create a website

Data-driven capacity estimation for lithium-ion batteries with feature matching based transfer learning method. (2024). Zhang, Xuan ; Fu, Shiyi ; Tao, Shengyu ; He, Kun ; Zuo, Junxiong ; Fan, Hongtao ; Wang, YU ; Sun, Yaojie ; Liu, Xutao.
In: Applied Energy.
RePEc:eee:appene:v:353:y:2024:i:pa:s0306261923013557.

Full description at Econpapers || Download paper

Cited: 14

Citations received by this document

Cites: 47

References cited by this document

Cocites: 25

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. Big data-driven prognostics and health management of lithium-ion batteries:A review. (2025). Xin, Dongli ; Liu, Kai ; Wu, Guangning ; Gao, Guoqiang ; Long, Zhou ; Luo, Yang ; Chen, Kui ; Nie, Guangbo.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:214:y:2025:i:c:s1364032125001959.

    Full description at Econpapers || Download paper

  2. State of health estimation for lithium-ion batteries based on optimal feature subset algorithm. (2025). Wang, Haitao ; Sun, Jing.
    In: Energy.
    RePEc:eee:energy:v:322:y:2025:i:c:s0360544225013271.

    Full description at Econpapers || Download paper

  3. Deep learning-driven estimation and multi-objective optimization of lithium-ion battery parameters for enhanced EV/HEV performance. (2025). Oubelaid, Adel ; Khosravi, Nima.
    In: Energy.
    RePEc:eee:energy:v:320:y:2025:i:c:s0360544225007893.

    Full description at Econpapers || Download paper

  4. An innovative multitask learning - Long short-term memory neural network for the online anti-aging state of charge estimation of lithium-ion batteries adaptive to varying temperature and current conditions. (2025). Wang, Shunli ; Tao, Junjie ; Cheng, Liangwei ; Blaabjerg, Frede ; Fernandez, Carlos ; Cao, Wen.
    In: Energy.
    RePEc:eee:energy:v:314:y:2025:i:c:s0360544224040507.

    Full description at Econpapers || Download paper

  5. A Bayesian transfer learning framework for assessing health status of Lithium-ion batteries considering individual battery operating states. (2025). Mao, Lei ; Zhang, Jiarui ; Hu, Zhiyong ; Yu, Kun ; Liu, Zhongyong.
    In: Applied Energy.
    RePEc:eee:appene:v:382:y:2025:i:c:s0306261924026448.

    Full description at Econpapers || Download paper

  6. Community shared ES-PV system for managing electric vehicle loads via multi-agent reinforcement learning. (2025). Fu, Shiyi ; Talihati, Baligen ; Sun, Yaojie ; Wang, YU ; Zhao, Yuqing ; Zhang, Bowen.
    In: Applied Energy.
    RePEc:eee:appene:v:380:y:2025:i:c:s0306261924024231.

    Full description at Econpapers || Download paper

  7. Flexible health prognosis of battery nonlinear aging using temporal transfer learning. (2025). Zhu, Jianxiong ; Stein, Helge S ; Zhang, Zhisheng ; Ji, Shanling.
    In: Applied Energy.
    RePEc:eee:appene:v:377:y:2025:i:pd:s0306261924021494.

    Full description at Econpapers || Download paper

  8. Generative learning assisted state-of-health estimation for sustainable battery recycling with random retirement conditions. (2024). Cao, Tingwei ; Chang, Heng ; Ji, Haocheng ; Tao, Shengyu ; Ma, Ruifei ; Lu, Minyan ; Zhou, Guangmin ; Yang, Huixiong ; Xu, Tingyang ; Zhao, Zixi ; Wen, Zongguo ; Yao, Jianhua ; Su, Lin ; Yu, Rong ; Chen, Yuou ; Wei, Guodan ; Liu, Haizhou ; Liang, Zheng ; Zhang, Xuan.
    In: Nature Communications.
    RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54454-0.

    Full description at Econpapers || Download paper

  9. An adaptive and interpretable SOH estimation method for lithium-ion batteries based-on relaxation voltage cross-scale features and multi-LSTM-RFR2. (2024). Miao, Qiang ; Zhang, Heng ; Lyu, Guangzheng.
    In: Energy.
    RePEc:eee:energy:v:304:y:2024:i:c:s0360544224019418.

    Full description at Econpapers || Download paper

  10. Probabilistic neural network-based flexible estimation of lithium-ion battery capacity considering multidimensional charging habits. (2024). Li, Qingbo ; Zhong, Jun ; Du, Jinqiao ; Xie, Jingying ; Tian, Jie ; Lai, Chunyan ; Yi, Yong ; Lu, Taolin.
    In: Energy.
    RePEc:eee:energy:v:294:y:2024:i:c:s0360544224006534.

    Full description at Econpapers || Download paper

  11. Capacity prediction of lithium-ion batteries with fusing aging information. (2024). Sun, Xiaoyan ; Tang, Shengjin ; Ouyang, Minggao ; Lu, Languang ; Wang, Fengfei ; Yu, Chuanqiang ; Han, Xuebing.
    In: Energy.
    RePEc:eee:energy:v:293:y:2024:i:c:s0360544224005152.

    Full description at Econpapers || Download paper

  12. Feature-enhanced deep learning method for electric vehicle charging demand probabilistic forecasting of charging station. (2024). Xu, Yinliang ; Tang, Wenjun ; Cao, Tingwei ; Tao, Shengyu ; Sun, Hongbin ; Liu, Guowei.
    In: Applied Energy.
    RePEc:eee:appene:v:371:y:2024:i:c:s0306261924011346.

    Full description at Econpapers || Download paper

  13. Binary multi-frequency signal for accurate and rapid electrochemical impedance spectroscopy acquisition in lithium-ion batteries. (2024). Cao, Tingwei ; Fu, Shiyi ; Tao, Shengyu ; Ma, Ruifei ; Zuo, Junxiong ; Fan, Hongtao ; Wang, YU ; Sun, Yaojie ; Liu, Xutao ; Zhang, Xuan.
    In: Applied Energy.
    RePEc:eee:appene:v:364:y:2024:i:c:s0306261924006044.

    Full description at Econpapers || Download paper

  14. Collaborative and privacy-preserving retired battery sorting for profitable direct recycling via federated machine learning. (2023). Wang, YU ; Ji, Haocheng ; Rong, YU ; Liu, Haizhou ; Chen, Yuou ; Sun, Yaojie ; Zhou, Guangmin ; Zhang, Xuan ; Fu, Shiyi ; Tao, Shengyu ; Gao, Runhua ; Ma, Ruifei.
    In: Nature Communications.
    RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43883-y.

    Full description at Econpapers || Download paper

References

References cited by this document

  1. Antônio Rufino Júnior, C. ; Riva Sanseverino, E. ; Gallo, P. ; Koch, D. ; Kotak, Y. ; Schweiger, H.-G. Towards a business model for second-life batteries – barriers, opportunities, uncertainties, and technologies. 2023 J Energy Chem. 78 507-525
    Paper not yet in RePEc: Add citation now
  2. Benesty, J. ; Chen, J. ; Huang, Y. ; Cohen, I. Pearson correlation coefficient. 2009 En : Cohen, I. ; Huang, Y. ; Chen, J. ; Benesty, J. Noise reduction in speech processing. Springer Berlin Heidelberg: Berlin, Heidelberg
    Paper not yet in RePEc: Add citation now
  3. Birkl, C. Diagnosis and prognosis of degradation in lithium-ion batteries. 2017 University of Oxford:
    Paper not yet in RePEc: Add citation now
  4. Blomgren, G.E. The development and future of lithium ion batteries. 2017 J Electrochem Soc. 164 A5019-
    Paper not yet in RePEc: Add citation now
  5. Burgess, W.L. Valve regulated lead acid battery float service life estimation using a Kalman filter. 2009 J Power Sources. 191 16-21
    Paper not yet in RePEc: Add citation now
  6. Che, Y. ; Deng, Z. ; Li, P. ; Tang, X. ; Khosravinia, K. ; Lin, X. State of health prognostics for series battery packs: a universal deep learning method. 2022 ENERGY.. 238 -

  7. Chen, S.X. ; Tseng, K.J. ; Choi, S.S. Modeling of lithium-ion battery for energy storage system simulation. 2009 En : 2009 Asia-Pacific power and energy engineering conference. :
    Paper not yet in RePEc: Add citation now
  8. Chen, W. ; Liang, J. ; Yang, Z. ; Li, G. A review of lithium-ion battery for electric vehicle applications and beyond. 2019 Energy Procedia. 158 4363-4368
    Paper not yet in RePEc: Add citation now
  9. Chen, Y. ; Kang, Y. ; Zhao, Y. ; Wang, L. ; Liu, J. ; Li, Y. A review of lithium-ion battery safety concerns: the issues, strategies, and testing standards. 2021 J Energy Chem. 59 83-99
    Paper not yet in RePEc: Add citation now
  10. Cheng, C. ; Ma, G. ; Zhang, Y. ; Sun, M. ; Teng, F. ; Ding, H. A deep learning-based remaining useful life prediction approach for bearings. 2020 IEEE/ASME Trans Mechatron. 25 1243-1254
    Paper not yet in RePEc: Add citation now
  11. Dai, H. ; Jiang, B. ; Hu, X. ; Lin, X. ; Wei, X. ; Pecht, M. Advanced battery management strategies for a sustainable energy future: multilayer design concepts and research trends. 2021 Renew Sustain Energy Rev. 138 110480-

  12. Doyle, M. ; Fuller, T.F. ; Newman, J. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell. 1993 J Electrochem Soc. 140 1526-
    Paper not yet in RePEc: Add citation now
  13. Duh, Y.-S. ; Lin, K.H. ; Kao, C.-S. Experimental investigation and visualization on thermal runaway of hard prismatic lithium-ion batteries used in smart phones. 2018 J Therm Anal Calorim. 132 1677-1692
    Paper not yet in RePEc: Add citation now
  14. He, K. ; Tao, S. ; Fu, S. ; Fan, H. ; Tao, Y. ; Wang, Y. A novel quick screening method for the second usage of parallel-connected lithium-ion cells based on the current distribution. 2023 J Electrochem Soc. 170 -
    Paper not yet in RePEc: Add citation now
  15. Horesh, N. ; Quinn, C. ; Wang, H. ; Zane, R. ; Ferry, M. ; Tong, S. Driving to the future of energy storage: techno-economic analysis of a novel method to recondition second life electric vehicle batteries. 2021 Appl Energy. 295 -

  16. Hu, X. ; Jiang, H. ; Feng, F. ; Liu, B. An enhanced multi-state estimation hierarchy for advanced lithium-ion battery management. 2020 Appl Energy. 257 -

  17. Hu, X. ; Yuan, H. ; Zou, C. ; Li, Z. ; Zhang, L. Co-estimation of state of charge and state of health for lithium-ion batteries based on fractional-order calculus. 2018 IEEE Trans Veh Technol. 67 10319-10329
    Paper not yet in RePEc: Add citation now
  18. Jiang, B. ; Zhu, Y. ; Zhu, J. ; Wei, X. ; Dai, H. An adaptive capacity estimation approach for lithium-ion battery using 10-min relaxation voltage within high state of charge range. 2023 Energy.. 263 125802-

  19. Kim, S.W. ; Oh, K.Y. ; Lee, S. Novel informed deep learning-based prognostics framework for on-board health monitoring of lithium-ion batteries. 2022 Appl Energy. 315 -

  20. Li, L. ; Li, Y. ; Cui, W. ; Chen, Z. ; Wang, D. ; Zhou, B. A novel health indicator for online health estimation of lithium-ion batteries using partial incremental capacity and dynamic voltage warping. 2022 J Power Sources. 545 -
    Paper not yet in RePEc: Add citation now
  21. Li, X. ; Jiang, J. ; Wang, L.Y. ; Chen, D. ; Zhang, Y. ; Zhang, C. A capacity model based on charging process for state of health estimation of lithium ion batteries. 2016 Appl Energy. 177 537-543

  22. Li, X. ; Yuan, C. ; Li, X. ; Wang, Z. State of health estimation for Li-ion battery using incremental capacity analysis and Gaussian process regression. 2020 Energy.. 190 -

  23. Li, X. ; Yuan, C. ; Wang, Z. State of health estimation for Li-ion battery via partial incremental capacity analysis based on support vector regression. 2020 Energy.. 203 -

  24. Li, Y. ; Li, K. ; Liu, X. ; Li, X. ; Zhang, L. ; Rente, B. A hybrid machine learning framework for joint SOC and SOH estimation of lithium-ion batteries assisted with fiber sensor measurements. 2022 Appl Energy. 325 -

  25. Li, Y. ; Li, K. ; Liu, X. ; Wang, Y. ; Zhang, L. Lithium-ion battery capacity estimation — a pruned convolutional neural network approach assisted with transfer learning. 2021 Appl Energy. 285 -

  26. Liu, K. ; Peng, Q. ; Che, Y. ; Zheng, Y. ; Li, K. ; Teodorescu, R. Transfer learning for battery smarter state estimation and ageing prognostics: recent progress, challenges, and prospects. 2023 Adv Appl Energy. 9 100117-
    Paper not yet in RePEc: Add citation now
  27. Lombardo, T. ; Duquesnoy, M. ; El-Bouysidy, H. ; Aren, F. ; Gallo-Bueno, A. ; Jorgensen, P.B. Artificial intelligence applied to battery research: hype or reality?. 2022 Chem Rev. 122 10899-10969
    Paper not yet in RePEc: Add citation now
  28. Luo, K. ; Chen, X. ; Zheng, H. ; Shi, Z. A review of deep learning approach to predicting the state of health and state of charge of lithium-ion batteries. 2022 J Energy Chem. 74 159-173
    Paper not yet in RePEc: Add citation now
  29. Ma, G. ; Xu, S. ; Jiang, B. ; Cheng, C. ; Yang, X. ; Shen, Y. Real-time personalized health status prediction of lithium-ion batteries using deep transfer learning. 2022 Energ Environ Sci. 15 4083-4094
    Paper not yet in RePEc: Add citation now
  30. Ma, G. ; Xu, S. ; Yang, T. ; Du, Z. ; Zhu, L. ; Ding, H. A transfer learning-based method for personalized state of health estimation of lithium-ion batteries. 2022 IEEE Trans Neural Networks Learn Syst. 1-11
    Paper not yet in RePEc: Add citation now
  31. Ma, J. ; Xu, S. ; Shang, P. ; Ding, Y. ; Qin, W. ; Cheng, Y. Cycle life test optimization for different Li-ion power battery formulations using a hybrid remaining-useful-life prediction method. 2020 Appl Energy. 262 114490-

  32. Montavon, G. ; Samek, W. ; Müller, K.-R. Methods for interpreting and understanding deep neural networks. 2018 Digit Signal Process. 73 1-15
    Paper not yet in RePEc: Add citation now
  33. Pang, X. ; Zhong, S. ; Wang, Y. ; Yang, W. ; Zheng, W. ; Sun, G. A review on the prediction of health state and serving life of lithium-ion batteries. 2022 Chem Rec. 22 e202200131-
    Paper not yet in RePEc: Add citation now
  34. Ran, A. ; Liang, Z. ; Chen, S. ; Cheng, M. ; Sun, C. ; Ma, F. Fast clustering of retired lithium-ion batteries for secondary life with a two-step learning method. 2022 ACS Energy Lett. 7 3817-3825
    Paper not yet in RePEc: Add citation now
  35. Ruan, H. ; Wei, Z. ; Shang, W. ; Wang, X. ; He, H. Artificial intelligence-based health diagnostic of Lithium-ion battery leveraging transient stage of constant current and constant voltage charging. 2023 Appl Energy. 336 -

  36. Saxena, S. ; Hendricks, C. ; Pecht, M. Cycle life testing and modeling of graphite/LiCoO2 cells under different state of charge ranges. 2016 J Power Sources. 327 394-400
    Paper not yet in RePEc: Add citation now
  37. Schmalstieg, J. ; Käbitz, S. ; Ecker, M. ; Sauer, D.U. A holistic aging model for Li(NiMnCo)O2 based 18650 lithium-ion batteries. 2014 J Power Sources. 257 325-334
    Paper not yet in RePEc: Add citation now
  38. Tan, Y. ; Zhao, G. Transfer learning with long short-term memory network for state-of-health prediction of lithium-ion batteries. 2020 IEEE Trans Ind Electron. 67 8723-8731
    Paper not yet in RePEc: Add citation now
  39. Tang, X. ; Liu, K. ; Wang, X. ; Liu, B. ; Gao, F. ; Widanage, W.D. Real-time aging trajectory prediction using a base model-oriented gradient-correction particle filter for Lithium-ion batteries. 2019 J Power Sources. 440 227118-
    Paper not yet in RePEc: Add citation now
  40. Tao, S. ; Sun, C. ; Fu, S. ; Wang, Y. ; Ma, R. ; Han, Z. Battery cross-operation-condition lifetime prediction via interpretable feature engineering assisted adaptive machine learning. 2023 ACS Energy Lett. 3269-3279
    Paper not yet in RePEc: Add citation now
  41. Tian, H. ; Qin, P. ; Li, K. ; Zhao, Z. A review of the state of health for lithium-ion batteries: research status and suggestions. 2020 J Clean Prod. 261 120813-
    Paper not yet in RePEc: Add citation now
  42. Wang, Y. ; Tian, J. ; Sun, Z. ; Wang, L. ; Xu, R. ; Li, M. A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems. 2020 Renew Sustain Energy Rev. 131 -

  43. Wassiliadis, N. ; Adermann, J. ; Frericks, A. ; Pak, M. ; Reiter, C. ; Lohmann, B. Revisiting the dual extended Kalman filter for battery state-of-charge and state-of-health estimation: a use-case life cycle analysis. 2018 J Energy Storage. 19 73-87
    Paper not yet in RePEc: Add citation now
  44. Weng, C. ; Feng, X. ; Sun, J. ; Peng, H. State-of-health monitoring of lithium-ion battery modules and packs via incremental capacity peak tracking. 2016 Appl Energy. 180 360-368

  45. Yang, F. ; Song, X. ; Dong, G. ; Tsui, K.-L. A coulombic efficiency-based model for prognostics and health estimation of lithium-ion batteries. 2019 Energy.. 171 1173-1182

  46. Yang, S. ; Zhang, C. ; Jiang, J. ; Zhang, W. ; Zhang, L. ; Wang, Y. Review on state-of-health of lithium-ion batteries: characterizations, estimations and applications. 2021 J Clean Prod. 314 128015-
    Paper not yet in RePEc: Add citation now
  47. Zhu, J. ; Wang, Y. ; Huang, Y. ; Bhushan Gopaluni, R. ; Cao, Y. ; Heere, M. Data-driven capacity estimation of commercial lithium-ion batteries from voltage relaxation. 2022 Nat Commun. 13 1-10

Cocites

Documents in RePEc which have cited the same bibliography

  1. Multi-modal framework for battery state of health evaluation using open-source electric vehicle data. (2025). Li, Chang ; Liu, Hongao ; Song, Ziyou ; Wu, Ranglei ; Xie, Yang ; Zhang, Kai ; Hu, Xiaosong.
    In: Nature Communications.
    RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56485-7.

    Full description at Econpapers || Download paper

  2. Safety and reliability analysis of lithium-ion batteries with real-time health monitoring. (2025). Pecht, Michael ; Kong, Lingxi ; Boles, Steven Tyler ; Lin, Chun-Pang ; Bhargava, Cherry ; Naqvi, Ijaz Haider ; Khan, Ayesha.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:212:y:2025:i:c:s1364032125000814.

    Full description at Econpapers || Download paper

  3. Toward the ensemble consistency: Condition-driven ensemble balance representation learning and nonstationary anomaly detection for battery energy storage system. (2025). Chen, XU ; Yang, Jiayang ; Zhao, Chunhui.
    In: Applied Energy.
    RePEc:eee:appene:v:381:y:2025:i:c:s0306261924025443.

    Full description at Econpapers || Download paper

  4. Life prediction of on-board supercapacitor energy storage system based on gate recurrent unit neural network using sparse monitoring data. (2025). Huang, Xuelin ; Yan, Rong ; Wei, LI ; Wang, YU ; Lin, Tingrun.
    In: Applied Energy.
    RePEc:eee:appene:v:379:y:2025:i:c:s0306261924023006.

    Full description at Econpapers || Download paper

  5. Mathematical modelling of electrochemical, thermal and degradation processes in lithium-ion cells—A comprehensive review. (2024). Mehta, Rohit ; Gupta, Amit.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:192:y:2024:i:c:s136403212301122x.

    Full description at Econpapers || Download paper

  6. Deep transfer learning enables battery state of charge and state of health estimation. (2024). Yang, Yongsong ; Liu, Shizhuo ; Yu, Quanqing ; Zhao, Lijun ; Zhang, Chengming ; Nie, Yuwei ; Xu, Yuchen.
    In: Energy.
    RePEc:eee:energy:v:294:y:2024:i:c:s0360544224005516.

    Full description at Econpapers || Download paper

  7. A novel method of battery pack energy health estimation based on visual feature learning. (2024). Zhang, Yanru ; Fan, Xinyuan ; Zhao, BO ; Sun, Bingxiang.
    In: Energy.
    RePEc:eee:energy:v:293:y:2024:i:c:s0360544224004286.

    Full description at Econpapers || Download paper

  8. Lithium-ion battery capacity estimation based on fragment charging data using deep residual shrinkage networks and uncertainty evaluation. (2024). Li, Qingbo ; Pan, Long ; Xie, Jingying ; Lai, Chunyan ; Ma, Changjun ; Zhu, Yunpeng ; Lu, Taolin.
    In: Energy.
    RePEc:eee:energy:v:290:y:2024:i:c:s0360544223036022.

    Full description at Econpapers || Download paper

  9. A hybrid deep learning approach for remaining useful life prediction of lithium-ion batteries based on discharging fragments. (2024). Chen, Zhongwei ; Mao, Zhiyu ; Liu, Yunpeng ; Ahmed, Moin ; Feng, Jiangtao ; Hou, BO.
    In: Applied Energy.
    RePEc:eee:appene:v:358:y:2024:i:c:s0306261923019190.

    Full description at Econpapers || Download paper

  10. Improved electric-thermal-aging multi-physics domain coupling modeling and identification decoupling of complex kinetic processes based on timescale quantification in lithium-ion batteries. (2024). Zhang, Mengyun ; Wang, Liping ; Liang, Jianhong ; Shi, Haotian ; Qi, Chuangshi ; Fernandez, Carlos ; Huang, QI.
    In: Applied Energy.
    RePEc:eee:appene:v:353:y:2024:i:pb:s0306261923015386.

    Full description at Econpapers || Download paper

  11. Data-driven capacity estimation for lithium-ion batteries with feature matching based transfer learning method. (2024). Zhang, Xuan ; Fu, Shiyi ; Tao, Shengyu ; He, Kun ; Zuo, Junxiong ; Fan, Hongtao ; Wang, YU ; Sun, Yaojie ; Liu, Xutao.
    In: Applied Energy.
    RePEc:eee:appene:v:353:y:2024:i:pa:s0306261923013557.

    Full description at Econpapers || Download paper

  12. Data-Driven GWO-BRNN-Based SOH Estimation of Lithium-Ion Batteries in EVs for Their Prognostics and Health Management. (2023). Waseem, Muhammad ; Huang, Jingyuan ; Wong, Chak-Nam ; C. K. M. Lee, .
    In: Mathematics.
    RePEc:gam:jmathe:v:11:y:2023:i:20:p:4263-:d:1258573.

    Full description at Econpapers || Download paper

  13. Electrochemical Impedance Spectroscopy: A New Chapter in the Fast and Accurate Estimation of the State of Health for Lithium-Ion Batteries. (2023). Liu, Yanshuo ; Cui, Xiaoli ; Zhang, Ming ; Wang, Licheng.
    In: Energies.
    RePEc:gam:jeners:v:16:y:2023:i:4:p:1599-:d:1058666.

    Full description at Econpapers || Download paper

  14. Deep feature extraction in lifetime prognostics of lithium-ion batteries: Advances, challenges and perspectives. (2023). Bai, Yun ; Yang, Shuai ; Ding, Ping ; Zhang, Huahua ; Li, Chuan.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:184:y:2023:i:c:s1364032123004331.

    Full description at Econpapers || Download paper

  15. Optimal dispatch approach for second-life batteries considering degradation with online SoH estimation. (2023). Zhang, Xuan ; Cheng, Ming ; Sun, Hongbin ; Wei, Guodan ; Ran, Aihua.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:173:y:2023:i:c:s1364032122009340.

    Full description at Econpapers || Download paper

  16. State of health estimation of the lithium-ion power battery based on the principal component analysis-particle swarm optimization-back propagation neural network. (2023). Wang, Yuqing ; Zhong, Yiming ; Wu, Muyao.
    In: Energy.
    RePEc:eee:energy:v:283:y:2023:i:c:s0360544223024556.

    Full description at Econpapers || Download paper

  17. State of health estimation of the LiFePO4 power battery based on the forgetting factor recursive Total Least Squares and the temperature correction. (2023). Wu, Muyao ; Wang, LI.
    In: Energy.
    RePEc:eee:energy:v:282:y:2023:i:c:s0360544223018315.

    Full description at Econpapers || Download paper

  18. State of health estimation with attentional long short-term memory network for lithium-ion batteries. (2023). Wang, Wei ; Lin, Mingqiang ; Wu, JI ; Meng, Jinhao.
    In: Energy.
    RePEc:eee:energy:v:268:y:2023:i:c:s0360544223001007.

    Full description at Econpapers || Download paper

  19. An efficient and robust method for lithium-ion battery capacity estimation using constant-voltage charging time. (2023). Cai, Yingfeng ; Li, Xin ; Sun, Xiaodong ; Yang, Jufeng ; Mi, Chris.
    In: Energy.
    RePEc:eee:energy:v:263:y:2023:i:pb:s0360544222026299.

    Full description at Econpapers || Download paper

  20. Neural network extended state-observer for energy system monitoring. (2023). Zhang, Zuoyi ; Cheng, Zhonghua ; Dong, Zhe ; Zhu, Yunlong ; Huang, Xiaojin.
    In: Energy.
    RePEc:eee:energy:v:263:y:2023:i:pa:s0360544222026226.

    Full description at Econpapers || Download paper

  21. State-of-health estimation for lithium-ion batteries with hierarchical feature construction and auto-configurable Gaussian process regression. (2023). Cui, Ningmin ; Cai, Lei ; Li, Junxin ; Meng, Jinhao ; Peng, Jichang ; Jin, Haiyan ; Zhao, Xinchao.
    In: Energy.
    RePEc:eee:energy:v:262:y:2023:i:pb:s0360544222023854.

    Full description at Econpapers || Download paper

  22. Transferable data-driven capacity estimation for lithium-ion batteries with deep learning: A case study from laboratory to field applications. (2023). Cai, Xue ; Li, Weihan ; Wang, Qiao ; Ye, Min ; Sauer, Dirk Uwe.
    In: Applied Energy.
    RePEc:eee:appene:v:350:y:2023:i:c:s030626192301111x.

    Full description at Econpapers || Download paper

  23. Electrochemical Impedance Spectroscopy Based on the State of Health Estimation for Lithium-Ion Batteries. (2022). Li, Liwei ; Wang, Licheng ; Yang, Dongfang.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:18:p:6665-:d:913208.

    Full description at Econpapers || Download paper

  24. Battery capacity trajectory prediction by capturing the correlation between different vehicles. (2022). Deng, Zhongwei ; Xie, YI ; Li, Jinwen ; Liu, Hongao ; Lu, Chen.
    In: Energy.
    RePEc:eee:energy:v:260:y:2022:i:c:s0360544222020175.

    Full description at Econpapers || Download paper

  25. Data efficient health prognostic for batteries based on sequential information-driven probabilistic neural network. (2022). Yang, Yalian ; Sui, Xin ; Hu, Xiaosong ; Teodorescu, Remus ; Bharadwaj, Pallavi ; Stroe, Daniel-Ioan ; Zheng, Yusheng ; Che, Yunhong ; Wu, Yue.
    In: Applied Energy.
    RePEc:eee:appene:v:323:y:2022:i:c:s0306261922009618.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-10-05 10:45:38 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.