SlideShare a Scribd company logo
최 대 우 교수 / 센터장
한국외대 데이터시각화연구센터
DEEP & WIDE ANALYTICS
AdviceAnalytic Data Visualization Research Center
AdviceAnalytic Data Visualization Research Center
Neural Network Revisited – History of NN
2
AdviceAnalytic Data Visualization Research Center
History of Neural Network - 1943
3
Warren McCulloch Walter Pitts
• Input : Binary
• weights : designed
• Output : 0 or 1
AdviceAnalytic Data Visualization Research Center
History of Neural Network - 1957
4
• Input : real-valued
• weights : learning
• Output : 0 or 1
Frank Rosenblatt
AdviceAnalytic Data Visualization Research Center
History of Neural Network - 1969
5
• Perceptron can’t do XOR!
• Need multi-layer perceptron
Minsky & Papert
AdviceAnalytic Data Visualization Research Center
History of Neural Network - 1986
6
• Backpropagation of errors
• Methods for training multilayer network
David Rumelhart
AdviceAnalytic Data Visualization Research Center
Theoretical Background of Neural Network
7
• 수학 문제 23개로, 독일의 수학자인 David Hilbert 가 1900년 프랑스 파리에서 열
린 세계 수학자 대회에서 20세기에 풀어야 할 가장 중요한 문제로 제안한 것임
• 세계 수학자 대회에서 Hilbert는 10문제(1, 2, 6, 7, 8, 13, 16, 19, 21, 22)를 공개했
고, 나중에 모든 문제가 출판되었음
Hilbert’s Problem
David Hilbert
AdviceAnalytic Data Visualization Research Center
Theoretical Background of Neural Network
8
Andrey Kolmogorov
AdviceAnalytic Data Visualization Research Center
Neural Network – Universal Approximator
9
Kolmogorov (1963)
AdviceAnalytic Data Visualization Research Center
Neural Network – Universal Approximator
10
6 + A - 2B +3C
A
B
C
Kolmogorov (1963)
AdviceAnalytic Data Visualization Research Center
Dark Age of NN
11
Warren McCulloch Walter Pitts Frank Rosenblatt
Minsky & Papert
David Rumelhart
1900 1943 1957 1963 1969 1986
Andrey Kolmogorov
 Overfitting
 Local minima
 Heavy computing
 Too many tuning parameters…
AdviceAnalytic Data Visualization Research Center
KSF in Deep Learning
12
 Overfitting
 Local minima
 Heavy computing
 Too many tuning parameters…
 Autoencoder
 Drop-out
 GPU
 Big Data
AdviceAnalytic Data Visualization Research Center
KSF in Deep Learning
13
J.H. Friedman
Projection Pursuit
Regression & Classification
Leo Breiman
Radom Forest
AdviceAnalytic Data Visualization Research Center
Big Change in Analytics – Deep and Wide
14
Wide
(more features)
Wide
(more cases)
Deep
(more thinking)
AdviceAnalytic Data Visualization Research Center
Big Change in Analytics – Deep and Wide with ensemble
15
AdviceAnalytic Data Visualization Research Center
Future: Big Data = Zero Optimism
16
• Test error = Training error + Optimism
• = # of parameters
• = # training cases
• = # models considered
N
p
2Optimism 
N
Mlog
~
p
N
M
AdviceAnalytic Data Visualization Research Center
Future: Reinforcement Learning
17
Agent
Environment
reward
State
Action
Policy
Value
감사합니다

More Related Content

PDF
An Introduction to Neural Architecture Search
PDF
20160203_마인즈랩_딥러닝세미나_03 the game changer 딥러닝 유태준대표
PDF
20160203_마인즈랩_딥러닝세미나_05 딥러닝 자연어처리와 분류엔진 황이규박사
PDF
20160203_마인즈랩_딥러닝세미나_09 사물인터넷 홈오토메이션허브 박성준부사장
PDF
20160203_마인즈랩_딥러닝세미나_07 머신러닝 기반 고객 이탈 분석 유태준대표
PDF
20160203_마인즈랩_딥러닝세미나_06 딥러닝 뉴스 이미지 분류엔진의 광고 활용 김종진대표님
PDF
20160203_마인즈랩_딥러닝세미나_10 voc 매니지드서비스 김동수상무 20160203
PPTX
머신러닝의 자연어 처리기술(I)
An Introduction to Neural Architecture Search
20160203_마인즈랩_딥러닝세미나_03 the game changer 딥러닝 유태준대표
20160203_마인즈랩_딥러닝세미나_05 딥러닝 자연어처리와 분류엔진 황이규박사
20160203_마인즈랩_딥러닝세미나_09 사물인터넷 홈오토메이션허브 박성준부사장
20160203_마인즈랩_딥러닝세미나_07 머신러닝 기반 고객 이탈 분석 유태준대표
20160203_마인즈랩_딥러닝세미나_06 딥러닝 뉴스 이미지 분류엔진의 광고 활용 김종진대표님
20160203_마인즈랩_딥러닝세미나_10 voc 매니지드서비스 김동수상무 20160203
머신러닝의 자연어 처리기술(I)

Viewers also liked (20)

PDF
마인즈랩 회사소개서 V1.5
PPTX
딥러닝을 이용한 자연어처리의 연구동향
PDF
마인즈랩 회사소개서 V2.3_한국어버전
PDF
[F2]자연어처리를 위한 기계학습 소개
PDF
인공지능 발전이 가져올 2030년의 삶
PPTX
인공지능, 기계학습 그리고 딥러닝
PPTX
기계학습 / 딥러닝이란 무엇인가
PPT
大榮蛹蟲草20130910
PPTX
Explanation on Tensorflow example -Deep mnist for expert
PPTX
인공지능
PPTX
MNIST for ML beginners
PDF
제2회 오픈 로보틱스 세미나 (제8세션 로봇 운영체제 ROS 개론)
PDF
MindsLab "Enterprise AI Solution Company"
PDF
20160414 ROS 2차 강의 (for 아스라다 팀)
PPTX
빅데이터와 로봇 (Big Data in Robotics)
PDF
인공지능, 자동화, 그리고 경제
PPTX
1605인공지능이란
PDF
AWS를 이용한 실시간 유동인구 데이터 처리 아키텍처 - ZEROWEB
PDF
AWS Step Functions를 이용한 마이크로서비스 개발하기 - 김현민 (4CSoft)
마인즈랩 회사소개서 V1.5
딥러닝을 이용한 자연어처리의 연구동향
마인즈랩 회사소개서 V2.3_한국어버전
[F2]자연어처리를 위한 기계학습 소개
인공지능 발전이 가져올 2030년의 삶
인공지능, 기계학습 그리고 딥러닝
기계학습 / 딥러닝이란 무엇인가
大榮蛹蟲草20130910
Explanation on Tensorflow example -Deep mnist for expert
인공지능
MNIST for ML beginners
제2회 오픈 로보틱스 세미나 (제8세션 로봇 운영체제 ROS 개론)
MindsLab "Enterprise AI Solution Company"
20160414 ROS 2차 강의 (for 아스라다 팀)
빅데이터와 로봇 (Big Data in Robotics)
인공지능, 자동화, 그리고 경제
1605인공지능이란
AWS를 이용한 실시간 유동인구 데이터 처리 아키텍처 - ZEROWEB
AWS Step Functions를 이용한 마이크로서비스 개발하기 - 김현민 (4CSoft)
Ad

Similar to 20160203_마인즈랩_딥러닝세미나_02 deep and wide analytics 최대우교수님 (20)

PDF
Deep Learning and Tensorflow Implementation(딥러닝, 텐서플로우, 파이썬, CNN)_Myungyon Ki...
PPTX
iT Cafe - Generative Adversarial Network(GAN)
PDF
Neural Networks and Deep Learning for Physicists
PPTX
Introduction to artificial neural network.pptx
PDF
Introduction to deep learning
PPTX
iT Cafe - OT & The first approach to Deep Learning
PPTX
Deep learning lecture - part 1 (basics, CNN)
PDF
[PR12] understanding deep learning requires rethinking generalization
PDF
[IJET V2I2P20] Authors: Dr. Sanjeev S Sannakki, Ms.Anjanabhargavi A Kulkarni
PPTX
Neural network
PDF
Training machine learning deep learning 2017
PDF
Introduction to Neural Networks - Perceptron
PDF
Artificial Neural Networks.pdf
PPTX
chap4_ann (5).pptx
PDF
오토인코더의 모든 것
PDF
MLIP - Chapter 2 - Preliminaries to deep learning
PDF
Lecture 5: Neural Networks II
PDF
Intro to Neural Networks
PDF
Interpretability and informatics of deep learning in medical images3
Deep Learning and Tensorflow Implementation(딥러닝, 텐서플로우, 파이썬, CNN)_Myungyon Ki...
iT Cafe - Generative Adversarial Network(GAN)
Neural Networks and Deep Learning for Physicists
Introduction to artificial neural network.pptx
Introduction to deep learning
iT Cafe - OT & The first approach to Deep Learning
Deep learning lecture - part 1 (basics, CNN)
[PR12] understanding deep learning requires rethinking generalization
[IJET V2I2P20] Authors: Dr. Sanjeev S Sannakki, Ms.Anjanabhargavi A Kulkarni
Neural network
Training machine learning deep learning 2017
Introduction to Neural Networks - Perceptron
Artificial Neural Networks.pdf
chap4_ann (5).pptx
오토인코더의 모든 것
MLIP - Chapter 2 - Preliminaries to deep learning
Lecture 5: Neural Networks II
Intro to Neural Networks
Interpretability and informatics of deep learning in medical images3
Ad

More from Taejoon Yoo (20)

PDF
[WoRV] maumAI E2E Autonomous driving AI module
PDF
[MAAL] maumAI On-premise LLM (Large Language Model)
PDF
[SUDA] maumAI On-device AI (STT-LLM-TTS)
PDF
[maum.ai] 3 Foundation model based Embodied AI products_En V1.0
PDF
[maum.ai] 3 Foundation model based Embodied AI products_Kor V1.0
PDF
[MINDsLab]maum.ai platform_Introduction_20230220.pdf
PDF
[MindsLab] company introduction(2020)_ko_with videos
PDF
[MindsLab] company introduction(2020)_en_no videos
PDF
maum.ai service guide
PDF
EcoMINDs_introduction_20200306
PDF
Introduction of maumai the AIaaS platform
PDF
[Mindslab] Success stories and use cases of artificial intelligence of MindsLab.
PDF
[Minds lab] company introduction 20190131
PDF
[MindsLab] Company introduction_2019_summary
PDF
MindsEDU_ai_english_study_proposal
PDF
MindsLab_ai_chatbot_banking_Performance_181130
PDF
인공지능 컨택센터 서비스 'FAST'
PDF
'FAST' Ai based Contact Center
PDF
[MindsLab] company intro 201711
PDF
[마인즈랩] 마음아카데미 소개서 201707
[WoRV] maumAI E2E Autonomous driving AI module
[MAAL] maumAI On-premise LLM (Large Language Model)
[SUDA] maumAI On-device AI (STT-LLM-TTS)
[maum.ai] 3 Foundation model based Embodied AI products_En V1.0
[maum.ai] 3 Foundation model based Embodied AI products_Kor V1.0
[MINDsLab]maum.ai platform_Introduction_20230220.pdf
[MindsLab] company introduction(2020)_ko_with videos
[MindsLab] company introduction(2020)_en_no videos
maum.ai service guide
EcoMINDs_introduction_20200306
Introduction of maumai the AIaaS platform
[Mindslab] Success stories and use cases of artificial intelligence of MindsLab.
[Minds lab] company introduction 20190131
[MindsLab] Company introduction_2019_summary
MindsEDU_ai_english_study_proposal
MindsLab_ai_chatbot_banking_Performance_181130
인공지능 컨택센터 서비스 'FAST'
'FAST' Ai based Contact Center
[MindsLab] company intro 201711
[마인즈랩] 마음아카데미 소개서 201707

Recently uploaded (20)

PDF
sustainability-14-14877-v2.pddhzftheheeeee
PPT
What is a Computer? Input Devices /output devices
PPTX
The various Industrial Revolutions .pptx
PDF
Five Habits of High-Impact Board Members
PPTX
observCloud-Native Containerability and monitoring.pptx
PDF
Getting started with AI Agents and Multi-Agent Systems
PPTX
Tartificialntelligence_presentation.pptx
PDF
Transform Your ITIL® 4 & ITSM Strategy with AI in 2025.pdf
PDF
DP Operators-handbook-extract for the Mautical Institute
PDF
WOOl fibre morphology and structure.pdf for textiles
PPTX
Benefits of Physical activity for teenagers.pptx
PDF
1 - Historical Antecedents, Social Consideration.pdf
PPTX
Modernising the Digital Integration Hub
PDF
DASA ADMISSION 2024_FirstRound_FirstRank_LastRank.pdf
PDF
A comparative study of natural language inference in Swahili using monolingua...
PPT
Geologic Time for studying geology for geologist
PDF
NewMind AI Weekly Chronicles – August ’25 Week III
PDF
Hybrid model detection and classification of lung cancer
PDF
ENT215_Completing-a-large-scale-migration-and-modernization-with-AWS.pdf
PDF
Video forgery: An extensive analysis of inter-and intra-frame manipulation al...
sustainability-14-14877-v2.pddhzftheheeeee
What is a Computer? Input Devices /output devices
The various Industrial Revolutions .pptx
Five Habits of High-Impact Board Members
observCloud-Native Containerability and monitoring.pptx
Getting started with AI Agents and Multi-Agent Systems
Tartificialntelligence_presentation.pptx
Transform Your ITIL® 4 & ITSM Strategy with AI in 2025.pdf
DP Operators-handbook-extract for the Mautical Institute
WOOl fibre morphology and structure.pdf for textiles
Benefits of Physical activity for teenagers.pptx
1 - Historical Antecedents, Social Consideration.pdf
Modernising the Digital Integration Hub
DASA ADMISSION 2024_FirstRound_FirstRank_LastRank.pdf
A comparative study of natural language inference in Swahili using monolingua...
Geologic Time for studying geology for geologist
NewMind AI Weekly Chronicles – August ’25 Week III
Hybrid model detection and classification of lung cancer
ENT215_Completing-a-large-scale-migration-and-modernization-with-AWS.pdf
Video forgery: An extensive analysis of inter-and intra-frame manipulation al...

20160203_마인즈랩_딥러닝세미나_02 deep and wide analytics 최대우교수님

  • 1. 최 대 우 교수 / 센터장 한국외대 데이터시각화연구센터 DEEP & WIDE ANALYTICS AdviceAnalytic Data Visualization Research Center
  • 2. AdviceAnalytic Data Visualization Research Center Neural Network Revisited – History of NN 2
  • 3. AdviceAnalytic Data Visualization Research Center History of Neural Network - 1943 3 Warren McCulloch Walter Pitts • Input : Binary • weights : designed • Output : 0 or 1
  • 4. AdviceAnalytic Data Visualization Research Center History of Neural Network - 1957 4 • Input : real-valued • weights : learning • Output : 0 or 1 Frank Rosenblatt
  • 5. AdviceAnalytic Data Visualization Research Center History of Neural Network - 1969 5 • Perceptron can’t do XOR! • Need multi-layer perceptron Minsky & Papert
  • 6. AdviceAnalytic Data Visualization Research Center History of Neural Network - 1986 6 • Backpropagation of errors • Methods for training multilayer network David Rumelhart
  • 7. AdviceAnalytic Data Visualization Research Center Theoretical Background of Neural Network 7 • 수학 문제 23개로, 독일의 수학자인 David Hilbert 가 1900년 프랑스 파리에서 열 린 세계 수학자 대회에서 20세기에 풀어야 할 가장 중요한 문제로 제안한 것임 • 세계 수학자 대회에서 Hilbert는 10문제(1, 2, 6, 7, 8, 13, 16, 19, 21, 22)를 공개했 고, 나중에 모든 문제가 출판되었음 Hilbert’s Problem David Hilbert
  • 8. AdviceAnalytic Data Visualization Research Center Theoretical Background of Neural Network 8 Andrey Kolmogorov
  • 9. AdviceAnalytic Data Visualization Research Center Neural Network – Universal Approximator 9 Kolmogorov (1963)
  • 10. AdviceAnalytic Data Visualization Research Center Neural Network – Universal Approximator 10 6 + A - 2B +3C A B C Kolmogorov (1963)
  • 11. AdviceAnalytic Data Visualization Research Center Dark Age of NN 11 Warren McCulloch Walter Pitts Frank Rosenblatt Minsky & Papert David Rumelhart 1900 1943 1957 1963 1969 1986 Andrey Kolmogorov  Overfitting  Local minima  Heavy computing  Too many tuning parameters…
  • 12. AdviceAnalytic Data Visualization Research Center KSF in Deep Learning 12  Overfitting  Local minima  Heavy computing  Too many tuning parameters…  Autoencoder  Drop-out  GPU  Big Data
  • 13. AdviceAnalytic Data Visualization Research Center KSF in Deep Learning 13 J.H. Friedman Projection Pursuit Regression & Classification Leo Breiman Radom Forest
  • 14. AdviceAnalytic Data Visualization Research Center Big Change in Analytics – Deep and Wide 14 Wide (more features) Wide (more cases) Deep (more thinking)
  • 15. AdviceAnalytic Data Visualization Research Center Big Change in Analytics – Deep and Wide with ensemble 15
  • 16. AdviceAnalytic Data Visualization Research Center Future: Big Data = Zero Optimism 16 • Test error = Training error + Optimism • = # of parameters • = # training cases • = # models considered N p 2Optimism  N Mlog ~ p N M
  • 17. AdviceAnalytic Data Visualization Research Center Future: Reinforcement Learning 17 Agent Environment reward State Action Policy Value