2
Most read
3
Most read
MATHEMATICAL FORMULAE
Algebra
1. (a + b)2 = a2 + 2ab + b2 ; a2 + b2 = (a + b)2 − 2ab
2. (a − b)2 = a2 − 2ab + b2 ; a2 + b2 = (a − b)2 + 2ab
3. (a + b + c)2 = a2 + b2 + c2 + 2(ab + bc + ca)
4. (a + b)3 = a3 + b3 + 3ab(a + b); a3 + b3 = (a + b)3 − 3ab(a + b)
5. (a − b)3 = a3 − b3 − 3ab(a − b); a3 − b3 = (a − b)3 + 3ab(a − b)
6. a2 − b2 = (a + b)(a − b)
7. a3 − b3 = (a − b)(a2 + ab + b2 )
8. a3 + b3 = (a + b)(a2 − ab + b2 )
9. an − bn = (a − b)(an−1 + an−2 b + an−3 b2 + · · · + bn−1 )
10. an = a.a.a . . . n times
11. am .an = am+n
am
12. n = am−n if m > n
a
=1
if m = n
1
= n−m if m < n; a ∈ R, a = 0
a
13. (am )n = amn = (an )m
14. (ab)n = an .bn
a n
an
15.
= n
b
b
16. a0 = 1 where a ∈ R, a = 0
1
1
17. a−n = n , an = −n
a
a
√
18. ap/q = q ap
19. If am = an and a = ±1, a = 0 then m = n
20. If an = bn where n = 0, then a = ±b
√ √
√
√
21. If x, y are quadratic surds and if a + x = y, then a = 0 and x = y
√ √
√
√
22. If x, y are quadratic surds and if a + x = b + y then a = b and x = y
23. If a, m, n are positive real numbers and a = 1, then loga mn = loga m+loga n
m
24. If a, m, n are positive real numbers, a = 1, then loga
= loga m − loga n
n
25. If a and m are positive real numbers, a = 1 then loga mn = n loga m
logk a
26. If a, b and k are positive real numbers, b = 1, k = 1, then logb a =
logk b
1
27. logb a =
where a, b are positive real numbers, a = 1, b = 1
loga b
28. if a, m, n are positive real numbers, a = 1 and if loga m = loga n, then
m=n
Typeset by AMS-TEX
2

29. if a + ib = 0

√
−1, then a = b = 0
√
where i = −1, then a = x and b = y

where i =

30. if a + ib = x + iy,

31. The roots of the quadratic equation ax2 +bx+c = 0; a = 0 are

The solution set of the equation is

−b ±

√
b2 − 4ac
2a

√
√
−b + ∆ −b − ∆
,
2a
2a

where ∆ = discriminant = b2 − 4ac
32. The roots are real and distinct if ∆ > 0.
33. The roots are real and coincident if ∆ = 0.
34. The roots are non-real if ∆ < 0.
35. If α and β are the roots of the equation ax2 + bx + c = 0, a = 0 then
−b
coeff. of x
=−
i) α + β =
a
coeff. of x2
c
constant term
ii) α · β = =
a
coeff. of x2
36. The quadratic equation whose roots are α and β is (x − α)(x − β) = 0
i.e. x2 − (α + β)x + αβ = 0
i.e. x2 − Sx + P = 0 where S =Sum of the roots and P =Product of the
roots.
37. For an arithmetic progression (A.P.) whose first term is (a) and the common
difference is (d).
i) nth term= tn = a + (n − 1)d
ii) The sum of the first (n) terms = Sn =
where l =last term= a + (n − 1)d.

n
n
(a + l) = {2a + (n − 1)d}
2
2

38. For a geometric progression (G.P.) whose first term is (a) and common ratio
is (γ),
i) nth term= tn = aγ n−1 .
ii) The sum of the first (n) terms:
Sn

a(1 − γ n)
1−γ
a(γ n − 1)
=
γ−1
= na
=

ifγ < 1
if γ > 1

.

if γ = 1

39. For any sequence {tn }, Sn − Sn−1 = tn where Sn =Sum of the first (n)
terms.
n

n
(n + 1).
2
γ=1
n
n
41.
γ 2 = 12 + 22 + 32 + · · · + n2 = (n + 1)(2n + 1).
6
γ=1

40.

γ = 1 + 2 + 3 + ··· + n =
3
n

42.

γ 3 = 13 + 23 + 33 + 43 + · · · + n3 =

γ=1

n2
(n + 1)2 .
4

43. n! = (1).(2).(3). . . . .(n − 1).n.
44. n! = n(n − 1)! = n(n − 1)(n − 2)! = . . . . .
45. 0! = 1.
46. (a + b)n = an + nan−1 b +
bn , n > 1.

n(n − 1) n−2 2 n(n − 1)(n − 2) n−3 3
a
b +
a
b +···+
2!
3!

More Related Content

PDF
Trigo cheat sheet_reduced
PPT
PPT
Riemann sumsdefiniteintegrals
PPT
Stewart calc7e 01_08
PDF
Dg mcqs (1)
DOCX
B.tech ii unit-1 material curve tracing
PDF
SnapLogic- iPaaS (Elastic Integration Cloud and Data Integration)
PPT
Set theory and relation
Trigo cheat sheet_reduced
Riemann sumsdefiniteintegrals
Stewart calc7e 01_08
Dg mcqs (1)
B.tech ii unit-1 material curve tracing
SnapLogic- iPaaS (Elastic Integration Cloud and Data Integration)
Set theory and relation

Viewers also liked (20)

PPT
Maximizing and protecting ip
PDF
บทที่4การสร้างความสัมพันธ์และการสร้างแบบสอบถาม
PPT
+654354
PPTX
Pergerakan haiwan 1
PDF
ICSC "We Choose DC" Sponsorship Kit
PDF
Five-Year Economic Development Strategy for the District of Columbia
PPT
DCSBC | Starting a Business in DC
PPTX
Licensing & Registration: One Customer's Experience
PPT
Business Taxes | OTR | Doing Business 2.0
PPTX
Архивная педагогика (вызовы и ответы)
PPT
Ahli kumpulan
PDF
DC Development Report: 2014/2015 Edition
PPT
DCRA | Registration & Licensing
PDF
Kommunika foods exporta extremadura
PDF
A Car Show
PPT
Barkery inn hotel
PPT
Presentation birds feather
PDF
Start it in 7: Strategic Spaces Tour
PDF
บทที่3การสร้างตารางฐานข้อมูล
PDF
DC Space Finding Tour: Georgia Avenue
Maximizing and protecting ip
บทที่4การสร้างความสัมพันธ์และการสร้างแบบสอบถาม
+654354
Pergerakan haiwan 1
ICSC "We Choose DC" Sponsorship Kit
Five-Year Economic Development Strategy for the District of Columbia
DCSBC | Starting a Business in DC
Licensing & Registration: One Customer's Experience
Business Taxes | OTR | Doing Business 2.0
Архивная педагогика (вызовы и ответы)
Ahli kumpulan
DC Development Report: 2014/2015 Edition
DCRA | Registration & Licensing
Kommunika foods exporta extremadura
A Car Show
Barkery inn hotel
Presentation birds feather
Start it in 7: Strategic Spaces Tour
บทที่3การสร้างตารางฐานข้อมูล
DC Space Finding Tour: Georgia Avenue
Ad

Similar to Formulas (20)

PDF
Maths formula
PDF
Formulas
PDF
Form1hhhh
PDF
Algebra formulae
PDF
Metrix[1]
DOC
Shahjahan notes:Mathematicsinphysicstheorysampleproblematc
PDF
Bt0063 mathematics fot it
PDF
Algebra formulas
PDF
Class XII CBSE Mathematics Sample question paper with solution
PDF
Mcq for manavsthali( 7 worksheets)
PDF
ITA 2017 - aberta
PDF
f00a5f08-14cf-4f73-a749-f8e30a016fa4.pdf
PDF
Aieee maths-quick review
PDF
Sample question paper 2 with solution
DOCX
Important maths formulas
PDF
Formular
DOCX
Assessments for class xi
PDF
IIT Jam math 2016 solutions BY Trajectoryeducation
PDF
Math06reviewsheet (3)
Maths formula
Formulas
Form1hhhh
Algebra formulae
Metrix[1]
Shahjahan notes:Mathematicsinphysicstheorysampleproblematc
Bt0063 mathematics fot it
Algebra formulas
Class XII CBSE Mathematics Sample question paper with solution
Mcq for manavsthali( 7 worksheets)
ITA 2017 - aberta
f00a5f08-14cf-4f73-a749-f8e30a016fa4.pdf
Aieee maths-quick review
Sample question paper 2 with solution
Important maths formulas
Formular
Assessments for class xi
IIT Jam math 2016 solutions BY Trajectoryeducation
Math06reviewsheet (3)
Ad

More from Aneel Ahmad (17)

PPT
What is Operation management?
PDF
Synopsis for Recovery of precious metals from electronic scrap
PDF
Leaching initial progress report
PPT
Waste heat recovery
PDF
Chillers 16 jlr cn (c)
PDF
Hazop suplimentry study
PPTX
Shape memory polymers
PDF
International numbering system for food additives
PDF
Fe fluid mechanics
PPT
fluid mechanics for mechanical engineering
PPTX
Fluid Mechanics
PDF
Float types
PDF
Trig cheat sheet
PDF
Computer shortcuts3
PPS
Chale chalo
PPS
Burn first aid
PPS
City of-petra
What is Operation management?
Synopsis for Recovery of precious metals from electronic scrap
Leaching initial progress report
Waste heat recovery
Chillers 16 jlr cn (c)
Hazop suplimentry study
Shape memory polymers
International numbering system for food additives
Fe fluid mechanics
fluid mechanics for mechanical engineering
Fluid Mechanics
Float types
Trig cheat sheet
Computer shortcuts3
Chale chalo
Burn first aid
City of-petra

Recently uploaded (20)

PDF
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
PDF
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 2).pdf
PDF
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 1)
PPTX
Computer Architecture Input Output Memory.pptx
PPTX
Chinmaya Tiranga Azadi Quiz (Class 7-8 )
PPTX
B.Sc. DS Unit 2 Software Engineering.pptx
PPTX
History, Philosophy and sociology of education (1).pptx
PPTX
Virtual and Augmented Reality in Current Scenario
PDF
IGGE1 Understanding the Self1234567891011
PDF
HVAC Specification 2024 according to central public works department
PDF
MBA _Common_ 2nd year Syllabus _2021-22_.pdf
PDF
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
DOCX
Cambridge-Practice-Tests-for-IELTS-12.docx
PDF
AI-driven educational solutions for real-life interventions in the Philippine...
PDF
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
PDF
CISA (Certified Information Systems Auditor) Domain-Wise Summary.pdf
PDF
LDMMIA Reiki Yoga Finals Review Spring Summer
PDF
Paper A Mock Exam 9_ Attempt review.pdf.
PDF
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
PDF
Hazard Identification & Risk Assessment .pdf
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 2).pdf
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 1)
Computer Architecture Input Output Memory.pptx
Chinmaya Tiranga Azadi Quiz (Class 7-8 )
B.Sc. DS Unit 2 Software Engineering.pptx
History, Philosophy and sociology of education (1).pptx
Virtual and Augmented Reality in Current Scenario
IGGE1 Understanding the Self1234567891011
HVAC Specification 2024 according to central public works department
MBA _Common_ 2nd year Syllabus _2021-22_.pdf
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
Cambridge-Practice-Tests-for-IELTS-12.docx
AI-driven educational solutions for real-life interventions in the Philippine...
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
CISA (Certified Information Systems Auditor) Domain-Wise Summary.pdf
LDMMIA Reiki Yoga Finals Review Spring Summer
Paper A Mock Exam 9_ Attempt review.pdf.
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
Hazard Identification & Risk Assessment .pdf

Formulas

  • 1. MATHEMATICAL FORMULAE Algebra 1. (a + b)2 = a2 + 2ab + b2 ; a2 + b2 = (a + b)2 − 2ab 2. (a − b)2 = a2 − 2ab + b2 ; a2 + b2 = (a − b)2 + 2ab 3. (a + b + c)2 = a2 + b2 + c2 + 2(ab + bc + ca) 4. (a + b)3 = a3 + b3 + 3ab(a + b); a3 + b3 = (a + b)3 − 3ab(a + b) 5. (a − b)3 = a3 − b3 − 3ab(a − b); a3 − b3 = (a − b)3 + 3ab(a − b) 6. a2 − b2 = (a + b)(a − b) 7. a3 − b3 = (a − b)(a2 + ab + b2 ) 8. a3 + b3 = (a + b)(a2 − ab + b2 ) 9. an − bn = (a − b)(an−1 + an−2 b + an−3 b2 + · · · + bn−1 ) 10. an = a.a.a . . . n times 11. am .an = am+n am 12. n = am−n if m > n a =1 if m = n 1 = n−m if m < n; a ∈ R, a = 0 a 13. (am )n = amn = (an )m 14. (ab)n = an .bn a n an 15. = n b b 16. a0 = 1 where a ∈ R, a = 0 1 1 17. a−n = n , an = −n a a √ 18. ap/q = q ap 19. If am = an and a = ±1, a = 0 then m = n 20. If an = bn where n = 0, then a = ±b √ √ √ √ 21. If x, y are quadratic surds and if a + x = y, then a = 0 and x = y √ √ √ √ 22. If x, y are quadratic surds and if a + x = b + y then a = b and x = y 23. If a, m, n are positive real numbers and a = 1, then loga mn = loga m+loga n m 24. If a, m, n are positive real numbers, a = 1, then loga = loga m − loga n n 25. If a and m are positive real numbers, a = 1 then loga mn = n loga m logk a 26. If a, b and k are positive real numbers, b = 1, k = 1, then logb a = logk b 1 27. logb a = where a, b are positive real numbers, a = 1, b = 1 loga b 28. if a, m, n are positive real numbers, a = 1 and if loga m = loga n, then m=n Typeset by AMS-TEX
  • 2. 2 29. if a + ib = 0 √ −1, then a = b = 0 √ where i = −1, then a = x and b = y where i = 30. if a + ib = x + iy, 31. The roots of the quadratic equation ax2 +bx+c = 0; a = 0 are The solution set of the equation is −b ± √ b2 − 4ac 2a √ √ −b + ∆ −b − ∆ , 2a 2a where ∆ = discriminant = b2 − 4ac 32. The roots are real and distinct if ∆ > 0. 33. The roots are real and coincident if ∆ = 0. 34. The roots are non-real if ∆ < 0. 35. If α and β are the roots of the equation ax2 + bx + c = 0, a = 0 then −b coeff. of x =− i) α + β = a coeff. of x2 c constant term ii) α · β = = a coeff. of x2 36. The quadratic equation whose roots are α and β is (x − α)(x − β) = 0 i.e. x2 − (α + β)x + αβ = 0 i.e. x2 − Sx + P = 0 where S =Sum of the roots and P =Product of the roots. 37. For an arithmetic progression (A.P.) whose first term is (a) and the common difference is (d). i) nth term= tn = a + (n − 1)d ii) The sum of the first (n) terms = Sn = where l =last term= a + (n − 1)d. n n (a + l) = {2a + (n − 1)d} 2 2 38. For a geometric progression (G.P.) whose first term is (a) and common ratio is (γ), i) nth term= tn = aγ n−1 . ii) The sum of the first (n) terms: Sn a(1 − γ n) 1−γ a(γ n − 1) = γ−1 = na = ifγ < 1 if γ > 1 . if γ = 1 39. For any sequence {tn }, Sn − Sn−1 = tn where Sn =Sum of the first (n) terms. n n (n + 1). 2 γ=1 n n 41. γ 2 = 12 + 22 + 32 + · · · + n2 = (n + 1)(2n + 1). 6 γ=1 40. γ = 1 + 2 + 3 + ··· + n =
  • 3. 3 n 42. γ 3 = 13 + 23 + 33 + 43 + · · · + n3 = γ=1 n2 (n + 1)2 . 4 43. n! = (1).(2).(3). . . . .(n − 1).n. 44. n! = n(n − 1)! = n(n − 1)(n − 2)! = . . . . . 45. 0! = 1. 46. (a + b)n = an + nan−1 b + bn , n > 1. n(n − 1) n−2 2 n(n − 1)(n − 2) n−3 3 a b + a b +···+ 2! 3!