx  n n 0 3
  • 28. c) Use mathematical induction to show that; 4n  3 1  2  n  n for all integers n  1 6
  • 29. c) Use mathematical induction to show that; 4n  3 1  2  n  n for all integers n  1 6 Test: n = 1
  • 30. c) Use mathematical induction to show that; 4n  3 1  2  n  n for all integers n  1 6 Test: n = 1 L.H .S  1 1
  • 31. c) Use mathematical induction to show that; 4n  3 1  2  n  n for all integers n  1 6 Test: n = 1 41  3 L.H .S  1 R.H .S  1 6 1 7  6
  • 32. c) Use mathematical induction to show that; 4n  3 1  2  n  n for all integers n  1 6 Test: n = 1 41  3 L.H .S  1 R.H .S  1 6 1 7  6  L.H .S  R.H .S
  • 33. c) Use mathematical induction to show that; 4n  3 1  2  n  n for all integers n  1 6 Test: n = 1 41  3 L.H .S  1 R.H .S  1 6 1 7  6  L.H .S  R.H .S Hence the result is true for n = 1
  • 34. c) Use mathematical induction to show that; 4n  3 1  2  n  n for all integers n  1 6 Test: n = 1 41  3 L.H .S  1 R.H .S  1 6 1 7  6  L.H .S  R.H .S Hence the result is true for n = 1 Assume the result is true for n  k where k is a positive integer
  • 35. c) Use mathematical induction to show that; 4n  3 1  2  n  n for all integers n  1 6 Test: n = 1 41  3 L.H .S  1 R.H .S  1 6 1 7  6  L.H .S  R.H .S Hence the result is true for n = 1 Assume the result is true for n  k where k is a positive integer 4k  3 i.e. 1  2    k  k 6
  • 36. c) Use mathematical induction to show that; 4n  3 1  2  n  n for all integers n  1 6 Test: n = 1 41  3 L.H .S  1 R.H .S  1 6 1 7  6  L.H .S  R.H .S Hence the result is true for n = 1 Assume the result is true for n  k where k is a positive integer 4k  3 i.e. 1  2    k  k 6 Prove the result is true for n  k  1
  • 37. c) Use mathematical induction to show that; 4n  3 1  2  n  n for all integers n  1 6 Test: n = 1 41  3 L.H .S  1 R.H .S  1 6 1 7  6  L.H .S  R.H .S Hence the result is true for n = 1 Assume the result is true for n  k where k is a positive integer 4k  3 i.e. 1  2    k  k 6 Prove the result is true for n  k  1 4k  7 i.e. Prove 1  2    k  1  k 1 6
  • 39. Proof: 1  2  k 1  1  2  k  k 1
  • 40. Proof: 1  2  k 1  1  2  k  k 1 4k  3  k  k 1 6
  • 41. Proof: 1  2  k 1  1  2  k  k 1 4k  3  k  k 1 6  4k  3 k  6 k  1 2 6
  • 42. Proof: 1  2  k 1  1  2  k  k 1 4k  3  k  k 1 6  4k  3 k  6 k  1 2 6 16k 3  24k 2  9k  6 k  1  6
  • 43. Proof: 1  2  k 1  1  2  k  k 1 4k  3  k  k 1 6  4k  3 k  6 k  1 2 6 16k 3  24k 2  9k  6 k  1  6 k  116k 2  8k  1  1  6 k  1  6
  • 44. Proof: 1  2  k 1  1  2  k  k 1 4k  3  k  k 1 6  4k  3 k  6 k  1 2 6 16k 3  24k 2  9k  6 k  1  6 k  116k 2  8k  1  1  6 k  1  6  k  14k  12  1  6 k  1 6
  • 45. Proof: 1  2  k 1  1  2  k  k 1 4k  3  k  k 1 6  4k  3 k  6 k  1 2 6 16k 3  24k 2  9k  6 k  1  6 k  116k 2  8k  1  1  6 k  1  6  k  14k  12  1  6 k  1 6  k  14k  1  6 k  1 2 6
  • 46. Proof: 1  2  k 1  1  2  k  k 1 4k  3  k  k 1 6  4k  3 k  6 k  1 2 6 16k 3  24k 2  9k  6 k  1  6 k  116k 2  8k  1  1  6 k  1  6  k  14k  12  1  6 k  1 6  k  14k  1  6 k  1 2 6 4k  1 k  1  6 k  1  6  4k  7  k  1 6
  • 47. Hence the result is true for n = k +1 if it is also true for n =k
  • 48. Hence the result is true for n = k +1 if it is also true for n =k Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2, and since the result is true for n = 2 then it is also true for n =2+1 i.e. n=3, and so on for all positive integral values of n
  • 49. Hence the result is true for n = k +1 if it is also true for n =k Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2, and since the result is true for n = 2 then it is also true for n =2+1 i.e. n=3, and so on for all positive integral values of n d) Use b) and c) to estimate; 1  2    10000 to the nearest hundred
  • 50. Hence the result is true for n = k +1 if it is also true for n =k Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2, and since the result is true for n = 2 then it is also true for n =2+1 i.e. n=3, and so on for all positive integral values of n d) Use b) and c) to estimate; 1  2    10000 to the nearest hundred 2 4n  3 n n  1  2  n  n 3 6
  • 51. Hence the result is true for n = k +1 if it is also true for n =k Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2, and since the result is true for n = 2 then it is also true for n =2+1 i.e. n=3, and so on for all positive integral values of n d) Use b) and c) to estimate; 1  2    10000 to the nearest hundred 2 4n  3 n n  1  2  n  n 3 6 2 410000  3 10000 10000  1  2    10000  10000 3 6
  • 52. Hence the result is true for n = k +1 if it is also true for n =k Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2, and since the result is true for n = 2 then it is also true for n =2+1 i.e. n=3, and so on for all positive integral values of n d) Use b) and c) to estimate; 1  2    10000 to the nearest hundred 2 4n  3 n n  1  2  n  n 3 6 2 410000  3 10000 10000  1  2    10000  10000 3 6 666700  1  2    10000  666700
  • 53. Hence the result is true for n = k +1 if it is also true for n =k Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2, and since the result is true for n = 2 then it is also true for n =2+1 i.e. n=3, and so on for all positive integral values of n d) Use b) and c) to estimate; 1  2    10000 to the nearest hundred 2 4n  3 n n  1  2  n  n 3 6 2 410000  3 10000 10000  1  2    10000  10000 3 6 666700  1  2    10000  666700  1  2    10000  666700 to the nearest hundred
  • 54. Hence the result is true for n = k +1 if it is also true for n =k Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2, and since the result is true for n = 2 then it is also true for n =2+1 i.e. n=3, and so on for all positive integral values of n d) Use b) and c) to estimate; 1  2    10000 to the nearest hundred 2 4n  3 n n  1  2  n  n 3 6 2 410000  3 10000 10000  1  2    10000  10000 3 6 666700  1  2    10000  666700  1  2    10000  666700 to the nearest hundred Exercise 10F