SlideShare a Scribd company logo
Exponent Formula
Consider the following the problem
What’s the product of 24
and 25
?
Solutions:
am
= a.a.a…..a
m times
24
= 2.2.2.2 =16
4 times
25
=2.2.2.2.2 =32
So that the answer of the problem above is:
24
.25
= 16.32
= 512
We know :
512 = 29
=16.32
=24
.25
= 2 4+5
If we replace the base a by a, the exponents 4 and 5 by
positive integers m and n :
We will get:
am
= a.a.a….a
m times
an
= a.a.a….a
n times
am
.an
= (a.a….a).(a.a….a)
m times n times
= a.a.a……..a
(m+n) times
FORMULA I
with condition a € R, a ≠ 0
a is called the base number and m,n is called exponent
.m n m n
a a a +
=
if m>n, them use formula I, we shall obtain:
am-n
.an
= am-n+n
am-n
.an
= am
Formula II
m
m n
n
a
a
a
−
=
an
pay attention the following problem :
(am
)n
= am
.am
…..am
n times
= am+m+m….m
= am.n
Conclusion
Formula III
.
( ) ( )m n n m m n
a a a= =
If besides a we also use the base of b, then the
form (ab)m
. Can be defined :
(ab)m
= ab.ab……ab
m times
= (a.a.a.a).(b.b.b.b)
m times m times
Formula IV
( ) .m m m
ab a b=
So that by the same way we will get
Conclusion :
b≠ 0 Formula V
Because : is not defined
m m
m
a a
b b
 
= ÷
 
0
number
Example : Simplify!
( )
3 5 2
5 2 4
2 3
54
11 8 19
6 5 11
1.5 .5 .5
2.( ) . . .
3.2 .(2 ) .(2 )
4.( 3) . 3
3 3 3
5.
3 3 3
x x x x
x x x
−
− −
=
( ) ( )
( ) ( )
( )
( ){ } ( ){ }
( ) ( ){ }
( )
( )
( )
8 9
7 2
85
2 53 4
32 3
5
3 42 2
3 4
42 3
32
3 . 3
6)
3 . 3
7)
8) 2 . 2
3 . 3
9)
3
10) .
.
11)
.
a a
a a
p
y y
y y
y
x x
y y
x y
x y
−
− −
− −
   
 ÷  ÷
   
−
( )
3 5 2 10
5 2 4 12
2 3 2 2 3 3 6 6
54 9
11 8 19
19 11 8
6 5 11
1.5 .5 .5 5
2.( ) . . .
3.2 .(2 ) .(2 ) 2 .2 .2 2
4.( 3) . 3 3
3 3 3
5. 3 3
3 3 3
x x x x x
x x x x x x x
−
=
− = −
= =
− − = −
= = =
( ) ( )
( ) ( )
( )
8 9 17 17
8 8
7 2 9 9
85 5.8 40
3 . 3 3 .
6) 3 .
3 .3 . 3
7)
a a a
a
aa a
p p p
−
= = −
−− −
= =
( ){ } ( ){ } ( ) ( )
( ) ( )
2 5 2 53 4 3 3 4 4
6 6 20 20
26 26
8) 2 . 2 2 . . 2 .
2 . . 2 .
2 .
y y y y
y y
y
=
=
=
( ) ( ){ }
( )
( )
( )
32 3 32 2 3 3
5 5 5
2 2 9 9
5 5
11 11
5 5
6 6
3 . 3 3 . . 3 .
9)
3 .3
3 . . 3 .
3 .
3 .
3 .
3 .
y y y y
yy
y y
y
y
y
y
− − −
=
−
=
−
=
= −
( )
( )
3 42 2 6 8 14
3 4 9 16 25
42 3 8 12
5 6
3 3 62
.
10) .
.
. .
11) .
..
x x x x x
y y y y y
x y x y
x y
x yx y
   
= = ÷  ÷
   
= = −
−−
In this section we shall see that formula I-V hold for integers
exponents, either positive, negative and zero
If we substitute m = n use formula II we shall obtain
Formula VI
a € R, a ≠ 0
m n
n n
n n
a a
a
a a
−
= =
0
1 a=
If we subsituty m=0 use formula II we will get
Formula VII
a € R, a ≠ 0
0
1m
n n n
a a
a a a
= =
0 1n
n
a
a
−
=
1n
n
a
a
−
=
1 n
n
a
a−
=
( )
( ) ( )
5 2
7
5
2 2
3
4
25
3
3 42 2
1)3 .3
4
2)
4
3) .
4)
5)
6) .
x x
x
x
x
x
x y x y
−
−
−
−
−
−
−
− −
SIMPLIFY!!
3 3
22
2 3
7) .
8)
x y
ab
b c
− −
−
− −
 
 ÷
 
( ) ( )
( ) ( )
4 3
1 2
2 1 . 1 2
9)
3 . 3
x x
x x
−
− −
− −
+ +
3 13 4 4
2 3 5
10) :
a b a b
c b c
− −
−
   −
 ÷  ÷
   
( )
( ) ( ) ( )
5 2 3
7
12
5
2 2 0
3
1
4
25 10
13
3 3 13
3 4 12 2 2
2
1)3 .3 3
4
2) 4
4
3) . 1
4)
1
5)
1
6) .
x x x
x
x
x
x x
x
x x x
x y x y x y
x y
−
−
−
−
−
− −
−
− −
=
=
= =
=
= = =
− − = − =
−
( )
( )
33 3
3
22 2 4
2 3 4 6 2 8 6
1
7) .
1
8)
x y xy
xy
ab a b
b c b c a b c
−− −
− − −
− −
= =
 
= = ÷
 
( ) ( )
( ) ( )
( ) ( ){ }
( )
( )
( )
( )
( )
344 3
1 2 3
1
3
3
2 1 2 12 1 . 1 2
9)
3 . 3 3
2 1
3
3
2 1
x xx x
x x x
x
x
x
x
−−
− − −
−
−
− − −− −
=
+ + +
− −
=
+
+
= −
−
3 13 4 4 9 12 4 1
2 3 5 6 3 5
9 12 3 5
6 4 1
9 15 6 4 1 5
5 14 11
5 14 11
10) : :
:
. . . . .
. .
1
a b a b a b a b
c b c c b c
a b b c
c a b
a b c a b c
a b c
a b c
− − − − − −
− − −
− − − −
− −
− − − −
− − −
   − −
= ÷  ÷
   
−
=
= −
= −
=
−
By the Formula I we obtain am
.an
= am+n
If we substituting n=m, then we will get
am
.am
= a2m
so that a2m
= a 2m =1
m =1/2
form a2m
=a ,can be changed
(am
) 2
= a
am
= √a
a1/2
= √a
In general can written
1
nn
a a=
In the fractional exponents:
If is changed ,then we will get :
n,m is positive integers
Formula VIII
1
n
m
n
( )
1 mm
n n
m
m
nn
m
n mn
aa a
a a
a
 
=  ÷
=
=
 
By the formula VIII:
,then if ,we obtain
Formula IX
Furthermore the formula I - IX,also hold for fractional
exponents
1
n=n
n
p
a
a q
−
=
1 1
orp
q
p p
q q
p
q
a a
a a
−
−
= =
1 1
orm
n
m m
n n
m
n
a a
aa
−
−
= =
Example
1. Simplify and write down in positive exponents!
( )
( ) ( )
131
3 62 2
2 1
3 6
31
4 4
2
3
. 2 .2 . 2
. . .
3 . 3
.
3
.
a
b x x x
x x
c
x
a
d
b
−
−
−
 
 ÷
 
5 35
6
1 5
2
3
34
3 .2
.
.
.
x x
e
x x
x
f
x
−−
−
 
 ÷
 ÷
 
2. Simplify and write down in the roots form !
( ) ( )
1 2
34
. 1 3 . 3 1c x x− −
( )
1
3 3
1
1 6
2
5 45
1
52
.
.
1 .
2.
4 .
x x
a
x
x x
b
x x
−
−
( )
( )
2
3
4 33
3
4
3
42
3
. 27
1
.
2 .2
16
.
81
1
. 125
81
a
b
c
d
−
−
−
−
 
 ÷
 
 
+ ÷
 
( )
1
2 2 2
3 2 1
5 34
. 3 4
.16 32 125
e
f
−
+
+ −
3. Evaluate!
4. Find the length of diagonal of rectangle
if it has dimension length is cm and
width is cm!
8
2
( )
( ) ( )
( ) ( )
13 31 1 1 1
3 62 2 2 2 2 2
1
2
2 1 2 1 41
3 6 3 3 3
31
4 4 31 1 0
4 4 2
22
3
3
1
1. . 2 .2 . 2 2 2
2
. . .
3 . 3
. 3 3 1
3
.
a
b x x x x x
x x
c x x
x
a a
d
b b
− − −+
− + −
−
− + −
= = =
= =
= = =
   
= ÷  ÷
   
31 4
5 35 5 5 5 15
35
6 11 11
1 5 55
22 3
3 32 3
2
3 3 334 4 2 2
3 .2 6 . 6
. 6 6
.
1
.
x x x x x
e x x
x xx x
x x x
f x
x x x x
− −−−
−−
−
−
−
= = = =
  
 ÷= = = = ÷
 ÷  ÷
   
( )
1 3 1
3 3 32 3 1 1 12
2 43 6 62
1 1
1 6 6
62 2 4
5 45 5 5 5
1 1 61 1
52 52 52
. .
2. .
1 1 1. .
2 2 2. 1
4 . 4 . . 4 .
x x x x
a x x x x
xx
x x x x x
b
x x x x x
+ +
−−
− − −
= = = = =
= = =
( ) ( ) ( ){ } ( )
( )
( )
11 22 434 3
11
12
11
12
. 1 3 . 3 1 3 1 . 3 1
3 1
1 3
c x x x x
x
x
− − = − − −
= − −
= −
( )
( )
( ) ( )
22
3 233
6 23 64 2 33
33
4 3 344
4 3 3
3 3 324 42
3 3 23
4
1
3. . 27 3 3
9
1 1 1 1 1
.
2 422 .2 2
16 2 2 3 27
.
81 3 3 2 8
1 1 1 1 1
. 125 5 5 27 27
81 3 3 25 25
a
b
c
d
−− −
−− −
−
− − −−−
−
= = =
= = = =
  
= = = = ÷ ÷
   
     
+ = + = + = + = ÷  ÷  ÷
     
( ) ( ) ( ) ( )
( ) ( ) ( )
1 11 1
2 2 2 12 22 2
3 2 13 2 1
4 5 34 5 35 34
3 2
1
. 3 4 9 16 25 5 5
5
.16 32 125 2 2 5
2 2 5 8 4 5 7
e
f
− −− − −
+ = + = = = =
+ − = + −
= + − = + − =
( ) ( )
2 2
2
2
2
4. 8 2 .
8 2
10
10
x
x
x
x
= +
= +
=
=
f(x) p
I. a =a f(x)=p⇒
Example :
1. Find the solution set :
3
1
1
)2 8
2
1 1
) 27
3 243
x
x
a
b
−
=
 
=  ÷
 
3 1
)2 8
2
x
a =
1
1 1
) 27
3 243
x
b
−
 
=  ÷
 3
3 1 2
1
3 2
2 2 .2
2 2
1
3
2
1
6
x
x
x
x
−
⇔ =
⇔ =
⇔ =
⇔ =
3
1 52
3
1
52
3 .3 3
3 3
3
1 5
2
3
6
2
3 12
4
x
x
x
x
x
x
−
−
⇔ =
⇔ =
⇔ − =
⇔ =
⇔ =
⇔ =
f(x) ( )
II. a =a f(x)=g(x)g x
⇒
Example :
1. Find the solution set :
( )
3 1
4
3 5( 1)
2
3 2 3 4 8
16 1
)
1 162
2
)27 3 .81
) 3 27
xx
x x
x x
a
b
c
−
+ −
+ −
 
=  ÷
 
=
=
3 1
4
16 1
)
1 162
2
xx
a
−
 
=  ÷
 
3 4 4
4 4
1
1 2
4 4 4 1
3 4 2
4 4
3
2
2
2 .2
2 2 .2
1
2
3
4 4 3
2
5
7
2
5
14
x
x
x x
x
x
x x
x
x
−
−
−
− −
−
−
⇔ =
⇔ =
⇔ = − −
⇔ − = − −
⇔ =
⇔ =
3 5( 1)
)27 3 .81x x
b + −
=
( )
2
3 2 3 4 8
) 3 27x x
c + −
=
( ) ( )2 2 3 3 4 8
3 2
3 3
4 6 12 24
3 2
8 12 36 72
84 28
3
x x
x x
x x
x
x
+ −
⇔ =
+ −
⇔ =
⇔ + = −
⇔ =
⇔ =
3( 3) 5( 1) 4
3 3 .3
3 9 5 5 4
3 9 5 1
10 2
5
x x
x x
x x
x
x
+ −
⇔ =
⇔ + = − +
⇔ + = −
⇔ =
⇔ =
III. Exponent equation is changed to quadratic equation
Example :
1. Determine the solution set :
( )
1 2 3
)3.9 10.3 3 0
)2 2 36
)5 6 5 5 0
x x
x x
x
x
a
b
c
+ +
− + =
+ =
− + =
)3.9 10.3 3 0x x
a − + =
( )
( ) ( )
2
2
3. 3 10.3 3 0
3 , 0
3 10 3 0
3 1 3 0
x x
x
a a
a a
a a
⇔ − + =
⇔ = >
⇔ − + =
⇔ − − =
1
3
1
3
3
1
x
a
x
⇔ =
⇔ =
⇔ = −
3
3 3
1
x
a
x
=
=
=
V
1 2 3
) 2 2 36x x
b + +
+ =
( ) ( )
2 3
2
2
2 , 0
2 .2 2 .2 36 0
2 8 36 0
4 18 0
4 9 2 0
x
x x
p p
p p
p p
p p
⇔ = >
⇔ + − =
⇔ + − =
⇔ + − =
⇔ + − =
: 2
9
4
p⇔ = −
2 2
1
x
x
⇔ =
⇔ =
V 2p =
( ))5 6 5 5 0
x
x
c − + =
( ) ( )
2
5 5
2
x
x
=
=
( ) ( )
0
5 5
0
x
x
=
=
V
V
( ) ( )
( )
( ) ( )
2
2
5 6 5 5 0
5 , 0
6 5 0
5 1 0
5 1
x x
x
p p
p p
p p
p p
⇔ − + =
⇔ = >
⇔ − + =
⇔ − − =
⇔ = =
⇔
(1) Rational Number
Rational Number are numbers which can be put in a/b
form with a and b are integers numbers and b ≠ 0.
Example:
1. 3 coz 3 can be stated in etc
2. 0.444…= 0.4 can be stated in
3. 1.12 can be stated in
Notes !
The lines above 12(no.3)shows that 12 is repeated
unlimitedly
Generally !
Rational number are repeated decimals
6 9
,
2 3
2
5111
97
(2) Irrational Numbers
Irrational number are number which can’t be stated in
Generally :
Irrational numbers are unrepeated decimal
Example!
1. =1.4142135….
2. = 5.1461524….
3. Log 2 = 0.3010….
4. e =2.71828182…..
coz can’t be put in
2
a
b
3
3
a
b
1.Please check whether the following form
are rational or irrational.
3
3
a.-2 5
1
.log
10
. log 2
. 12
b
c
d −
. 0.1
2
.
9
.1.2
.8.34
e
f
g
h
( )
( )
( )
( )
3
3
a.-2 5
1
.log
10
. log 2
. 12
I
b R
c I
d I−
( )
( )
( )
( )
. 0.1
2
.
9
.1.2
.8.34
e I
f I
g R
h R
Root number are the rational number which the result are irrational
EXAMPLE :
3
3 6
1) 3,2 12, 8 are root forms
2) 4, 27, 64, , are not root form because the result are rationalπ−
3
5
)2 7
) log81
) 0,05
9
)
25
) 32
a
b
c
d
e −
1. Please check whether the following forms are root forms or not
5
)1, 2
) 81
1
)
3
)
)ln 2
f
g
h
i e
j
Note :
Ln = Log number with base e
Ln x = e
log x
2. :Simplify the following root form
4
5
5 44
) 32
)4 250
) 243
) 64
1
) 288
2
) 405
a
b
c
d
e
f x y
−
( ) ( )
511
54 4444
) 32 16.2 4 2
)4 250 4 25.10 20 10
) 243 243 3 3 3 3
a
b
c
= =
= =
= = = =
( )
5 55 5
5 4 4 4 54 4
) 64 2 .2 2 2
1 1 1
) 288 144.2 .12 2 6 2
2 2 2
) 405 81.5 . . 3 5
d
e
f x y x x y xy x
− = − = −
= = =
= =
( )
( )
2
2
Notes !
1) 2
2) 2
a b a b ab
a b a b ab
+ = + +
− = + −
( ) 2a b a b ab+ = + +
( ) 2a b a b ab a b− = + − ⇒ ≥
( ) ( )3. inSimplify a b or a b form+ −
) 8 2 12
) 15 2 90
) 9 80
) 14 6 5
) 15 10 2
5 2
)
6 3
a
b
c
d
e
f
−
+
−
+
−
+
ANSWER
( )
( )
( )
) 8 2 12 6 2 2 6.2 6 2
) 15 2 90 8 7 2 56 8 7
) 9 80 9 2 20 4 5 2 5
) 14 6 5 14 2.3 5 14 2 45 9 5 2 9.5 9 5
) 15 10 2 15 2 50 10 5
5 2 5 1 5 1 1 1 1 1 1 1
) 4. 2 2 .
6 3 6 6 6 6 2 3 2 3 2 3
a
b
c
d
e
f
− = + − = −
+ = + + = +
− = − = − = −
+ = + = + = + + = +
− = − = −
   
+ = + = + = + + = + ÷  ÷
   
REMEMBER !!
1) .
2) .
3)
4)
a a a
a b ab
a b a b
a b a b
=
=
+ = +
− = −
1. Evaluate the value of the following root forms
( )
( )( )
( )( )
( ) ( )
2
2 2
)5 2 2 2 2
)20 3 80 45
) 150 3 54 5 96)
) 2 8
) 6 4 6 4
1 1
) 3. 27.10 48
2 3
) 4 8 3 4 8 3
) 1 5 10 1 5 10
a
b
c
d
e
f
g
h
+ −
− −
− +
+
− +
+ + − −
+ + − − −
ANSWER
( )
( )
( )
( )
( )( ) ( )
2
2
2
)5 2 2 2 2 5 3 1 2 7 2
)20 3 80 45 2 5 3.4 5 3 5 2 12 3 5 7 5
) 150 3 54 5 96) 5 6 3.3 6 5.4 6 5 9 20 6 16 6
) 2 8 2 8 2 16 18
) 6 4 6 4 6 4 10
1 1 1 1 1
) 3. 27.10 48 3. .3 3.10.4 3 .40 3 20 3
2 3 2 3 2
a
b
c
d
e
f
+ − = + − =
− − = − + = − + = −
− + = − + = − + =
+ = + + =
− + = − = −
= = =
( )( ) ( ){ } ( ){ }
( )
( )
2
2
) 4 8 3 4 8 3 4 8 3 4 8 3
4 8 3
16 8 3 2 8. 3
5 2 24
5 4 6
g + + − − = + + − −
= − +
= − + +
= −
= −
( ) ( ) ( ){ } ( ){ }
( )
( )
2 22 2
2
2
) 1 5 10 1 5 10 1 5 10 1 5 10
1 5 10
1 5 10 2 5. 10
16 2 50
16 10 2
h + + − − − = + + − − −
= + +
= + + +
= +
= +
1. Find the value of the following problem !!
) 10 10 10 10...
) 72 72 72 ...
) 56 56 56 56 ...
a
b
c
+ + +
− − − −
2+ 5
2 5
if p
q
=
= −
2. Find 2p+2q, 4pq and p2
+q2
ANSWER
1 ) 10 10 10 10...a
10 10 10 10...x =
0 10x x= ∨ =
10x∴ =
2
10 10 10 10...x⇔ =
2
10x x⇔ =
( )
2
10 0
10 0
x x
x x
⇔ − =
⇔ − =
1 ) 72 72 72 ...b + + +
72 72 72 ...x = + + +
9 8x x⇔ = ∨ = −
9x∴ =
( ) ( )
2
2
2
72 72 72 ...
72
72 0
9 8 0
x
x x
x x
x x
⇔ = + + +
⇔ = +
⇔ − − =
⇔ − + =
1 ) 56 56 56 56 ...c − − − −
56 56 56 56 ...x = − − − −
8 7x x⇔ = − ∨ =
7x∴ =
2
56 56 56 56 ...x⇔ = − − − −
2
56x x⇔ = −
( ) ( )
2
56 0
8 7 0
x x
x x
⇔ + − =
⇔ + − =
( ) ( )2 ) 2 2 2 2+ 5 2 2 5
4 2 5 4 2 5
8
a p q+ = + −
= + + −
=
( )( )
( )
2 ) 4 4 2+ 5 2 5
4 4 5
4
b pq = −
= −
= −
( ) ( )
( ) ( )
2 2
2 2
2 ) p +q = 2 5 2 5
4 4 5 5 4 4 5 5
4 4 5 5 4 4 5 5
18
c + + −
= + + + − +
= + + + − +
=
A fractional of root on its denominator such as :
1
, ,
c c
a a b a b+ −
Can be simplified by rationalizing
1 1 1
.
a
a
a a a a
= =
( ).
c a bc c a b
a ba b a b a b
−−
= =
−+ + −
( ).
c a bc c a b
a ba b a b a b
++
= =
+− − +
2 2 3 2 3
) .
33 3 3
a = =
5 5 12 5.2 3 15
) .
12 12 612 12
b = = =
4 4 3 2 4 3 4 2
) . 4 3 4 2
3 23 2 3 2 3 2
c
− − + − −
= = = − −
−− − +
( )
2
2
2 3 2 3 8 2 2 24 4 3
) .
8 2 8 2 8 2 8 2
4 6 4 3
6 3
4
d
− −
= =
+ + − −
−
= = −
( )
( ) ( )
2
2 2
6 26 2 6 2 6 2
) .
6 2 6 2 6 2 6 2
6 2 2 12 8 4 3
2 3
6 12 4
e
−− − −
= =
+ + − −
+ − −
= = = −
−
Logarithm Formula
Excercise
a c
1. log b c a b= ⇔ =
a
2. log a 1=
a
3. log 1 0=
a a a
4. log x . y log x log y= +
a a a
5. log log x log y
x
y
= −
a n a
6. log x n . log x=
x log
9. log y
log
a
a
x
y
=
a y a
10. log b log b
x y
x
=
x
a y
8. log a
y
x
=
x 1
7. log y
logy
x
=
BACK
11. log . log . log loga x y a
x y b b=
log
12.
a
x
a x=
2
2
2
3 log 2
log 3
3 3 ½
2 2
) log 16
1
) log
25
) log 0.001
) ( 3)
1
) ( )
4
) log 2 log 4
5
) log 5 - log
4
a
b
c
d
e
f
g
+
3
4
3 2 7
9
3
2
25
4 2 8
4
) log
3
) log 7 . log 27 . log 2
log 8
)
log 4
1
) log3
log 4
7 7
) log 21 log7 log .
24 3
h
i
j
k
l
−
 
− −  ÷ ÷
 
ANSWER
1. EVALUATE !!
2 2 4
) log 16 log 2
= 4
a =
5 5
2
5 -2
1 1
) log = log
25 5
log 5
2
b
=
= −
-3
) log 0.001 = log 10
-3
c
=
1
3 log 2 3 log 22
1
3 log 2 2
1
2
) ( 3) (3 )
= (3 )
2
2
d =
=
=
2 2
log 3 log 3 -2
-2
1
) ( ) = (2 )
4
= 3
1
9
e
=
3 3 ½  3 3
3
3
)      log 2   log 4   =  log 2 +  log 2
=   log 2.2
  log 4
f +
=
2 2 2
2
5
4
5 5
)     log 5 -   log   =    log 
4
   log 4
=  2
g
=
13 3
4 4
4 3
)     log       log 
3 4
=  -1
h
−
 
=  ÷
 
3 2 7 3 7 2
3
)      log 7 .  log 27 .   log 2 =   log 7 .   log 2 .   log 27
=   log 27
= 3
i
2
1
2
9 3 3
3
3 2
3
3
1
2
 log 8  log  2
)     = 
 log 4
log  2
3
  log 2
2   
2
  log 2
3 1
=   . 
2 4
3
 
8
j
=
=
2
      2
25 5 5 2
5 5
5
5
1 1 1
) log5  = 
log 4 log 2 log 2
1 1
 
log 2 log 2
1
  log 2
log 2
 1
k
x
− −
= −
=
=
2 3
4 2 8
1
2
2 2 2
13
2
3
2
2 2 2
3
3 2
1
3 3
1 2
2 2 22
3
3 2
7 7
)      log21    log7 log .
24 3
7 7
  log  21    log7   log .
2 .3
3
1 1 7
    log  21 -  log7 -    log  
2 3
2 .3
7
  log  21   log7 -  log  
2 .3
l
 
− −  ÷ ÷
 
 
 ÷= − −
 ÷
 ÷
 
=
 
 ÷= −
 ÷
 ÷
 
{
1
222 2
1
2
1
2
2 2
1
2
2
2
7
2 3
7
   log  21   log7 log
2.3
7
   log  21 log7 . 
2.3
7 3
   log
7
3
   log 
14
}
x
x
 
 ÷= − +
 ÷
 ÷
 
 
 ÷= −
 ÷
 ÷
 
=
=
NEXT
2. SIMPLIFY !!
( ) ( )
2
2 2
23
1 1
) log x + log   - log 
) log log
) log log logx x x
a
x x
b x y x y
c x x x
− − −
+ −
ANSWER
2
2
2
2
1 1 1
) log x + log   - log   = log x . log   . log x
1
log x .   . x
log  x
2 log x
a
x x x
x
 
=  ÷
 
=
=
( ) ( ) ( ) ( ) ( )2 2
) log log log log
log log . log
log .
{ }b x y x y x y x y x y
x x
x y
y y
x y
− − − = + − − −
= + −
=
1 1
3 2
23
x
log  .  log
) log log log
2  logx
1 1
.
3 2
2
1
12
x x
x x x x x
c x x x+ − =
=
=
NEXT
3. Given that :
log 2 = 0.301
log 3 = 0.477
log 4 = 0.845
EVALUATE !!
)log5
7
)log
2
6
)log
7
a
c
e
12
)log6
3
)log
2
) log 3
b
d
f
ANSWER
10
)log5 log
2
log10 log 2
1 0.301
0.699
a =
= −
= −
=
)log6 log 2 .  log3
0.301 0.477
0.778
b =
= +
=
7
)log log7 log 2
2
0.845 0.301
0.544
c = −
= −
=
3 1 1
)log log3 log 2
2 2 2
1 1
 . 0,477    . 0,301
2 2
0.2385 0,1505
0,088
d = −
= −
= −
=
NEXT
4
9
3
9
4. Given that :
)  log 6 = A
     Express  log 8 with A
b)  log 5 = B
     Express  log 375 with B
a
3
2
6
)  log  2 = M
     log 7 = N
    Express  log 98 
c
ANSWER
( )
4
9
4
4 3
4 2
4
4
log8
)  log 8 = 
log9
log 2
log3
3 .  log 2
2 .  log3
13 . 
2
12 . 
2
3
22  . 
2 1 2
3
4 2
a
A
A
A
=
=
=
−
=
−
=
−
 :
4log 6 = A
4log 3 . 2 = A
4log 3 + 4log 2 = A
14log 3 +   = A
2
14log 3 = A - 
2
Note
3
9
3
3
3 3 3
3
log  375
)  log  375 = 
log  9
log  125 . 3
2
log  5  +  log 3
2
3  log5 + 1
2
3 1
2
b
B
=
=
=
+
=
3
6
3
3
3
3 2 3
3 3
3
3 2
log98
)  log 98 = 
log6
log 49.2
log3.2
log7 log 2
log3 log 2
2  log7
1
2  log 2  log7
1
2
1
c
M
M
M
M
MN M
M
=
+
=
+
+
=
+
+
=
+
+
=
+
NEXT
5. Find the value of x that fulfill of the following equation!
( )
( ) ( )
3 3 3
3 3 3
4 4 4 4 4
)  log log 1 log 2
)   log 2 1 log 3 log7
)  log .  log x -  log log log16 = 2
a x x
b x x
c
+ + =
− − − =
ANSWER
( )3 3 3
)  log log 1 log 2a x x+ + =
2 1x x= − ∨ =
TM { }1HP =
( ) ( )3 3 3
)   log 2 1 log 3 log7b x x− − − =
{ }4HP =
( )
( )
( ) ( )
3 3
log 1 log 2
1 2
2 1 0
x x
x x
x x
⇔ + =
⇔ + =
⇔ + − =
( )
( )
( )
( )
3 32 1
log log7
3
2 1
7
3
2 1 7 21
4
x
x
x
x
x x
x
−
⇔ =
−
−
⇔ =
−
⇔ − = −
⇔ =
4 4 4 4 4
)  log .  log x -  log log log16 = 2c { }
{ }
4 4
4 4 2 4 2
4 2
2 16
16
log 2  log x 2
log   log x log4
log x 16
x 4
2
65536
x
x
⇔ =
⇔ =
⇔ =
⇔ =
⇔ =
⇔ =
( ) ( ){ }
( )
4 4 4 4 4
4
4
4 4
4
4
4
4
4
log  log x -  log log log16  2
log x
log 2
log log16 
log x
log 2
log2
log x
log 2
1
2
⇔ =
  
⇔ = 
  
 
⇔ = 
 
  
⇔ = 
  
1. Find the value of x that fulfill of the following equation !!
( ) ( )
( )
( ){ } { }
( )
2 2
5 2 5
) log 2 3 4 log 2 8
) log 2 log 5 1
)log log 3 log 2 log log16
) log 2 2x
a x x
b x x
c x x
d x
− + = −
− + =
+ + =
+ =
( )
( ) ( )
5 2 5 3
32 2 2
) log 12 3. log 4 1 0
) log log 2 0
) log 1 log 1 10 0
x x
e x
f x x
g x x
+ − + =
− + =
+ − + − =
ANSWER
( ) ( )2 2
) log 2 3 4 log 2 8a x x− + = −
( )5 2 5
) log 2 log 5 1b x x− + =
5
10
2
x x⇔ = − ∨ =
HP =
5
,10
2
HP
 
= − 
 
Ø
( ) ( )
( ) ( )
2 2 2
2 2
log 2 3 log16 log 2 8
log16 2 3 log 2 8
32 48 2 8
1
1
3
x x
x x
x x
x
⇔ − + = −
⇔ − = −
⇔ − = −
⇔ =
( )
( ) ( )
5 2 5 5
2
2
2
log 2 log 5 log5
2
5
5
2 5 25
2 5 25 0
2 5 5 0
x x
x
x
x x
x x
x x
⇔ − + =
⇔ =
+
⇔ = +
⇔ − − =
⇔ + − =
( ){ } { })log log 3 log 2 log log16c x x+ + =
1 9x x⇔ = ∨ =
( )) log 2 2x
d x + =
2 1x x⇔ = ∨ = − { }2HP =
{ }1,9HP =
( ){ } { }
( ){ }
( )
( ) ( )
2
2
2
log log 3 log 2 log log16
2.log 3 log16
log 3 log16
6 9 16
10 9 0
1 9 0
x x
x x
x x
x x x
x x
x x
⇔ + + =
⇔ + =
⇔ + =
⇔ + + =
⇔ − + =
⇔ − − = ( )
( ) ( )
2
2
2
log 2 log
2
2 0
2 1 0
x x
x x
x x
x x
x x
⇔ + =
⇔ + =
⇔ − − =
⇔ − + =
( )) log 12 3. log 4 1 0x x
e x + − + =
5 2 5 3
) log log 2 0f x x− + =
16 4x x⇔ = − ∨ =
5
log 1 0x⇔ − = 5
5
2
log 2 0
log 2
5
25
x
x
x
x
− =
=
=
=
{ }5,25HP =
{ }4HP =
( )
( )
( ) ( )
3
3 1
2
log 12 log 4 1
log 12 log 4 log
12 1
64
12 64 0
16 4 0
x x
x x x
x
x x
x
x
x x
x x
−
⇔ + − = −
⇔ + − =
+
⇔ =
⇔ + − =
⇔ + − =
( )( )
5 2 5
5 5
log 3. log 2 0
log 1 log 2 0
x x
x x
⇔ − + =
⇔ − − =
5
1
log 1
5
5
x
x
x
⇔ =
⇔ =
⇔ =
V
( ) ( )
32 2 2
) log 1 log 1 10 0g x x+ − + − =
( )2
log 1 5 0x⇔ + − = ( )
( )
2
2
2
log 1 2 0
log 1 2
1 2
1
1
4
3
4
x
x
x
x
x
−
⇔ + + =
⇔ + = −
⇔ + =
⇔ = −
⇔ = −
3
,31
4
HP
 
= − 
 
V
( )2
5
log 1 5
1 2
32 1
31
x
x
x
x
⇔ + =
⇔ + =
⇔ = −
⇔ =
( ) ( )
( ){ } ( ){ }
2 2 2
2 2
log 1 3. log 1 10 0
log 1 5 log 1 2 0
x x
x x
⇔ + − + − =
⇔ + − + + =
Exponent &  Logarithm

More Related Content

PPT
Solving Systems by Elimination
PDF
Ch 1 Final 10Math.pdf
DOCX
Tugas 5.3 kalkulus integral
PPTX
Calculus revision card
PPTX
Calculus revision card
PPTX
Factorising
DOCX
Btech_II_ engineering mathematics_unit3
PDF
Chap 4 complex numbers focus exam ace
Solving Systems by Elimination
Ch 1 Final 10Math.pdf
Tugas 5.3 kalkulus integral
Calculus revision card
Calculus revision card
Factorising
Btech_II_ engineering mathematics_unit3
Chap 4 complex numbers focus exam ace

What's hot (10)

PDF
Chapter 2 sequencess and series
PDF
2022 ملزمة الرياضيات للصف السادس التطبيقي الفصل الثالث - تطبيقات التفاضل
PDF
2022 ملزمة الرياضيات للصف السادس الاحيائي الفصل الثالث تطبيقات التفاضل
PDF
Four Point Gauss Quadrature Runge – Kuta Method Of Order 8 For Ordinary Diffe...
DOCX
BSC_Computer Science_Discrete Mathematics_Unit-I
PDF
ملزمة الرياضيات للصف السادس التطبيقي الفصل الخامس المعادلات التفاضلية 2022
PPTX
Plane in 3 dimensional geometry
PPT
Section 3.5 inequalities involving quadratic functions
PDF
2022 ملزمة الرياضيات للصف السادس الاحيائي - الفصل الخامس - المعادلات التفاضلية
PDF
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاول
Chapter 2 sequencess and series
2022 ملزمة الرياضيات للصف السادس التطبيقي الفصل الثالث - تطبيقات التفاضل
2022 ملزمة الرياضيات للصف السادس الاحيائي الفصل الثالث تطبيقات التفاضل
Four Point Gauss Quadrature Runge – Kuta Method Of Order 8 For Ordinary Diffe...
BSC_Computer Science_Discrete Mathematics_Unit-I
ملزمة الرياضيات للصف السادس التطبيقي الفصل الخامس المعادلات التفاضلية 2022
Plane in 3 dimensional geometry
Section 3.5 inequalities involving quadratic functions
2022 ملزمة الرياضيات للصف السادس الاحيائي - الفصل الخامس - المعادلات التفاضلية
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاول
Ad

Similar to Exponent & Logarithm (20)

PDF
Solution manual For College Algebra and Trigonometry 5e Young
PDF
Sol mat haeussler_by_priale
PDF
31350052 introductory-mathematical-analysis-textbook-solution-manual
PDF
Ernest f. haeussler, richard s. paul y richard j. wood. matemáticas para admi...
PDF
Solucionario de matemáticas para administación y economia
PDF
Solution manual for Precalculus, 4th Edition Cynthia Y. Young
PPTX
Factoring common monomial
PDF
CBSE - Grade 8 - Mathematics - Exponents and Powers - Multiple Choice Questio...
PDF
Kunci Jawaban kalkulus edisi 9[yunusFairVry.blogspot.com].pdf
PDF
Formulas
PDF
Maths formula
PDF
Appendex
DOCX
PDF
51541 0131469657 ism-0
PDF
Calculo purcell 9 ed solucionario
PDF
Class 10 mathematics compendium
PDF
Formulas
PPT
Math For Physics
PDF
Algebra 2 Section 3-4
Solution manual For College Algebra and Trigonometry 5e Young
Sol mat haeussler_by_priale
31350052 introductory-mathematical-analysis-textbook-solution-manual
Ernest f. haeussler, richard s. paul y richard j. wood. matemáticas para admi...
Solucionario de matemáticas para administación y economia
Solution manual for Precalculus, 4th Edition Cynthia Y. Young
Factoring common monomial
CBSE - Grade 8 - Mathematics - Exponents and Powers - Multiple Choice Questio...
Kunci Jawaban kalkulus edisi 9[yunusFairVry.blogspot.com].pdf
Formulas
Maths formula
Appendex
51541 0131469657 ism-0
Calculo purcell 9 ed solucionario
Class 10 mathematics compendium
Formulas
Math For Physics
Algebra 2 Section 3-4
Ad

Exponent & Logarithm

  • 2. Consider the following the problem What’s the product of 24 and 25 ? Solutions: am = a.a.a…..a m times 24 = 2.2.2.2 =16 4 times 25 =2.2.2.2.2 =32 So that the answer of the problem above is: 24 .25 = 16.32 = 512 We know : 512 = 29 =16.32 =24 .25 = 2 4+5
  • 3. If we replace the base a by a, the exponents 4 and 5 by positive integers m and n : We will get: am = a.a.a….a m times an = a.a.a….a n times am .an = (a.a….a).(a.a….a) m times n times = a.a.a……..a (m+n) times FORMULA I with condition a € R, a ≠ 0 a is called the base number and m,n is called exponent .m n m n a a a + =
  • 4. if m>n, them use formula I, we shall obtain: am-n .an = am-n+n am-n .an = am Formula II m m n n a a a − = an
  • 5. pay attention the following problem : (am )n = am .am …..am n times = am+m+m….m = am.n Conclusion Formula III . ( ) ( )m n n m m n a a a= =
  • 6. If besides a we also use the base of b, then the form (ab)m . Can be defined : (ab)m = ab.ab……ab m times = (a.a.a.a).(b.b.b.b) m times m times Formula IV ( ) .m m m ab a b=
  • 7. So that by the same way we will get Conclusion : b≠ 0 Formula V Because : is not defined m m m a a b b   = ÷   0 number
  • 8. Example : Simplify! ( ) 3 5 2 5 2 4 2 3 54 11 8 19 6 5 11 1.5 .5 .5 2.( ) . . . 3.2 .(2 ) .(2 ) 4.( 3) . 3 3 3 3 5. 3 3 3 x x x x x x x − − − =
  • 9. ( ) ( ) ( ) ( ) ( ) ( ){ } ( ){ } ( ) ( ){ } ( ) ( ) ( ) 8 9 7 2 85 2 53 4 32 3 5 3 42 2 3 4 42 3 32 3 . 3 6) 3 . 3 7) 8) 2 . 2 3 . 3 9) 3 10) . . 11) . a a a a p y y y y y x x y y x y x y − − − − −      ÷  ÷     −
  • 10. ( ) 3 5 2 10 5 2 4 12 2 3 2 2 3 3 6 6 54 9 11 8 19 19 11 8 6 5 11 1.5 .5 .5 5 2.( ) . . . 3.2 .(2 ) .(2 ) 2 .2 .2 2 4.( 3) . 3 3 3 3 3 5. 3 3 3 3 3 x x x x x x x x x x x x − = − = − = = − − = − = = =
  • 11. ( ) ( ) ( ) ( ) ( ) 8 9 17 17 8 8 7 2 9 9 85 5.8 40 3 . 3 3 . 6) 3 . 3 .3 . 3 7) a a a a aa a p p p − = = − −− − = = ( ){ } ( ){ } ( ) ( ) ( ) ( ) 2 5 2 53 4 3 3 4 4 6 6 20 20 26 26 8) 2 . 2 2 . . 2 . 2 . . 2 . 2 . y y y y y y y = = =
  • 12. ( ) ( ){ } ( ) ( ) ( ) 32 3 32 2 3 3 5 5 5 2 2 9 9 5 5 11 11 5 5 6 6 3 . 3 3 . . 3 . 9) 3 .3 3 . . 3 . 3 . 3 . 3 . 3 . y y y y yy y y y y y y − − − = − = − = = − ( ) ( ) 3 42 2 6 8 14 3 4 9 16 25 42 3 8 12 5 6 3 3 62 . 10) . . . . 11) . .. x x x x x y y y y y x y x y x y x yx y     = = ÷  ÷     = = − −−
  • 13. In this section we shall see that formula I-V hold for integers exponents, either positive, negative and zero If we substitute m = n use formula II we shall obtain Formula VI a € R, a ≠ 0 m n n n n n a a a a a − = = 0 1 a=
  • 14. If we subsituty m=0 use formula II we will get Formula VII a € R, a ≠ 0 0 1m n n n a a a a a = = 0 1n n a a − = 1n n a a − = 1 n n a a− =
  • 15. ( ) ( ) ( ) 5 2 7 5 2 2 3 4 25 3 3 42 2 1)3 .3 4 2) 4 3) . 4) 5) 6) . x x x x x x x y x y − − − − − − − − − SIMPLIFY!!
  • 16. 3 3 22 2 3 7) . 8) x y ab b c − − − − −    ÷   ( ) ( ) ( ) ( ) 4 3 1 2 2 1 . 1 2 9) 3 . 3 x x x x − − − − − + + 3 13 4 4 2 3 5 10) : a b a b c b c − − −    −  ÷  ÷    
  • 17. ( ) ( ) ( ) ( ) 5 2 3 7 12 5 2 2 0 3 1 4 25 10 13 3 3 13 3 4 12 2 2 2 1)3 .3 3 4 2) 4 4 3) . 1 4) 1 5) 1 6) . x x x x x x x x x x x x x y x y x y x y − − − − − − − − − − = = = = = = = = − − = − = −
  • 18. ( ) ( ) 33 3 3 22 2 4 2 3 4 6 2 8 6 1 7) . 1 8) x y xy xy ab a b b c b c a b c −− − − − − − − = =   = = ÷   ( ) ( ) ( ) ( ) ( ) ( ){ } ( ) ( ) ( ) ( ) ( ) 344 3 1 2 3 1 3 3 2 1 2 12 1 . 1 2 9) 3 . 3 3 2 1 3 3 2 1 x xx x x x x x x x x −− − − − − − − − −− − = + + + − − = + + = − −
  • 19. 3 13 4 4 9 12 4 1 2 3 5 6 3 5 9 12 3 5 6 4 1 9 15 6 4 1 5 5 14 11 5 14 11 10) : : : . . . . . . . 1 a b a b a b a b c b c c b c a b b c c a b a b c a b c a b c a b c − − − − − − − − − − − − − − − − − − − − − −    − − = ÷  ÷     − = = − = − = −
  • 20. By the Formula I we obtain am .an = am+n If we substituting n=m, then we will get am .am = a2m so that a2m = a 2m =1 m =1/2 form a2m =a ,can be changed (am ) 2 = a am = √a a1/2 = √a In general can written 1 nn a a=
  • 21. In the fractional exponents: If is changed ,then we will get : n,m is positive integers Formula VIII 1 n m n ( ) 1 mm n n m m nn m n mn aa a a a a   =  ÷ = =  
  • 22. By the formula VIII: ,then if ,we obtain Formula IX Furthermore the formula I - IX,also hold for fractional exponents 1 n=n n p a a q − = 1 1 orp q p p q q p q a a a a − − = = 1 1 orm n m m n n m n a a aa − − = =
  • 23. Example 1. Simplify and write down in positive exponents! ( ) ( ) ( ) 131 3 62 2 2 1 3 6 31 4 4 2 3 . 2 .2 . 2 . . . 3 . 3 . 3 . a b x x x x x c x a d b − − −    ÷   5 35 6 1 5 2 3 34 3 .2 . . . x x e x x x f x −− −    ÷  ÷  
  • 24. 2. Simplify and write down in the roots form ! ( ) ( ) 1 2 34 . 1 3 . 3 1c x x− − ( ) 1 3 3 1 1 6 2 5 45 1 52 . . 1 . 2. 4 . x x a x x x b x x − −
  • 25. ( ) ( ) 2 3 4 33 3 4 3 42 3 . 27 1 . 2 .2 16 . 81 1 . 125 81 a b c d − − − −    ÷     + ÷   ( ) 1 2 2 2 3 2 1 5 34 . 3 4 .16 32 125 e f − + + − 3. Evaluate!
  • 26. 4. Find the length of diagonal of rectangle if it has dimension length is cm and width is cm! 8 2
  • 27. ( ) ( ) ( ) ( ) ( ) 13 31 1 1 1 3 62 2 2 2 2 2 1 2 2 1 2 1 41 3 6 3 3 3 31 4 4 31 1 0 4 4 2 22 3 3 1 1. . 2 .2 . 2 2 2 2 . . . 3 . 3 . 3 3 1 3 . a b x x x x x x x c x x x a a d b b − − −+ − + − − − + − = = = = = = = =     = ÷  ÷    
  • 28. 31 4 5 35 5 5 5 15 35 6 11 11 1 5 55 22 3 3 32 3 2 3 3 334 4 2 2 3 .2 6 . 6 . 6 6 . 1 . x x x x x e x x x xx x x x x f x x x x x − −−− −− − − − = = = =     ÷= = = = ÷  ÷  ÷    
  • 29. ( ) 1 3 1 3 3 32 3 1 1 12 2 43 6 62 1 1 1 6 6 62 2 4 5 45 5 5 5 1 1 61 1 52 52 52 . . 2. . 1 1 1. . 2 2 2. 1 4 . 4 . . 4 . x x x x a x x x x xx x x x x x b x x x x x + + −− − − − = = = = = = = = ( ) ( ) ( ){ } ( ) ( ) ( ) 11 22 434 3 11 12 11 12 . 1 3 . 3 1 3 1 . 3 1 3 1 1 3 c x x x x x x − − = − − − = − − = −
  • 30. ( ) ( ) ( ) ( ) 22 3 233 6 23 64 2 33 33 4 3 344 4 3 3 3 3 324 42 3 3 23 4 1 3. . 27 3 3 9 1 1 1 1 1 . 2 422 .2 2 16 2 2 3 27 . 81 3 3 2 8 1 1 1 1 1 . 125 5 5 27 27 81 3 3 25 25 a b c d −− − −− − − − − −−− − = = = = = = =    = = = = ÷ ÷           + = + = + = + = ÷  ÷  ÷      
  • 31. ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 11 1 2 2 2 12 22 2 3 2 13 2 1 4 5 34 5 35 34 3 2 1 . 3 4 9 16 25 5 5 5 .16 32 125 2 2 5 2 2 5 8 4 5 7 e f − −− − − + = + = = = = + − = + − = + − = + − =
  • 32. ( ) ( ) 2 2 2 2 2 4. 8 2 . 8 2 10 10 x x x x = + = + = =
  • 33. f(x) p I. a =a f(x)=p⇒ Example : 1. Find the solution set : 3 1 1 )2 8 2 1 1 ) 27 3 243 x x a b − =   =  ÷  
  • 34. 3 1 )2 8 2 x a = 1 1 1 ) 27 3 243 x b −   =  ÷  3 3 1 2 1 3 2 2 2 .2 2 2 1 3 2 1 6 x x x x − ⇔ = ⇔ = ⇔ = ⇔ = 3 1 52 3 1 52 3 .3 3 3 3 3 1 5 2 3 6 2 3 12 4 x x x x x x − − ⇔ = ⇔ = ⇔ − = ⇔ = ⇔ = ⇔ =
  • 35. f(x) ( ) II. a =a f(x)=g(x)g x ⇒ Example : 1. Find the solution set : ( ) 3 1 4 3 5( 1) 2 3 2 3 4 8 16 1 ) 1 162 2 )27 3 .81 ) 3 27 xx x x x x a b c − + − + −   =  ÷   = =
  • 36. 3 1 4 16 1 ) 1 162 2 xx a −   =  ÷   3 4 4 4 4 1 1 2 4 4 4 1 3 4 2 4 4 3 2 2 2 .2 2 2 .2 1 2 3 4 4 3 2 5 7 2 5 14 x x x x x x x x x x − − − − − − − ⇔ = ⇔ = ⇔ = − − ⇔ − = − − ⇔ = ⇔ =
  • 37. 3 5( 1) )27 3 .81x x b + − = ( ) 2 3 2 3 4 8 ) 3 27x x c + − = ( ) ( )2 2 3 3 4 8 3 2 3 3 4 6 12 24 3 2 8 12 36 72 84 28 3 x x x x x x x x + − ⇔ = + − ⇔ = ⇔ + = − ⇔ = ⇔ = 3( 3) 5( 1) 4 3 3 .3 3 9 5 5 4 3 9 5 1 10 2 5 x x x x x x x x + − ⇔ = ⇔ + = − + ⇔ + = − ⇔ = ⇔ =
  • 38. III. Exponent equation is changed to quadratic equation Example : 1. Determine the solution set : ( ) 1 2 3 )3.9 10.3 3 0 )2 2 36 )5 6 5 5 0 x x x x x x a b c + + − + = + = − + =
  • 39. )3.9 10.3 3 0x x a − + = ( ) ( ) ( ) 2 2 3. 3 10.3 3 0 3 , 0 3 10 3 0 3 1 3 0 x x x a a a a a a ⇔ − + = ⇔ = > ⇔ − + = ⇔ − − = 1 3 1 3 3 1 x a x ⇔ = ⇔ = ⇔ = − 3 3 3 1 x a x = = = V
  • 40. 1 2 3 ) 2 2 36x x b + + + = ( ) ( ) 2 3 2 2 2 , 0 2 .2 2 .2 36 0 2 8 36 0 4 18 0 4 9 2 0 x x x p p p p p p p p ⇔ = > ⇔ + − = ⇔ + − = ⇔ + − = ⇔ + − = : 2 9 4 p⇔ = − 2 2 1 x x ⇔ = ⇔ = V 2p =
  • 41. ( ))5 6 5 5 0 x x c − + = ( ) ( ) 2 5 5 2 x x = = ( ) ( ) 0 5 5 0 x x = = V V ( ) ( ) ( ) ( ) ( ) 2 2 5 6 5 5 0 5 , 0 6 5 0 5 1 0 5 1 x x x p p p p p p p p ⇔ − + = ⇔ = > ⇔ − + = ⇔ − − = ⇔ = = ⇔
  • 42. (1) Rational Number Rational Number are numbers which can be put in a/b form with a and b are integers numbers and b ≠ 0. Example: 1. 3 coz 3 can be stated in etc 2. 0.444…= 0.4 can be stated in 3. 1.12 can be stated in Notes ! The lines above 12(no.3)shows that 12 is repeated unlimitedly Generally ! Rational number are repeated decimals 6 9 , 2 3 2 5111 97
  • 43. (2) Irrational Numbers Irrational number are number which can’t be stated in Generally : Irrational numbers are unrepeated decimal Example! 1. =1.4142135…. 2. = 5.1461524…. 3. Log 2 = 0.3010…. 4. e =2.71828182….. coz can’t be put in 2 a b 3 3 a b
  • 44. 1.Please check whether the following form are rational or irrational. 3 3 a.-2 5 1 .log 10 . log 2 . 12 b c d − . 0.1 2 . 9 .1.2 .8.34 e f g h
  • 45. ( ) ( ) ( ) ( ) 3 3 a.-2 5 1 .log 10 . log 2 . 12 I b R c I d I− ( ) ( ) ( ) ( ) . 0.1 2 . 9 .1.2 .8.34 e I f I g R h R
  • 46. Root number are the rational number which the result are irrational EXAMPLE : 3 3 6 1) 3,2 12, 8 are root forms 2) 4, 27, 64, , are not root form because the result are rationalπ−
  • 47. 3 5 )2 7 ) log81 ) 0,05 9 ) 25 ) 32 a b c d e − 1. Please check whether the following forms are root forms or not 5 )1, 2 ) 81 1 ) 3 ) )ln 2 f g h i e j Note : Ln = Log number with base e Ln x = e log x
  • 48. 2. :Simplify the following root form 4 5 5 44 ) 32 )4 250 ) 243 ) 64 1 ) 288 2 ) 405 a b c d e f x y −
  • 49. ( ) ( ) 511 54 4444 ) 32 16.2 4 2 )4 250 4 25.10 20 10 ) 243 243 3 3 3 3 a b c = = = = = = = = ( ) 5 55 5 5 4 4 4 54 4 ) 64 2 .2 2 2 1 1 1 ) 288 144.2 .12 2 6 2 2 2 2 ) 405 81.5 . . 3 5 d e f x y x x y xy x − = − = − = = = = =
  • 50. ( ) ( ) 2 2 Notes ! 1) 2 2) 2 a b a b ab a b a b ab + = + + − = + − ( ) 2a b a b ab+ = + + ( ) 2a b a b ab a b− = + − ⇒ ≥
  • 51. ( ) ( )3. inSimplify a b or a b form+ − ) 8 2 12 ) 15 2 90 ) 9 80 ) 14 6 5 ) 15 10 2 5 2 ) 6 3 a b c d e f − + − + − + ANSWER
  • 52. ( ) ( ) ( ) ) 8 2 12 6 2 2 6.2 6 2 ) 15 2 90 8 7 2 56 8 7 ) 9 80 9 2 20 4 5 2 5 ) 14 6 5 14 2.3 5 14 2 45 9 5 2 9.5 9 5 ) 15 10 2 15 2 50 10 5 5 2 5 1 5 1 1 1 1 1 1 1 ) 4. 2 2 . 6 3 6 6 6 6 2 3 2 3 2 3 a b c d e f − = + − = − + = + + = + − = − = − = − + = + = + = + + = + − = − = −     + = + = + = + + = + ÷  ÷    
  • 53. REMEMBER !! 1) . 2) . 3) 4) a a a a b ab a b a b a b a b = = + = + − = −
  • 54. 1. Evaluate the value of the following root forms ( ) ( )( ) ( )( ) ( ) ( ) 2 2 2 )5 2 2 2 2 )20 3 80 45 ) 150 3 54 5 96) ) 2 8 ) 6 4 6 4 1 1 ) 3. 27.10 48 2 3 ) 4 8 3 4 8 3 ) 1 5 10 1 5 10 a b c d e f g h + − − − − + + − + + + − − + + − − − ANSWER
  • 55. ( ) ( ) ( ) ( ) ( )( ) ( ) 2 2 2 )5 2 2 2 2 5 3 1 2 7 2 )20 3 80 45 2 5 3.4 5 3 5 2 12 3 5 7 5 ) 150 3 54 5 96) 5 6 3.3 6 5.4 6 5 9 20 6 16 6 ) 2 8 2 8 2 16 18 ) 6 4 6 4 6 4 10 1 1 1 1 1 ) 3. 27.10 48 3. .3 3.10.4 3 .40 3 20 3 2 3 2 3 2 a b c d e f + − = + − = − − = − + = − + = − − + = − + = − + = + = + + = − + = − = − = = =
  • 56. ( )( ) ( ){ } ( ){ } ( ) ( ) 2 2 ) 4 8 3 4 8 3 4 8 3 4 8 3 4 8 3 16 8 3 2 8. 3 5 2 24 5 4 6 g + + − − = + + − − = − + = − + + = − = − ( ) ( ) ( ){ } ( ){ } ( ) ( ) 2 22 2 2 2 ) 1 5 10 1 5 10 1 5 10 1 5 10 1 5 10 1 5 10 2 5. 10 16 2 50 16 10 2 h + + − − − = + + − − − = + + = + + + = + = +
  • 57. 1. Find the value of the following problem !! ) 10 10 10 10... ) 72 72 72 ... ) 56 56 56 56 ... a b c + + + − − − − 2+ 5 2 5 if p q = = − 2. Find 2p+2q, 4pq and p2 +q2 ANSWER
  • 58. 1 ) 10 10 10 10...a 10 10 10 10...x = 0 10x x= ∨ = 10x∴ = 2 10 10 10 10...x⇔ = 2 10x x⇔ = ( ) 2 10 0 10 0 x x x x ⇔ − = ⇔ − =
  • 59. 1 ) 72 72 72 ...b + + + 72 72 72 ...x = + + + 9 8x x⇔ = ∨ = − 9x∴ = ( ) ( ) 2 2 2 72 72 72 ... 72 72 0 9 8 0 x x x x x x x ⇔ = + + + ⇔ = + ⇔ − − = ⇔ − + =
  • 60. 1 ) 56 56 56 56 ...c − − − − 56 56 56 56 ...x = − − − − 8 7x x⇔ = − ∨ = 7x∴ = 2 56 56 56 56 ...x⇔ = − − − − 2 56x x⇔ = − ( ) ( ) 2 56 0 8 7 0 x x x x ⇔ + − = ⇔ + − =
  • 61. ( ) ( )2 ) 2 2 2 2+ 5 2 2 5 4 2 5 4 2 5 8 a p q+ = + − = + + − = ( )( ) ( ) 2 ) 4 4 2+ 5 2 5 4 4 5 4 b pq = − = − = − ( ) ( ) ( ) ( ) 2 2 2 2 2 ) p +q = 2 5 2 5 4 4 5 5 4 4 5 5 4 4 5 5 4 4 5 5 18 c + + − = + + + − + = + + + − + =
  • 62. A fractional of root on its denominator such as : 1 , , c c a a b a b+ − Can be simplified by rationalizing 1 1 1 . a a a a a a = = ( ). c a bc c a b a ba b a b a b −− = = −+ + − ( ). c a bc c a b a ba b a b a b ++ = = +− − +
  • 63. 2 2 3 2 3 ) . 33 3 3 a = = 5 5 12 5.2 3 15 ) . 12 12 612 12 b = = = 4 4 3 2 4 3 4 2 ) . 4 3 4 2 3 23 2 3 2 3 2 c − − + − − = = = − − −− − +
  • 64. ( ) 2 2 2 3 2 3 8 2 2 24 4 3 ) . 8 2 8 2 8 2 8 2 4 6 4 3 6 3 4 d − − = = + + − − − = = − ( ) ( ) ( ) 2 2 2 6 26 2 6 2 6 2 ) . 6 2 6 2 6 2 6 2 6 2 2 12 8 4 3 2 3 6 12 4 e −− − − = = + + − − + − − = = = − −
  • 66. a c 1. log b c a b= ⇔ = a 2. log a 1= a 3. log 1 0= a a a 4. log x . y log x log y= + a a a 5. log log x log y x y = − a n a 6. log x n . log x=
  • 67. x log 9. log y log a a x y = a y a 10. log b log b x y x = x a y 8. log a y x = x 1 7. log y logy x = BACK 11. log . log . log loga x y a x y b b= log 12. a x a x=
  • 68. 2 2 2 3 log 2 log 3 3 3 ½ 2 2 ) log 16 1 ) log 25 ) log 0.001 ) ( 3) 1 ) ( ) 4 ) log 2 log 4 5 ) log 5 - log 4 a b c d e f g + 3 4 3 2 7 9 3 2 25 4 2 8 4 ) log 3 ) log 7 . log 27 . log 2 log 8 ) log 4 1 ) log3 log 4 7 7 ) log 21 log7 log . 24 3 h i j k l −   − −  ÷ ÷   ANSWER 1. EVALUATE !!
  • 69. 2 2 4 ) log 16 log 2 = 4 a = 5 5 2 5 -2 1 1 ) log = log 25 5 log 5 2 b = = − -3 ) log 0.001 = log 10 -3 c = 1 3 log 2 3 log 22 1 3 log 2 2 1 2 ) ( 3) (3 ) = (3 ) 2 2 d = = = 2 2 log 3 log 3 -2 -2 1 ) ( ) = (2 ) 4 = 3 1 9 e =
  • 70. 3 3 ½  3 3 3 3 )      log 2   log 4   =  log 2 +  log 2 =   log 2.2   log 4 f + = 2 2 2 2 5 4 5 5 )     log 5 -   log   =    log  4    log 4 =  2 g = 13 3 4 4 4 3 )     log       log  3 4 =  -1 h −   =  ÷  
  • 71. 3 2 7 3 7 2 3 )      log 7 .  log 27 .   log 2 =   log 7 .   log 2 .   log 27 =   log 27 = 3 i 2 1 2 9 3 3 3 3 2 3 3 1 2  log 8  log  2 )     =   log 4 log  2 3   log 2 2    2   log 2 3 1 =   .  2 4 3   8 j = =
  • 72. 2       2 25 5 5 2 5 5 5 5 1 1 1 ) log5  =  log 4 log 2 log 2 1 1   log 2 log 2 1   log 2 log 2  1 k x − − = − = =
  • 73. 2 3 4 2 8 1 2 2 2 2 13 2 3 2 2 2 2 3 3 2 1 3 3 1 2 2 2 22 3 3 2 7 7 )      log21    log7 log . 24 3 7 7   log  21    log7   log . 2 .3 3 1 1 7     log  21 -  log7 -    log   2 3 2 .3 7   log  21   log7 -  log   2 .3 l   − −  ÷ ÷      ÷= − −  ÷  ÷   =    ÷= −  ÷  ÷   { 1 222 2 1 2 1 2 2 2 1 2 2 2 7 2 3 7    log  21   log7 log 2.3 7    log  21 log7 .  2.3 7 3    log 7 3    log  14 } x x    ÷= − +  ÷  ÷      ÷= −  ÷  ÷   = = NEXT
  • 74. 2. SIMPLIFY !! ( ) ( ) 2 2 2 23 1 1 ) log x + log   - log  ) log log ) log log logx x x a x x b x y x y c x x x − − − + − ANSWER
  • 75. 2 2 2 2 1 1 1 ) log x + log   - log   = log x . log   . log x 1 log x .   . x log  x 2 log x a x x x x   =  ÷   = = ( ) ( ) ( ) ( ) ( )2 2 ) log log log log log log . log log . { }b x y x y x y x y x y x x x y y y x y − − − = + − − − = + − =
  • 76. 1 1 3 2 23 x log  .  log ) log log log 2  logx 1 1 . 3 2 2 1 12 x x x x x x x c x x x+ − = = = NEXT
  • 78. 10 )log5 log 2 log10 log 2 1 0.301 0.699 a = = − = − = )log6 log 2 .  log3 0.301 0.477 0.778 b = = + = 7 )log log7 log 2 2 0.845 0.301 0.544 c = − = − = 3 1 1 )log log3 log 2 2 2 2 1 1  . 0,477    . 0,301 2 2 0.2385 0,1505 0,088 d = − = − = − = NEXT
  • 79. 4 9 3 9 4. Given that : )  log 6 = A      Express  log 8 with A b)  log 5 = B      Express  log 375 with B a 3 2 6 )  log  2 = M      log 7 = N     Express  log 98  c ANSWER
  • 80. ( ) 4 9 4 4 3 4 2 4 4 log8 )  log 8 =  log9 log 2 log3 3 .  log 2 2 .  log3 13 .  2 12 .  2 3 22  .  2 1 2 3 4 2 a A A A = = = − = − = −  : 4log 6 = A 4log 3 . 2 = A 4log 3 + 4log 2 = A 14log 3 +   = A 2 14log 3 = A -  2 Note
  • 81. 3 9 3 3 3 3 3 3 log  375 )  log  375 =  log  9 log  125 . 3 2 log  5  +  log 3 2 3  log5 + 1 2 3 1 2 b B = = = + =
  • 82. 3 6 3 3 3 3 2 3 3 3 3 3 2 log98 )  log 98 =  log6 log 49.2 log3.2 log7 log 2 log3 log 2 2  log7 1 2  log 2  log7 1 2 1 c M M M M MN M M = + = + + = + + = + + = + NEXT
  • 83. 5. Find the value of x that fulfill of the following equation! ( ) ( ) ( ) 3 3 3 3 3 3 4 4 4 4 4 )  log log 1 log 2 )   log 2 1 log 3 log7 )  log .  log x -  log log log16 = 2 a x x b x x c + + = − − − = ANSWER
  • 84. ( )3 3 3 )  log log 1 log 2a x x+ + = 2 1x x= − ∨ = TM { }1HP = ( ) ( )3 3 3 )   log 2 1 log 3 log7b x x− − − = { }4HP = ( ) ( ) ( ) ( ) 3 3 log 1 log 2 1 2 2 1 0 x x x x x x ⇔ + = ⇔ + = ⇔ + − = ( ) ( ) ( ) ( ) 3 32 1 log log7 3 2 1 7 3 2 1 7 21 4 x x x x x x x − ⇔ = − − ⇔ = − ⇔ − = − ⇔ =
  • 85. 4 4 4 4 4 )  log .  log x -  log log log16 = 2c { } { } 4 4 4 4 2 4 2 4 2 2 16 16 log 2  log x 2 log   log x log4 log x 16 x 4 2 65536 x x ⇔ = ⇔ = ⇔ = ⇔ = ⇔ = ⇔ = ( ) ( ){ } ( ) 4 4 4 4 4 4 4 4 4 4 4 4 4 4 log  log x -  log log log16  2 log x log 2 log log16  log x log 2 log2 log x log 2 1 2 ⇔ =    ⇔ =       ⇔ =       ⇔ =    
  • 86. 1. Find the value of x that fulfill of the following equation !! ( ) ( ) ( ) ( ){ } { } ( ) 2 2 5 2 5 ) log 2 3 4 log 2 8 ) log 2 log 5 1 )log log 3 log 2 log log16 ) log 2 2x a x x b x x c x x d x − + = − − + = + + = + = ( ) ( ) ( ) 5 2 5 3 32 2 2 ) log 12 3. log 4 1 0 ) log log 2 0 ) log 1 log 1 10 0 x x e x f x x g x x + − + = − + = + − + − = ANSWER
  • 87. ( ) ( )2 2 ) log 2 3 4 log 2 8a x x− + = − ( )5 2 5 ) log 2 log 5 1b x x− + = 5 10 2 x x⇔ = − ∨ = HP = 5 ,10 2 HP   = −    Ø ( ) ( ) ( ) ( ) 2 2 2 2 2 log 2 3 log16 log 2 8 log16 2 3 log 2 8 32 48 2 8 1 1 3 x x x x x x x ⇔ − + = − ⇔ − = − ⇔ − = − ⇔ = ( ) ( ) ( ) 5 2 5 5 2 2 2 log 2 log 5 log5 2 5 5 2 5 25 2 5 25 0 2 5 5 0 x x x x x x x x x x ⇔ − + = ⇔ = + ⇔ = + ⇔ − − = ⇔ + − =
  • 88. ( ){ } { })log log 3 log 2 log log16c x x+ + = 1 9x x⇔ = ∨ = ( )) log 2 2x d x + = 2 1x x⇔ = ∨ = − { }2HP = { }1,9HP = ( ){ } { } ( ){ } ( ) ( ) ( ) 2 2 2 log log 3 log 2 log log16 2.log 3 log16 log 3 log16 6 9 16 10 9 0 1 9 0 x x x x x x x x x x x x x ⇔ + + = ⇔ + = ⇔ + = ⇔ + + = ⇔ − + = ⇔ − − = ( ) ( ) ( ) 2 2 2 log 2 log 2 2 0 2 1 0 x x x x x x x x x x ⇔ + = ⇔ + = ⇔ − − = ⇔ − + =
  • 89. ( )) log 12 3. log 4 1 0x x e x + − + = 5 2 5 3 ) log log 2 0f x x− + = 16 4x x⇔ = − ∨ = 5 log 1 0x⇔ − = 5 5 2 log 2 0 log 2 5 25 x x x x − = = = = { }5,25HP = { }4HP = ( ) ( ) ( ) ( ) 3 3 1 2 log 12 log 4 1 log 12 log 4 log 12 1 64 12 64 0 16 4 0 x x x x x x x x x x x x x x − ⇔ + − = − ⇔ + − = + ⇔ = ⇔ + − = ⇔ + − = ( )( ) 5 2 5 5 5 log 3. log 2 0 log 1 log 2 0 x x x x ⇔ − + = ⇔ − − = 5 1 log 1 5 5 x x x ⇔ = ⇔ = ⇔ = V
  • 90. ( ) ( ) 32 2 2 ) log 1 log 1 10 0g x x+ − + − = ( )2 log 1 5 0x⇔ + − = ( ) ( ) 2 2 2 log 1 2 0 log 1 2 1 2 1 1 4 3 4 x x x x x − ⇔ + + = ⇔ + = − ⇔ + = ⇔ = − ⇔ = − 3 ,31 4 HP   = −    V ( )2 5 log 1 5 1 2 32 1 31 x x x x ⇔ + = ⇔ + = ⇔ = − ⇔ = ( ) ( ) ( ){ } ( ){ } 2 2 2 2 2 log 1 3. log 1 10 0 log 1 5 log 1 2 0 x x x x ⇔ + − + − = ⇔ + − + + =