SlideShare a Scribd company logo
Section 6.3 
Complex 
Rational 
Expressions 
Copyright © 2013, 2009, 2006 Pearson Education, Inc. 1
Objective #1 
Simplify complex rational expressions by 
multiplying by 1. 
Copyright © 2013, 2009, 2006 Pearson Education, Inc. 2
Simplifying Complex Fractions 
Complex rational expressions, also called complex 
fractions, have numerators or denominators containing one 
or more fractions. 
5 
x 
x 
 
5 
1 1 
 
5 
x 
Woe is me, 
for I am 
complex. 
Copyright © 2013, 2009, 2006 Pearson Education, Inc. 3
Complex Rational Expressions 
Simplifying a Complex Rational 
Expression by Multiplying by 1 in the 
Form LCD 
T 
LCD 
1) Find the LCD of all rational expressions within the 
complex rational expression. 
2) Multiply both the numerator and the denominator of the 
complex rational expression by this LCD. 
3) Use the distributive property and multiply each term in the 
numerator and denominator by this LCD. Simplify each term. 
No fractional expressions should remain within the numerator 
and denominator of the main fraction. 
4) If possible, factor and simplify. 
Copyright © 2013, 2009, 2006 Pearson Education, Inc. 4
Simplifying Complex Fractions 
x 
 
 
x 
Copyright © 2013, 2009, 2006 Pearson Education, Inc. 5 
EXAMPLE 
 
Simplify: . 
1 
1 
5 
5 
5 
x 
x 
 
SOLUTION 
The denominators in the complex rational expression are 5 and 
x. The LCD is 5x. Multiply both the numerator and the 
denominator of the complex rational expression by 5x. 
 
 
 
 
 
  
 
x 
5 
  
 
 
x 
x 
x 
x 
x 
x 
1 
1 
5 
5 
5 
5 
1 
1 
5 
5 
5 Multiply the numerator and 
denominator by 5x.
Simplifying Complex Fractions 
 Divide out common factors. 
Copyright © 2013, 2009, 2006 Pearson Education, Inc. 6 
x 
   
1 
x x 
x 
x 
x 
x 
1 
5 
5 
5 
5 
5 
5 
5 
   
 
Use the distributive 
property. 
CONTINUED 
x 
   
1 
x x 
x 
x 
x 
x 
1 
5 
5 
5 
5 
5 
5 
5 
   
2 
 
25  
5 
 
x 
x 
Simplify. 
 x  5  x 
 
5 
 
1    
5 
 
x 
Factor and simplify.
Simplifying Complex Fractions 
Simplify. 
Copyright © 2013, 2009, 2006 Pearson Education, Inc. 7 
CONTINUED 
5  
1 
 
x 
Simplify. 5   x
Simplifying Complex Fractions 
1 
x x 
 
 
x x x x 
Copyright © 2013, 2009, 2006 Pearson Education, Inc. 8 
EXAMPLE 
Simplify: . 
6 
1 
6 
 
 
SOLUTION 
The denominators in the complex rational expression are x + 6 
and x. The LCD is (x + 6)x. Multiply both the numerator and 
the denominator of the complex rational expression by (x + 6)x. 
Multiply the numerator and 
denominator by (x + 6)x. 
  
  6 
1 
6 
1 
6 
6 
6 
1 
6 
1 
 
 
 
 
 
 
 
 
 
 x x 
x x
Simplifying Complex Fractions 
Use the distributive 
property. 
CONTINUED 
    
   
 
 6 6 
1 
6 
   
Copyright © 2013, 2009, 2006 Pearson Education, Inc. 9 
6 
1 
6 
  
  
 
x x 
x 
x x 
x 
x x 
Divide out common factors. 
    
 
 6 6 
1 
6 
6 
1 
6 
  
  
 
x x 
x 
x x 
x 
x x 
Simplify. 
 6 
 
x x 
  
  6  
6 
 
x x 
x x 
6 36 
6 
  
x 2  
x Simplify. 

Simplifying Complex Fractions 
Copyright © 2013, 2009, 2006 Pearson Education, Inc. 10 
CONTINUED 
6 
 
6x 2  
36x Subtract. 
 
Factor and simplify. 
  
6   
1 
6   
6 
 
x x 
 
1 
 
 6 Simplify. 
 
x x
x x x  
y 
 1  1  1 
 
   
 
 1  1  1 
 
xy  y y x  
y y 
x y x y x y x y 
   
    
Copyright © 2013, 2009, 2006 Pearson Education, Inc. 11 
1a. Simplify: 
2 
2 
1 
1 
x 
y 
x 
y 
 
 
Multiply the numerator and denominator by the LCD of 2. y 
2 
2 
2 
2 2 2 2 2 
2 
2 2 2 
y 
y y y y 
x y x x y 
y 
y y y 
2 
2 2 
( ) 
( )( ) 
Objective #1: Example
x x x  
y 
 1  1  1 
 
   
 
 1  1  1 
 
xy  y y x  
y y 
x y x y x y x y 
   
    
Copyright © 2013, 2009, 2006 Pearson Education, Inc. 12 
1a. Simplify: 
2 
2 
1 
1 
x 
y 
x 
y 
 
 
Multiply the numerator and denominator by the LCD of 2. y 
2 
2 
2 
2 2 2 2 2 
2 
2 2 2 
y 
y y y y 
x y x x y 
y 
y y y 
2 
2 2 
( ) 
( )( ) 
Objective #1: Example
 
Copyright © 2013, 2009, 2006 Pearson Education, Inc. 13 
Objective #1: Example 
1b. Simplify: 
1 1 
7 
7 
x  
x 
Multiply the numerator and denominator 
by the LCD of x(x  7). 
1 1 1 1 ( 7) ( 7) 
7 ( 7) 7 7 
7 ( 7) 7 7 ( 7) 
( 7) 7 7 
7 ( 7) 7 ( 7) 7 ( 7) 
1 1 
( 7) ( 7) 
x x x x 
x x x x x x x x 
x x x x 
x x x x 
x x x x x x 
x x x x 
  
   
       
  
     
   
   
 
   
 
 
Copyright © 2013, 2009, 2006 Pearson Education, Inc. 14 
Objective #1: Example 
1b. Simplify: 
1 1 
7 
7 
x  
x 
Multiply the numerator and denominator 
by the LCD of x(x  7). 
1 1 1 1 ( 7) ( 7) 
7 ( 7) 7 7 
7 ( 7) 7 7 ( 7) 
( 7) 7 7 
7 ( 7) 7 ( 7) 7 ( 7) 
1 1 
( 7) ( 7) 
x x x x 
x x x x x x x x 
x x x x 
x x x x 
x x x x x x 
x x x x 
  
   
       
  
     
   
   
 
   
 
Objective #2 
Simplify complex rational expressions by dividing. 
Copyright © 2013, 2009, 2006 Pearson Education, Inc. 15
Simplifying Complex Fractions 
Simplifying a Complex Rational 
Expression by Dividing 
1) If necessary, add or subtract to get a single rational 
expression in the numerator. 
2) If necessary, add or subtract to get a single rational 
expression in the denominator. 
3) Perform the division indicated by the main fraction 
bar: Invert the denominator of the complex rational 
expression and multiply. 
4) If possible, simplify. 
Copyright © 2013, 2009, 2006 Pearson Education, Inc. 16
Simplifying Complex Fractions 
m 
2 2 
m m m 
3 
2 
4 4 
9 
2 2 
m 
2 
m 
m 
m m m 
9  
2 
m m m m 
    
2 2 3 3 
m m 
2  3  
3 
Copyright © 2013, 2009, 2006 Pearson Education, Inc. 17 
EXAMPLE 
Simplify: . 
5 6   
6 
 
  
  
 
 
m m 
m m 
SOLUTION 
1) Subtract to get a single rational expression in the 
numerator. 
2 
2 2 4 4  3  3 
  2 
2  
  
 
  
 
 m m m 
  
2 
 
m m 
    
   
     
     
   2 
2 2 
2 
3 3 2 
2 3 3 
3 3 2 
   
 
   
 
   
 
m m m 
m m m 
m m m
Simplifying Complex Fractions 
3 2 
CONTINUED 
m m m m 
    
4 4 2 18 
2 
3 2 2 
m m m 
   
6 4 18 
 
  3   3   
2 
   3   3   
2 
2 
2) Add to get a single rational expression in the denominator. 
3 
m 
m 
2 2   
3 
m m m 
   
 
m m 
9 
3 9 3 2 2 
 
m   m  
m 
m 
Copyright © 2013, 2009, 2006 Pearson Education, Inc. 18 
 
m m m 
m m m 
 3 2  2 3 
3 
5 6 6 
 
  
 
  
 
  m m m m 
m m 
m m 
 m 
 
3  
3 
    
  
    
3  3   3 
 
 3 2 3 
2 3 3 
3 2 3 
   
 
   
 
   
 
m m m 
m m m 
m m m 
 3  2  3 
   3  2  
3 
 
   
 
m m m 
m m m
Simplifying Complex Fractions 
3) & 4) Perform the division indicated by the main fraction 
bar: Invert and multiply. If possible, simplify. 
m m m 
   
6 4 18 
 m  3  m  3  m 
 
2 
 
9 
 
m 
 3 2 3 
2 
m 
2 2 
m m m 
m 
5 6 6 
m m m 
   
3 2 3 
m m m 
   
6 4 18 
m m m 
   
3 2 3 
m m m 
   
6 4 18 
m m m 
   
6 4 18 
Copyright © 2013, 2009, 2006 Pearson Education, Inc. 19 
3 
4 4 
9 
2 
2 
3 2 
2 2 
   
 
  
 
  
  
 
 
m m m 
m m 
m m 
    
    
9 
3 3 2 
2 2 
3 2 
 
 
   
 
m 
m m m 
    
    
9 
3 3 2 
2 2 
3 2 
 
 
   
 
m 
m m m 
 2 2 
9 
3 2 
  
 
m m 
CONTINUED
Objective #2: Example 
x x 
x x 
x x 
x x 
  
Copyright © 2013, 2009, 2006 Pearson Education, Inc. 20 
2a. Simplify: 
1 1 
 
1 1 
1 1 
1 1 
  
  
 
  
The LCD of the numerator is (x 1)(x 1). 
The LCD of the denominator is (x 1)(x 1).
Objective #2: Example 
x x 
x x 
x x 
x x 
  
Copyright © 2013, 2009, 2006 Pearson Education, Inc. 21 
2a. Simplify: 
1 1 
 
1 1 
1 1 
1 1 
  
  
 
  
The LCD of the numerator is (x 1)(x 1). 
The LCD of the denominator is (x 1)(x 1).
x x x x x x x x x x 
x x x x x x x x x x 
x x x x x x x x x x 
x x x x x x x x x x 
 1  1 (  1)(  1) (  1)(  1)  2  1  2  1 
   
 1  1 (  1)(  1) (  1)(  1) (  1)(  1) (  1)(  1) 
  
 1  1 (  1)(  1) (  1)(  1)    2  1  2  1 
 1  1 (  1)(  1) (  1)(  1)  (  1)(  1) (  1)(  
1) 
x x x x 
     
x x x x 
2 1 2 1 
x x x 
1)( 1) ( 1)( 1) 
x x x x x x x x 
x x x x 
x 
x x x x x x 
Copyright © 2013, 2009, 2006 Pearson Education, Inc. 22 
Objective #2: Example 
2 2 
2 2 
2 2 
2 1 ( 2 1) 
( 
x 
 
2 2 
2 2 2 2 
2 1 2 1 2 1 2 1 
( 1)( 1) ( 1)( 1) 
4 
( 1)( 1) 4 ( 1)( 1) 4 
2 x 2 2 ( x 1)( x 1) 2 x 2 2 2( x 
2 1) 
( x 1)( x 
1) 
2 
x 
x 
2 1 
     
    
 
          
    
    
    
     
  
 
 
CONTINUED
x x x x x x x x x x 
x x x x x x x x x x 
x x x x x x x x x x 
x x x x x x x x x x 
 1  1 (  1)(  1) (  1)(  1)  2  1  2  1 
   
 1  1 (  1)(  1) (  1)(  1) (  1)(  1) (  1)(  1) 
  
 1  1 (  1)(  1) (  1)(  1)    2  1  2  1 
 1  1 (  1)(  1) (  1)(  1)  (  1)(  1) (  1)(  
1) 
x x x x 
     
x x x x 
2 1 2 1 
x x x 
1)( 1) ( 1)( 1) 
x x x x x x x x 
x x x x 
x 
x x x x x x 
Copyright © 2013, 2009, 2006 Pearson Education, Inc. 23 
Objective #2: Example 
2 2 
2 2 
2 2 
2 1 ( 2 1) 
( 
x 
 
2 2 
2 2 2 2 
2 1 2 1 2 1 2 1 
( 1)( 1) ( 1)( 1) 
4 
( 1)( 1) 4 ( 1)( 1) 4 
2 x 2 2 ( x 1)( x 1) 2 x 2 2 2( x 
2 1) 
( x 1)( x 
1) 
2 
x 
x 
2 1 
     
    
 
          
    
    
    
     
  
 
 
CONTINUED
x 
 
1  
4 
  
x x 
Copyright © 2013, 2009, 2006 Pearson Education, Inc. 24 
Objective #2: Example 
2b. Simplify: 
2 
1 2 
1 7 10 
  
Rewrite the expression without negative exponents. 
Then multiply the numerator and denominator 
by the LCD of 2. x
x 
 
1  
4 
  
x x 
Copyright © 2013, 2009, 2006 Pearson Education, Inc. 25 
Objective #2: Example 
2b. Simplify: 
2 
1 2 
1 7 10 
  
Rewrite the expression without negative exponents. 
Then multiply the numerator and denominator 
by the LCD of 2. x
x x 
Copyright © 2013, 2009, 2006 Pearson Education, Inc. 26 
Objective #2: Example 
2 2 
1 2 
2 
2 
2 
2 2 2 
2 2 2 
2 
2 2 
2 
2 
4 
1 
1 4 
1 7 10 7 10 1 
4 4 
1 1 
7 10 7 10 1 1 
4 ( 2)( 2) 2 
7 10 ( 5)( 2) 5 
x x 
x x 
x 
x 
x x x 
x x x 
x x x x x 
x x x x 
x x x x x 
 
  
 
 
 
    
 
   
   
       
    
   
     
CONTINUED
x x 
Copyright © 2013, 2009, 2006 Pearson Education, Inc. 27 
Objective #2: Example 
2 2 
1 2 
2 
2 
2 
2 2 2 
2 2 2 
2 
2 2 
2 
2 
4 
1 
1 4 
1 7 10 7 10 1 
4 4 
1 1 
7 10 7 10 1 1 
4 ( 2)( 2) 2 
7 10 ( 5)( 2) 5 
x x 
x x 
x 
x 
x x x 
x x x 
x x x x x 
x x x x 
x x x x x 
 
  
 
 
 
    
 
   
   
       
    
   
     
CONTINUED

More Related Content

PDF
Factoring Sum and Difference of Two Cubes
PPTX
7.7 Solving Radical Equations
PPT
Rational equations
PPT
Slope of a Line
PPTX
Factoring the difference of two squares
PPTX
PROPERTIES OF THE OPERATIONS ON INTEGERS
PPT
Quadratic inequalities
PPTX
Rewriting Linear Equation from standard form to slope intercept form
Factoring Sum and Difference of Two Cubes
7.7 Solving Radical Equations
Rational equations
Slope of a Line
Factoring the difference of two squares
PROPERTIES OF THE OPERATIONS ON INTEGERS
Quadratic inequalities
Rewriting Linear Equation from standard form to slope intercept form

What's hot (20)

PPTX
Multiplying Monomials
PPTX
Rectangular Coordinate System PPT
PPTX
rational equation transformable to quadratic equation.pptx
PPT
7.8.-SPECIAL-PRODUCTS.ppt
PPTX
Factoring the Difference of Two Squares
PPTX
7.2 simplifying radicals
PPTX
Graph of linear equations
PPT
2/27/12 Special Factoring - Sum & Difference of Two Cubes
PDF
Solving Quadratic Equations
PPTX
Adding and subtracting rational expressions
PPT
Factoring by grouping ppt
PPT
Inverse functions
PPTX
Quadratic functions
PPTX
Graphing polynomial functions (Grade 10)
PPT
Rational Exponents
PPTX
Domain-and-Range-of-a-Function
PPT
Finding Slope Given A Graph And Two Points
PPT
Multiplying polynomials
PPT
Linear Equations and Inequalities in One Variable
PPTX
Factoring Perfect Square Trinomial
Multiplying Monomials
Rectangular Coordinate System PPT
rational equation transformable to quadratic equation.pptx
7.8.-SPECIAL-PRODUCTS.ppt
Factoring the Difference of Two Squares
7.2 simplifying radicals
Graph of linear equations
2/27/12 Special Factoring - Sum & Difference of Two Cubes
Solving Quadratic Equations
Adding and subtracting rational expressions
Factoring by grouping ppt
Inverse functions
Quadratic functions
Graphing polynomial functions (Grade 10)
Rational Exponents
Domain-and-Range-of-a-Function
Finding Slope Given A Graph And Two Points
Multiplying polynomials
Linear Equations and Inequalities in One Variable
Factoring Perfect Square Trinomial
Ad

Similar to Lecture complex fractions (20)

PPTX
Chapter 9 - Rational Expressions
PPT
PPTX
EPCA_MODULE-2.pptx
PPT
SRWColAlg6_0P_07.ppt
PPT
Cei03 ppt 01
PPTX
Section 14.6 solving equations with rational expressions
PPT
Exponent & Logarithm
PDF
1.6 Rational Expressions
PDF
Notes and formulae mathematics
PDF
GRE - Math-for-students-taking-maths.pdf
PDF
Elementary algebra notes 001.pdf
PPTX
May 28, 2014
PDF
Engineering mathematics, fifth edition(1)
PDF
PDF
Solution Manual for Mathematics with Allied Health Applications, 1st Edition
PDF
Basic Engineering Mathematics.pdf
PDF
Basic engineering mathematics e5
PDF
0.5 Rational Expressions
PDF
[Sundstrom_Ted.]_Mathematical_Reasoning_Writing - Copy.pdf
PDF
[Sundstrom_Ted.]_Mathematical_Reasoning_Writing - Copy.pdf
Chapter 9 - Rational Expressions
EPCA_MODULE-2.pptx
SRWColAlg6_0P_07.ppt
Cei03 ppt 01
Section 14.6 solving equations with rational expressions
Exponent & Logarithm
1.6 Rational Expressions
Notes and formulae mathematics
GRE - Math-for-students-taking-maths.pdf
Elementary algebra notes 001.pdf
May 28, 2014
Engineering mathematics, fifth edition(1)
Solution Manual for Mathematics with Allied Health Applications, 1st Edition
Basic Engineering Mathematics.pdf
Basic engineering mathematics e5
0.5 Rational Expressions
[Sundstrom_Ted.]_Mathematical_Reasoning_Writing - Copy.pdf
[Sundstrom_Ted.]_Mathematical_Reasoning_Writing - Copy.pdf
Ad

More from Hazel Joy Chong (20)

PPT
Writing objectives
PPT
Madelyn hunter
PPT
Effective lesson planning
DOC
ABCD model
PPT
Lect 2 the four pillars of learning (riza edited)
PDF
Learning to live 2 [smallpdf.com]
PDF
Learning to live
PDF
Learning to do
PPT
Fourpillarsofeducation 120810190042-phpapp02
PDF
Learning to be
PPT
The sociology of education
PPT
Social dimensions of_educatio_npart_1
PPTX
Socdimofeduc
PPT
conjuctions
PPTX
15 photosynthesis
PPTX
14 electron transport chain
PPTX
13 kreb cycle
PPTX
12 glycolysis
PPTX
11 introduction to cell biology 5
PPTX
10 introduction to cell biology 4
Writing objectives
Madelyn hunter
Effective lesson planning
ABCD model
Lect 2 the four pillars of learning (riza edited)
Learning to live 2 [smallpdf.com]
Learning to live
Learning to do
Fourpillarsofeducation 120810190042-phpapp02
Learning to be
The sociology of education
Social dimensions of_educatio_npart_1
Socdimofeduc
conjuctions
15 photosynthesis
14 electron transport chain
13 kreb cycle
12 glycolysis
11 introduction to cell biology 5
10 introduction to cell biology 4

Recently uploaded (20)

PDF
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
PDF
Anesthesia in Laparoscopic Surgery in India
PPTX
Cell Types and Its function , kingdom of life
PDF
O5-L3 Freight Transport Ops (International) V1.pdf
PDF
Supply Chain Operations Speaking Notes -ICLT Program
PDF
RMMM.pdf make it easy to upload and study
PDF
Complications of Minimal Access Surgery at WLH
PPTX
Pharma ospi slides which help in ospi learning
PPTX
BOWEL ELIMINATION FACTORS AFFECTING AND TYPES
PPTX
Microbial diseases, their pathogenesis and prophylaxis
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
PDF
102 student loan defaulters named and shamed – Is someone you know on the list?
PPTX
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
PDF
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
PDF
Microbial disease of the cardiovascular and lymphatic systems
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PDF
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
PDF
VCE English Exam - Section C Student Revision Booklet
PDF
O7-L3 Supply Chain Operations - ICLT Program
PDF
2.FourierTransform-ShortQuestionswithAnswers.pdf
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
Anesthesia in Laparoscopic Surgery in India
Cell Types and Its function , kingdom of life
O5-L3 Freight Transport Ops (International) V1.pdf
Supply Chain Operations Speaking Notes -ICLT Program
RMMM.pdf make it easy to upload and study
Complications of Minimal Access Surgery at WLH
Pharma ospi slides which help in ospi learning
BOWEL ELIMINATION FACTORS AFFECTING AND TYPES
Microbial diseases, their pathogenesis and prophylaxis
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
102 student loan defaulters named and shamed – Is someone you know on the list?
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
Microbial disease of the cardiovascular and lymphatic systems
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
VCE English Exam - Section C Student Revision Booklet
O7-L3 Supply Chain Operations - ICLT Program
2.FourierTransform-ShortQuestionswithAnswers.pdf

Lecture complex fractions

  • 1. Section 6.3 Complex Rational Expressions Copyright © 2013, 2009, 2006 Pearson Education, Inc. 1
  • 2. Objective #1 Simplify complex rational expressions by multiplying by 1. Copyright © 2013, 2009, 2006 Pearson Education, Inc. 2
  • 3. Simplifying Complex Fractions Complex rational expressions, also called complex fractions, have numerators or denominators containing one or more fractions. 5 x x  5 1 1  5 x Woe is me, for I am complex. Copyright © 2013, 2009, 2006 Pearson Education, Inc. 3
  • 4. Complex Rational Expressions Simplifying a Complex Rational Expression by Multiplying by 1 in the Form LCD T LCD 1) Find the LCD of all rational expressions within the complex rational expression. 2) Multiply both the numerator and the denominator of the complex rational expression by this LCD. 3) Use the distributive property and multiply each term in the numerator and denominator by this LCD. Simplify each term. No fractional expressions should remain within the numerator and denominator of the main fraction. 4) If possible, factor and simplify. Copyright © 2013, 2009, 2006 Pearson Education, Inc. 4
  • 5. Simplifying Complex Fractions x   x Copyright © 2013, 2009, 2006 Pearson Education, Inc. 5 EXAMPLE  Simplify: . 1 1 5 5 5 x x  SOLUTION The denominators in the complex rational expression are 5 and x. The LCD is 5x. Multiply both the numerator and the denominator of the complex rational expression by 5x.         x 5     x x x x x x 1 1 5 5 5 5 1 1 5 5 5 Multiply the numerator and denominator by 5x.
  • 6. Simplifying Complex Fractions  Divide out common factors. Copyright © 2013, 2009, 2006 Pearson Education, Inc. 6 x    1 x x x x x x 1 5 5 5 5 5 5 5     Use the distributive property. CONTINUED x    1 x x x x x x 1 5 5 5 5 5 5 5    2  25  5  x x Simplify.  x  5  x  5  1    5  x Factor and simplify.
  • 7. Simplifying Complex Fractions Simplify. Copyright © 2013, 2009, 2006 Pearson Education, Inc. 7 CONTINUED 5  1  x Simplify. 5   x
  • 8. Simplifying Complex Fractions 1 x x   x x x x Copyright © 2013, 2009, 2006 Pearson Education, Inc. 8 EXAMPLE Simplify: . 6 1 6   SOLUTION The denominators in the complex rational expression are x + 6 and x. The LCD is (x + 6)x. Multiply both the numerator and the denominator of the complex rational expression by (x + 6)x. Multiply the numerator and denominator by (x + 6)x.     6 1 6 1 6 6 6 1 6 1           x x x x
  • 9. Simplifying Complex Fractions Use the distributive property. CONTINUED          6 6 1 6    Copyright © 2013, 2009, 2006 Pearson Education, Inc. 9 6 1 6      x x x x x x x x Divide out common factors.       6 6 1 6 6 1 6      x x x x x x x x Simplify.  6  x x     6  6  x x x x 6 36 6   x 2  x Simplify. 
  • 10. Simplifying Complex Fractions Copyright © 2013, 2009, 2006 Pearson Education, Inc. 10 CONTINUED 6  6x 2  36x Subtract.  Factor and simplify.   6   1 6   6  x x  1   6 Simplify.  x x
  • 11. x x x  y  1  1  1       1  1  1  xy  y y x  y y x y x y x y x y        Copyright © 2013, 2009, 2006 Pearson Education, Inc. 11 1a. Simplify: 2 2 1 1 x y x y   Multiply the numerator and denominator by the LCD of 2. y 2 2 2 2 2 2 2 2 2 2 2 2 y y y y y x y x x y y y y y 2 2 2 ( ) ( )( ) Objective #1: Example
  • 12. x x x  y  1  1  1       1  1  1  xy  y y x  y y x y x y x y x y        Copyright © 2013, 2009, 2006 Pearson Education, Inc. 12 1a. Simplify: 2 2 1 1 x y x y   Multiply the numerator and denominator by the LCD of 2. y 2 2 2 2 2 2 2 2 2 2 2 2 y y y y y x y x x y y y y y 2 2 2 ( ) ( )( ) Objective #1: Example
  • 13.  Copyright © 2013, 2009, 2006 Pearson Education, Inc. 13 Objective #1: Example 1b. Simplify: 1 1 7 7 x  x Multiply the numerator and denominator by the LCD of x(x  7). 1 1 1 1 ( 7) ( 7) 7 ( 7) 7 7 7 ( 7) 7 7 ( 7) ( 7) 7 7 7 ( 7) 7 ( 7) 7 ( 7) 1 1 ( 7) ( 7) x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x                               
  • 14.  Copyright © 2013, 2009, 2006 Pearson Education, Inc. 14 Objective #1: Example 1b. Simplify: 1 1 7 7 x  x Multiply the numerator and denominator by the LCD of x(x  7). 1 1 1 1 ( 7) ( 7) 7 ( 7) 7 7 7 ( 7) 7 7 ( 7) ( 7) 7 7 7 ( 7) 7 ( 7) 7 ( 7) 1 1 ( 7) ( 7) x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x                               
  • 15. Objective #2 Simplify complex rational expressions by dividing. Copyright © 2013, 2009, 2006 Pearson Education, Inc. 15
  • 16. Simplifying Complex Fractions Simplifying a Complex Rational Expression by Dividing 1) If necessary, add or subtract to get a single rational expression in the numerator. 2) If necessary, add or subtract to get a single rational expression in the denominator. 3) Perform the division indicated by the main fraction bar: Invert the denominator of the complex rational expression and multiply. 4) If possible, simplify. Copyright © 2013, 2009, 2006 Pearson Education, Inc. 16
  • 17. Simplifying Complex Fractions m 2 2 m m m 3 2 4 4 9 2 2 m 2 m m m m m 9  2 m m m m     2 2 3 3 m m 2  3  3 Copyright © 2013, 2009, 2006 Pearson Education, Inc. 17 EXAMPLE Simplify: . 5 6   6        m m m m SOLUTION 1) Subtract to get a single rational expression in the numerator. 2 2 2 4 4  3  3   2 2         m m m   2  m m                     2 2 2 2 3 3 2 2 3 3 3 3 2             m m m m m m m m m
  • 18. Simplifying Complex Fractions 3 2 CONTINUED m m m m     4 4 2 18 2 3 2 2 m m m    6 4 18    3   3   2    3   3   2 2 2) Add to get a single rational expression in the denominator. 3 m m 2 2   3 m m m     m m 9 3 9 3 2 2  m   m  m m Copyright © 2013, 2009, 2006 Pearson Education, Inc. 18  m m m m m m  3 2  2 3 3 5 6 6          m m m m m m m m  m  3  3           3  3   3   3 2 3 2 3 3 3 2 3             m m m m m m m m m  3  2  3    3  2  3      m m m m m m
  • 19. Simplifying Complex Fractions 3) & 4) Perform the division indicated by the main fraction bar: Invert and multiply. If possible, simplify. m m m    6 4 18  m  3  m  3  m  2  9  m  3 2 3 2 m 2 2 m m m m 5 6 6 m m m    3 2 3 m m m    6 4 18 m m m    3 2 3 m m m    6 4 18 m m m    6 4 18 Copyright © 2013, 2009, 2006 Pearson Education, Inc. 19 3 4 4 9 2 2 3 2 2 2              m m m m m m m         9 3 3 2 2 2 3 2       m m m m         9 3 3 2 2 2 3 2       m m m m  2 2 9 3 2    m m CONTINUED
  • 20. Objective #2: Example x x x x x x x x   Copyright © 2013, 2009, 2006 Pearson Education, Inc. 20 2a. Simplify: 1 1  1 1 1 1 1 1        The LCD of the numerator is (x 1)(x 1). The LCD of the denominator is (x 1)(x 1).
  • 21. Objective #2: Example x x x x x x x x   Copyright © 2013, 2009, 2006 Pearson Education, Inc. 21 2a. Simplify: 1 1  1 1 1 1 1 1        The LCD of the numerator is (x 1)(x 1). The LCD of the denominator is (x 1)(x 1).
  • 22. x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x  1  1 (  1)(  1) (  1)(  1)  2  1  2  1     1  1 (  1)(  1) (  1)(  1) (  1)(  1) (  1)(  1)    1  1 (  1)(  1) (  1)(  1)    2  1  2  1  1  1 (  1)(  1) (  1)(  1)  (  1)(  1) (  1)(  1) x x x x      x x x x 2 1 2 1 x x x 1)( 1) ( 1)( 1) x x x x x x x x x x x x x x x x x x x Copyright © 2013, 2009, 2006 Pearson Education, Inc. 22 Objective #2: Example 2 2 2 2 2 2 2 1 ( 2 1) ( x  2 2 2 2 2 2 2 1 2 1 2 1 2 1 ( 1)( 1) ( 1)( 1) 4 ( 1)( 1) 4 ( 1)( 1) 4 2 x 2 2 ( x 1)( x 1) 2 x 2 2 2( x 2 1) ( x 1)( x 1) 2 x x 2 1                                          CONTINUED
  • 23. x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x  1  1 (  1)(  1) (  1)(  1)  2  1  2  1     1  1 (  1)(  1) (  1)(  1) (  1)(  1) (  1)(  1)    1  1 (  1)(  1) (  1)(  1)    2  1  2  1  1  1 (  1)(  1) (  1)(  1)  (  1)(  1) (  1)(  1) x x x x      x x x x 2 1 2 1 x x x 1)( 1) ( 1)( 1) x x x x x x x x x x x x x x x x x x x Copyright © 2013, 2009, 2006 Pearson Education, Inc. 23 Objective #2: Example 2 2 2 2 2 2 2 1 ( 2 1) ( x  2 2 2 2 2 2 2 1 2 1 2 1 2 1 ( 1)( 1) ( 1)( 1) 4 ( 1)( 1) 4 ( 1)( 1) 4 2 x 2 2 ( x 1)( x 1) 2 x 2 2 2( x 2 1) ( x 1)( x 1) 2 x x 2 1                                          CONTINUED
  • 24. x  1  4   x x Copyright © 2013, 2009, 2006 Pearson Education, Inc. 24 Objective #2: Example 2b. Simplify: 2 1 2 1 7 10   Rewrite the expression without negative exponents. Then multiply the numerator and denominator by the LCD of 2. x
  • 25. x  1  4   x x Copyright © 2013, 2009, 2006 Pearson Education, Inc. 25 Objective #2: Example 2b. Simplify: 2 1 2 1 7 10   Rewrite the expression without negative exponents. Then multiply the numerator and denominator by the LCD of 2. x
  • 26. x x Copyright © 2013, 2009, 2006 Pearson Education, Inc. 26 Objective #2: Example 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 1 1 4 1 7 10 7 10 1 4 4 1 1 7 10 7 10 1 1 4 ( 2)( 2) 2 7 10 ( 5)( 2) 5 x x x x x x x x x x x x x x x x x x x x x x x x x x                                     CONTINUED
  • 27. x x Copyright © 2013, 2009, 2006 Pearson Education, Inc. 27 Objective #2: Example 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 1 1 4 1 7 10 7 10 1 4 4 1 1 7 10 7 10 1 1 4 ( 2)( 2) 2 7 10 ( 5)( 2) 5 x x x x x x x x x x x x x x x x x x x x x x x x x x                                     CONTINUED