MATHEMATICAL FORMULAE
Algebra
1. (a + b)2
= a2
+ 2ab + b2
; a2
+ b2
= (a + b)2
− 2ab
2. (a − b)2
= a2
− 2ab + b2
; a2
+ b2
= (a − b)2
+ 2ab
3. (a + b + c)2
= a2
+ b2
+ c2
+ 2(ab + bc + ca)
4. (a + b)3
= a3
+ b3
+ 3ab(a + b); a3
+ b3
= (a + b)3
− 3ab(a + b)
5. (a − b)3
= a3
− b3
− 3ab(a − b); a3
− b3
= (a − b)3
+ 3ab(a − b)
6. a2
− b2
= (a + b)(a − b)
7. a3
− b3
= (a − b)(a2
+ ab + b2
)
8. a3
+ b3
= (a + b)(a2
− ab + b2
)
9. an
− bn
= (a − b)(an−1
+ an−2
b + an−3
b2
+ · · · + bn−1
)
10. an
= a.a.a . . . n times
11. am
.an
= am+n
12.
am
an
= am−n
if m > n
= 1 if m = n
=
1
an−m
if m < n; a ∈ R, a = 0
13. (am
)n
= amn
= (an
)m
14. (ab)n
= an
.bn
15.
a
b
n
=
an
bn
16. a0
= 1 where a ∈ R, a = 0
17. a−n
=
1
an
, an
=
1
a−n
18. ap/q
= q
√
ap
19. If am
= an
and a = ±1, a = 0 then m = n
20. If an
= bn
where n = 0, then a = ±b
21. If
√
x,
√
y are quadratic surds and if a +
√
x =
√
y, then a = 0 and x = y
22. If
√
x,
√
y are quadratic surds and if a +
√
x = b +
√
y then a = b and x = y
23. If a, m, n are positive real numbers and a = 1, then loga mn = loga m+loga n
24. If a, m, n are positive real numbers, a = 1, then loga
m
n
= loga m−loga n
25. If a and m are positive real numbers, a = 1 then loga mn
= n loga m
26. If a, b and k are positive real numbers, b = 1, k = 1, then logb a =
logk a
logk b
27. logb a =
1
loga b
where a, b are positive real numbers, a = 1, b = 1
28. if a, m, n are positive real numbers, a = 1 and if loga m = loga n, then
m = n
Typeset by AMS-TEX
2
29. if a + ib = 0 where i =
√
−1, then a = b = 0
30. if a + ib = x + iy, where i =
√
−1, then a = x and b = y
31. The roots of the quadratic equation ax2
+bx+c = 0; a = 0 are
−b ±
√
b2 − 4ac
2a
The solution set of the equation is
−b +
√
∆
2a
,
−b −
√
∆
2a
where ∆ = discriminant = b2
− 4ac
32. The roots are real and distinct if ∆ > 0.
33. The roots are real and coincident if ∆ = 0.
34. The roots are non-real if ∆ < 0.
35. If α and β are the roots of the equation ax2
+ bx + c = 0, a = 0 then
i) α + β =
−b
a
= −
coeff. of x
coeff. of x2
ii) α · β =
c
a
=
constant term
coeff. of x2
36. The quadratic equation whose roots are α and β is (x − α)(x − β) = 0
i.e. x2
− (α + β)x + αβ = 0
i.e. x2
− Sx + P = 0 where S =Sum of the roots and P =Product of the
roots.
37. For an arithmetic progression (A.P.) whose first term is (a) and the common
difference is (d).
i) nth
term= tn = a + (n − 1)d
ii) The sum of the first (n) terms = Sn =
n
2
(a + l) =
n
2
{2a + (n − 1)d}
where l =last term= a + (n − 1)d.
38. For a geometric progression (G.P.) whose first term is (a) and common ratio
is (γ),
i) nth
term= tn = aγn−1
.
ii) The sum of the first (n) terms:
Sn =
a(1 − γn
)
1 − γ
ifγ < 1
=
a(γn
− 1)
γ − 1
if γ > 1
= na if γ = 1
.
39. For any sequence {tn}, Sn − Sn−1 = tn where Sn =Sum of the first (n)
terms.
40.
n
γ=1
γ = 1 + 2 + 3 + · · · + n =
n
2
(n + 1).
41.
n
γ=1
γ2
= 12
+ 22
+ 32
+ · · · + n2
=
n
6
(n + 1)(2n + 1).
3
42.
n
γ=1
γ3
= 13
+ 23
+ 33
+ 43
+ · · · + n3
=
n2
4
(n + 1)2
.
43. n! = (1).(2).(3). . . . .(n − 1).n.
44. n! = n(n − 1)! = n(n − 1)(n − 2)! = . . . . .
45. 0! = 1.
46. (a + b)n
= an
+ nan−1
b +
n(n − 1)
2!
an−2
b2
+
n(n − 1)(n − 2)
3!
an−3
b3
+ · · · +
bn
, n > 1.

More Related Content

PDF
Madhu maloti daake_aye
PDF
Mister No Libellus 104 - Neustrašivi.pdf
PDF
Quran with Tajwid Surah 85 ﴾القرآن سورۃ البروج﴿ Al-Burooj 🙪 PDF
PDF
Matriculation Degree
PDF
Onluqlar və təkliklər
PDF
Master's Degree Certificate In IS
PDF
114296843 la-bruja-bella-y-el-solitario
PDF
Animals' Names (males, females and young)
Madhu maloti daake_aye
Mister No Libellus 104 - Neustrašivi.pdf
Quran with Tajwid Surah 85 ﴾القرآن سورۃ البروج﴿ Al-Burooj 🙪 PDF
Matriculation Degree
Onluqlar və təkliklər
Master's Degree Certificate In IS
114296843 la-bruja-bella-y-el-solitario
Animals' Names (males, females and young)

What's hot (11)

PDF
Graduation Certificate
PDF
Quran with Tajwid Surah 114 ﴾القرآن سورۃ الناس﴿ An-Nas 🙪 PDF
PDF
UCT diploma
PDF
0099. Zagor Prica
PDF
computer 1st semester BSN mcqs with answer key,Educational Platform.pdf
PDF
Quran with Tajwid Surah 76 ﴾القرآن سورۃ الإنسان﴿ Al-Insan 🙪 PDF
PDF
Quran with Tajwid Surah 80 ﴾القرآن سورۃ عبس﴿ Abasa 🙪 PDF
PDF
Teaching Certificate
PDF
FSc Marksheet
PDF
MBA-Zubair
PDF
BA Degree
Graduation Certificate
Quran with Tajwid Surah 114 ﴾القرآن سورۃ الناس﴿ An-Nas 🙪 PDF
UCT diploma
0099. Zagor Prica
computer 1st semester BSN mcqs with answer key,Educational Platform.pdf
Quran with Tajwid Surah 76 ﴾القرآن سورۃ الإنسان﴿ Al-Insan 🙪 PDF
Quran with Tajwid Surah 80 ﴾القرآن سورۃ عبس﴿ Abasa 🙪 PDF
Teaching Certificate
FSc Marksheet
MBA-Zubair
BA Degree
Ad

Viewers also liked (12)

PPTX
Sullivant - Chapter 2.1pptx
PDF
Blogger (pdf)
PDF
Appunti java 1
PPTX
Come il software hr può aiutarti a coniugare approccio globale e peculiarità ...
PPT
Cultura valutazione
PDF
Marketing fundamentals 3
PDF
Stabilisation of Black cotton Soils by Using Groundnut Shell Ash
PDF
Marketing fundamentals 4
PDF
Appunti di Organizzazione aziendale: le forme organizzative
PPT
Neuro Critical Care
PPTX
Fundamentals Of Software Architecture
PDF
Thesis rice husk_ash
Sullivant - Chapter 2.1pptx
Blogger (pdf)
Appunti java 1
Come il software hr può aiutarti a coniugare approccio globale e peculiarità ...
Cultura valutazione
Marketing fundamentals 3
Stabilisation of Black cotton Soils by Using Groundnut Shell Ash
Marketing fundamentals 4
Appunti di Organizzazione aziendale: le forme organizzative
Neuro Critical Care
Fundamentals Of Software Architecture
Thesis rice husk_ash
Ad

Similar to Maths formula (20)

PDF
Form1hhhh
PDF
Formulas
PDF
Algebra formulae
PDF
Metrix[1]
PDF
Algebra formulas
PDF
Bt0063 mathematics fot it
DOC
Shahjahan notes:Mathematicsinphysicstheorysampleproblematc
PDF
f00a5f08-14cf-4f73-a749-f8e30a016fa4.pdf
PDF
ITA 2017 - aberta
PDF
Sample question paper 2 with solution
PDF
Class XII CBSE Mathematics Sample question paper with solution
PDF
Aieee 2003 maths solved paper by fiitjee
PDF
Maieee03
PDF
Notes and formulae mathematics
PDF
Mcq for manavsthali( 7 worksheets)
PDF
(Www.entrance exam.net)-sail placement sample paper 5
PDF
Form 5 Additional Maths Note
DOCX
Assessments for class xi
PDF
Sect3 7
PDF
Formule matematice cls. v viii
Form1hhhh
Formulas
Algebra formulae
Metrix[1]
Algebra formulas
Bt0063 mathematics fot it
Shahjahan notes:Mathematicsinphysicstheorysampleproblematc
f00a5f08-14cf-4f73-a749-f8e30a016fa4.pdf
ITA 2017 - aberta
Sample question paper 2 with solution
Class XII CBSE Mathematics Sample question paper with solution
Aieee 2003 maths solved paper by fiitjee
Maieee03
Notes and formulae mathematics
Mcq for manavsthali( 7 worksheets)
(Www.entrance exam.net)-sail placement sample paper 5
Form 5 Additional Maths Note
Assessments for class xi
Sect3 7
Formule matematice cls. v viii

Recently uploaded (20)

PDF
22EC502-MICROCONTROLLER AND INTERFACING-8051 MICROCONTROLLER.pdf
PPTX
Module 8- Technological and Communication Skills.pptx
PPTX
ASME PCC-02 TRAINING -DESKTOP-NLE5HNP.pptx
PPTX
Amdahl’s law is explained in the above power point presentations
PDF
A SYSTEMATIC REVIEW OF APPLICATIONS IN FRAUD DETECTION
PDF
Visual Aids for Exploratory Data Analysis.pdf
PDF
Exploratory_Data_Analysis_Fundamentals.pdf
PDF
BIO-INSPIRED HORMONAL MODULATION AND ADAPTIVE ORCHESTRATION IN S-AI-GPT
PPTX
Management Information system : MIS-e-Business Systems.pptx
PDF
Influence of Green Infrastructure on Residents’ Endorsement of the New Ecolog...
PDF
August 2025 - Top 10 Read Articles in Network Security & Its Applications
PDF
Design Guidelines and solutions for Plastics parts
PPTX
Fundamentals of Mechanical Engineering.pptx
PDF
Accra-Kumasi Expressway - Prefeasibility Report Volume 1 of 7.11.2018.pdf
PPTX
Feature types and data preprocessing steps
PDF
SMART SIGNAL TIMING FOR URBAN INTERSECTIONS USING REAL-TIME VEHICLE DETECTI...
PDF
Improvement effect of pyrolyzed agro-food biochar on the properties of.pdf
PPTX
Software Engineering and software moduleing
PDF
737-MAX_SRG.pdf student reference guides
PPTX
Graph Data Structures with Types, Traversals, Connectivity, and Real-Life App...
22EC502-MICROCONTROLLER AND INTERFACING-8051 MICROCONTROLLER.pdf
Module 8- Technological and Communication Skills.pptx
ASME PCC-02 TRAINING -DESKTOP-NLE5HNP.pptx
Amdahl’s law is explained in the above power point presentations
A SYSTEMATIC REVIEW OF APPLICATIONS IN FRAUD DETECTION
Visual Aids for Exploratory Data Analysis.pdf
Exploratory_Data_Analysis_Fundamentals.pdf
BIO-INSPIRED HORMONAL MODULATION AND ADAPTIVE ORCHESTRATION IN S-AI-GPT
Management Information system : MIS-e-Business Systems.pptx
Influence of Green Infrastructure on Residents’ Endorsement of the New Ecolog...
August 2025 - Top 10 Read Articles in Network Security & Its Applications
Design Guidelines and solutions for Plastics parts
Fundamentals of Mechanical Engineering.pptx
Accra-Kumasi Expressway - Prefeasibility Report Volume 1 of 7.11.2018.pdf
Feature types and data preprocessing steps
SMART SIGNAL TIMING FOR URBAN INTERSECTIONS USING REAL-TIME VEHICLE DETECTI...
Improvement effect of pyrolyzed agro-food biochar on the properties of.pdf
Software Engineering and software moduleing
737-MAX_SRG.pdf student reference guides
Graph Data Structures with Types, Traversals, Connectivity, and Real-Life App...

Maths formula

  • 1. MATHEMATICAL FORMULAE Algebra 1. (a + b)2 = a2 + 2ab + b2 ; a2 + b2 = (a + b)2 − 2ab 2. (a − b)2 = a2 − 2ab + b2 ; a2 + b2 = (a − b)2 + 2ab 3. (a + b + c)2 = a2 + b2 + c2 + 2(ab + bc + ca) 4. (a + b)3 = a3 + b3 + 3ab(a + b); a3 + b3 = (a + b)3 − 3ab(a + b) 5. (a − b)3 = a3 − b3 − 3ab(a − b); a3 − b3 = (a − b)3 + 3ab(a − b) 6. a2 − b2 = (a + b)(a − b) 7. a3 − b3 = (a − b)(a2 + ab + b2 ) 8. a3 + b3 = (a + b)(a2 − ab + b2 ) 9. an − bn = (a − b)(an−1 + an−2 b + an−3 b2 + · · · + bn−1 ) 10. an = a.a.a . . . n times 11. am .an = am+n 12. am an = am−n if m > n = 1 if m = n = 1 an−m if m < n; a ∈ R, a = 0 13. (am )n = amn = (an )m 14. (ab)n = an .bn 15. a b n = an bn 16. a0 = 1 where a ∈ R, a = 0 17. a−n = 1 an , an = 1 a−n 18. ap/q = q √ ap 19. If am = an and a = ±1, a = 0 then m = n 20. If an = bn where n = 0, then a = ±b 21. If √ x, √ y are quadratic surds and if a + √ x = √ y, then a = 0 and x = y 22. If √ x, √ y are quadratic surds and if a + √ x = b + √ y then a = b and x = y 23. If a, m, n are positive real numbers and a = 1, then loga mn = loga m+loga n 24. If a, m, n are positive real numbers, a = 1, then loga m n = loga m−loga n 25. If a and m are positive real numbers, a = 1 then loga mn = n loga m 26. If a, b and k are positive real numbers, b = 1, k = 1, then logb a = logk a logk b 27. logb a = 1 loga b where a, b are positive real numbers, a = 1, b = 1 28. if a, m, n are positive real numbers, a = 1 and if loga m = loga n, then m = n Typeset by AMS-TEX
  • 2. 2 29. if a + ib = 0 where i = √ −1, then a = b = 0 30. if a + ib = x + iy, where i = √ −1, then a = x and b = y 31. The roots of the quadratic equation ax2 +bx+c = 0; a = 0 are −b ± √ b2 − 4ac 2a The solution set of the equation is −b + √ ∆ 2a , −b − √ ∆ 2a where ∆ = discriminant = b2 − 4ac 32. The roots are real and distinct if ∆ > 0. 33. The roots are real and coincident if ∆ = 0. 34. The roots are non-real if ∆ < 0. 35. If α and β are the roots of the equation ax2 + bx + c = 0, a = 0 then i) α + β = −b a = − coeff. of x coeff. of x2 ii) α · β = c a = constant term coeff. of x2 36. The quadratic equation whose roots are α and β is (x − α)(x − β) = 0 i.e. x2 − (α + β)x + αβ = 0 i.e. x2 − Sx + P = 0 where S =Sum of the roots and P =Product of the roots. 37. For an arithmetic progression (A.P.) whose first term is (a) and the common difference is (d). i) nth term= tn = a + (n − 1)d ii) The sum of the first (n) terms = Sn = n 2 (a + l) = n 2 {2a + (n − 1)d} where l =last term= a + (n − 1)d. 38. For a geometric progression (G.P.) whose first term is (a) and common ratio is (γ), i) nth term= tn = aγn−1 . ii) The sum of the first (n) terms: Sn = a(1 − γn ) 1 − γ ifγ < 1 = a(γn − 1) γ − 1 if γ > 1 = na if γ = 1 . 39. For any sequence {tn}, Sn − Sn−1 = tn where Sn =Sum of the first (n) terms. 40. n γ=1 γ = 1 + 2 + 3 + · · · + n = n 2 (n + 1). 41. n γ=1 γ2 = 12 + 22 + 32 + · · · + n2 = n 6 (n + 1)(2n + 1).
  • 3. 3 42. n γ=1 γ3 = 13 + 23 + 33 + 43 + · · · + n3 = n2 4 (n + 1)2 . 43. n! = (1).(2).(3). . . . .(n − 1).n. 44. n! = n(n − 1)! = n(n − 1)(n − 2)! = . . . . . 45. 0! = 1. 46. (a + b)n = an + nan−1 b + n(n − 1) 2! an−2 b2 + n(n − 1)(n − 2) 3! an−3 b3 + · · · + bn , n > 1.