- Antônio Rufino Júnior, C. ; Riva Sanseverino, E. ; Gallo, P. ; Koch, D. ; Kotak, Y. ; Schweiger, H.-G. Towards a business model for second-life batteries – barriers, opportunities, uncertainties, and technologies. 2023 J Energy Chem. 78 507-525
Paper not yet in RePEc: Add citation now
- Benesty, J. ; Chen, J. ; Huang, Y. ; Cohen, I. Pearson correlation coefficient. 2009 En : Cohen, I. ; Huang, Y. ; Chen, J. ; Benesty, J. Noise reduction in speech processing. Springer Berlin Heidelberg: Berlin, Heidelberg
Paper not yet in RePEc: Add citation now
- Birkl, C. Diagnosis and prognosis of degradation in lithium-ion batteries. 2017 University of Oxford:
Paper not yet in RePEc: Add citation now
- Blomgren, G.E. The development and future of lithium ion batteries. 2017 J Electrochem Soc. 164 A5019-
Paper not yet in RePEc: Add citation now
- Burgess, W.L. Valve regulated lead acid battery float service life estimation using a Kalman filter. 2009 J Power Sources. 191 16-21
Paper not yet in RePEc: Add citation now
Che, Y. ; Deng, Z. ; Li, P. ; Tang, X. ; Khosravinia, K. ; Lin, X. State of health prognostics for series battery packs: a universal deep learning method. 2022 ENERGY.. 238 -
- Chen, S.X. ; Tseng, K.J. ; Choi, S.S. Modeling of lithium-ion battery for energy storage system simulation. 2009 En : 2009 Asia-Pacific power and energy engineering conference. :
Paper not yet in RePEc: Add citation now
- Chen, W. ; Liang, J. ; Yang, Z. ; Li, G. A review of lithium-ion battery for electric vehicle applications and beyond. 2019 Energy Procedia. 158 4363-4368
Paper not yet in RePEc: Add citation now
- Chen, Y. ; Kang, Y. ; Zhao, Y. ; Wang, L. ; Liu, J. ; Li, Y. A review of lithium-ion battery safety concerns: the issues, strategies, and testing standards. 2021 J Energy Chem. 59 83-99
Paper not yet in RePEc: Add citation now
- Cheng, C. ; Ma, G. ; Zhang, Y. ; Sun, M. ; Teng, F. ; Ding, H. A deep learning-based remaining useful life prediction approach for bearings. 2020 IEEE/ASME Trans Mechatron. 25 1243-1254
Paper not yet in RePEc: Add citation now
Dai, H. ; Jiang, B. ; Hu, X. ; Lin, X. ; Wei, X. ; Pecht, M. Advanced battery management strategies for a sustainable energy future: multilayer design concepts and research trends. 2021 Renew Sustain Energy Rev. 138 110480-
- Doyle, M. ; Fuller, T.F. ; Newman, J. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell. 1993 J Electrochem Soc. 140 1526-
Paper not yet in RePEc: Add citation now
- Duh, Y.-S. ; Lin, K.H. ; Kao, C.-S. Experimental investigation and visualization on thermal runaway of hard prismatic lithium-ion batteries used in smart phones. 2018 J Therm Anal Calorim. 132 1677-1692
Paper not yet in RePEc: Add citation now
- He, K. ; Tao, S. ; Fu, S. ; Fan, H. ; Tao, Y. ; Wang, Y. A novel quick screening method for the second usage of parallel-connected lithium-ion cells based on the current distribution. 2023 J Electrochem Soc. 170 -
Paper not yet in RePEc: Add citation now
Horesh, N. ; Quinn, C. ; Wang, H. ; Zane, R. ; Ferry, M. ; Tong, S. Driving to the future of energy storage: techno-economic analysis of a novel method to recondition second life electric vehicle batteries. 2021 Appl Energy. 295 -
Hu, X. ; Jiang, H. ; Feng, F. ; Liu, B. An enhanced multi-state estimation hierarchy for advanced lithium-ion battery management. 2020 Appl Energy. 257 -
- Hu, X. ; Yuan, H. ; Zou, C. ; Li, Z. ; Zhang, L. Co-estimation of state of charge and state of health for lithium-ion batteries based on fractional-order calculus. 2018 IEEE Trans Veh Technol. 67 10319-10329
Paper not yet in RePEc: Add citation now
Jiang, B. ; Zhu, Y. ; Zhu, J. ; Wei, X. ; Dai, H. An adaptive capacity estimation approach for lithium-ion battery using 10-min relaxation voltage within high state of charge range. 2023 Energy.. 263 125802-
Kim, S.W. ; Oh, K.Y. ; Lee, S. Novel informed deep learning-based prognostics framework for on-board health monitoring of lithium-ion batteries. 2022 Appl Energy. 315 -
- Li, L. ; Li, Y. ; Cui, W. ; Chen, Z. ; Wang, D. ; Zhou, B. A novel health indicator for online health estimation of lithium-ion batteries using partial incremental capacity and dynamic voltage warping. 2022 J Power Sources. 545 -
Paper not yet in RePEc: Add citation now
Li, X. ; Jiang, J. ; Wang, L.Y. ; Chen, D. ; Zhang, Y. ; Zhang, C. A capacity model based on charging process for state of health estimation of lithium ion batteries. 2016 Appl Energy. 177 537-543
Li, X. ; Yuan, C. ; Li, X. ; Wang, Z. State of health estimation for Li-ion battery using incremental capacity analysis and Gaussian process regression. 2020 Energy.. 190 -
Li, X. ; Yuan, C. ; Wang, Z. State of health estimation for Li-ion battery via partial incremental capacity analysis based on support vector regression. 2020 Energy.. 203 -
Li, Y. ; Li, K. ; Liu, X. ; Li, X. ; Zhang, L. ; Rente, B. A hybrid machine learning framework for joint SOC and SOH estimation of lithium-ion batteries assisted with fiber sensor measurements. 2022 Appl Energy. 325 -
Li, Y. ; Li, K. ; Liu, X. ; Wang, Y. ; Zhang, L. Lithium-ion battery capacity estimation — a pruned convolutional neural network approach assisted with transfer learning. 2021 Appl Energy. 285 -
- Liu, K. ; Peng, Q. ; Che, Y. ; Zheng, Y. ; Li, K. ; Teodorescu, R. Transfer learning for battery smarter state estimation and ageing prognostics: recent progress, challenges, and prospects. 2023 Adv Appl Energy. 9 100117-
Paper not yet in RePEc: Add citation now
- Lombardo, T. ; Duquesnoy, M. ; El-Bouysidy, H. ; Aren, F. ; Gallo-Bueno, A. ; Jorgensen, P.B. Artificial intelligence applied to battery research: hype or reality?. 2022 Chem Rev. 122 10899-10969
Paper not yet in RePEc: Add citation now
- Luo, K. ; Chen, X. ; Zheng, H. ; Shi, Z. A review of deep learning approach to predicting the state of health and state of charge of lithium-ion batteries. 2022 J Energy Chem. 74 159-173
Paper not yet in RePEc: Add citation now
- Ma, G. ; Xu, S. ; Jiang, B. ; Cheng, C. ; Yang, X. ; Shen, Y. Real-time personalized health status prediction of lithium-ion batteries using deep transfer learning. 2022 Energ Environ Sci. 15 4083-4094
Paper not yet in RePEc: Add citation now
- Ma, G. ; Xu, S. ; Yang, T. ; Du, Z. ; Zhu, L. ; Ding, H. A transfer learning-based method for personalized state of health estimation of lithium-ion batteries. 2022 IEEE Trans Neural Networks Learn Syst. 1-11
Paper not yet in RePEc: Add citation now
Ma, J. ; Xu, S. ; Shang, P. ; Ding, Y. ; Qin, W. ; Cheng, Y. Cycle life test optimization for different Li-ion power battery formulations using a hybrid remaining-useful-life prediction method. 2020 Appl Energy. 262 114490-
- Montavon, G. ; Samek, W. ; Müller, K.-R. Methods for interpreting and understanding deep neural networks. 2018 Digit Signal Process. 73 1-15
Paper not yet in RePEc: Add citation now
- Pang, X. ; Zhong, S. ; Wang, Y. ; Yang, W. ; Zheng, W. ; Sun, G. A review on the prediction of health state and serving life of lithium-ion batteries. 2022 Chem Rec. 22 e202200131-
Paper not yet in RePEc: Add citation now
- Ran, A. ; Liang, Z. ; Chen, S. ; Cheng, M. ; Sun, C. ; Ma, F. Fast clustering of retired lithium-ion batteries for secondary life with a two-step learning method. 2022 ACS Energy Lett. 7 3817-3825
Paper not yet in RePEc: Add citation now
Ruan, H. ; Wei, Z. ; Shang, W. ; Wang, X. ; He, H. Artificial intelligence-based health diagnostic of Lithium-ion battery leveraging transient stage of constant current and constant voltage charging. 2023 Appl Energy. 336 -
- Saxena, S. ; Hendricks, C. ; Pecht, M. Cycle life testing and modeling of graphite/LiCoO2 cells under different state of charge ranges. 2016 J Power Sources. 327 394-400
Paper not yet in RePEc: Add citation now
- Schmalstieg, J. ; Käbitz, S. ; Ecker, M. ; Sauer, D.U. A holistic aging model for Li(NiMnCo)O2 based 18650 lithium-ion batteries. 2014 J Power Sources. 257 325-334
Paper not yet in RePEc: Add citation now
- Tan, Y. ; Zhao, G. Transfer learning with long short-term memory network for state-of-health prediction of lithium-ion batteries. 2020 IEEE Trans Ind Electron. 67 8723-8731
Paper not yet in RePEc: Add citation now
- Tang, X. ; Liu, K. ; Wang, X. ; Liu, B. ; Gao, F. ; Widanage, W.D. Real-time aging trajectory prediction using a base model-oriented gradient-correction particle filter for Lithium-ion batteries. 2019 J Power Sources. 440 227118-
Paper not yet in RePEc: Add citation now
- Tao, S. ; Sun, C. ; Fu, S. ; Wang, Y. ; Ma, R. ; Han, Z. Battery cross-operation-condition lifetime prediction via interpretable feature engineering assisted adaptive machine learning. 2023 ACS Energy Lett. 3269-3279
Paper not yet in RePEc: Add citation now
- Tian, H. ; Qin, P. ; Li, K. ; Zhao, Z. A review of the state of health for lithium-ion batteries: research status and suggestions. 2020 J Clean Prod. 261 120813-
Paper not yet in RePEc: Add citation now
Wang, Y. ; Tian, J. ; Sun, Z. ; Wang, L. ; Xu, R. ; Li, M. A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems. 2020 Renew Sustain Energy Rev. 131 -
- Wassiliadis, N. ; Adermann, J. ; Frericks, A. ; Pak, M. ; Reiter, C. ; Lohmann, B. Revisiting the dual extended Kalman filter for battery state-of-charge and state-of-health estimation: a use-case life cycle analysis. 2018 J Energy Storage. 19 73-87
Paper not yet in RePEc: Add citation now
Weng, C. ; Feng, X. ; Sun, J. ; Peng, H. State-of-health monitoring of lithium-ion battery modules and packs via incremental capacity peak tracking. 2016 Appl Energy. 180 360-368
Yang, F. ; Song, X. ; Dong, G. ; Tsui, K.-L. A coulombic efficiency-based model for prognostics and health estimation of lithium-ion batteries. 2019 Energy.. 171 1173-1182
- Yang, S. ; Zhang, C. ; Jiang, J. ; Zhang, W. ; Zhang, L. ; Wang, Y. Review on state-of-health of lithium-ion batteries: characterizations, estimations and applications. 2021 J Clean Prod. 314 128015-
Paper not yet in RePEc: Add citation now
Zhu, J. ; Wang, Y. ; Huang, Y. ; Bhushan Gopaluni, R. ; Cao, Y. ; Heere, M. Data-driven capacity estimation of commercial lithium-ion batteries from voltage relaxation. 2022 Nat Commun. 13 1-10