create a website

Improved electric-thermal-aging multi-physics domain coupling modeling and identification decoupling of complex kinetic processes based on timescale quantification in lithium-ion batteries. (2024). Zhang, Mengyun ; Wang, Liping ; Liang, Jianhong ; Shi, Haotian ; Qi, Chuangshi ; Fernandez, Carlos ; Huang, QI.
In: Applied Energy.
RePEc:eee:appene:v:353:y:2024:i:pb:s0306261923015386.

Full description at Econpapers || Download paper

Cited: 1

Citations received by this document

Cites: 56

References cited by this document

Cocites: 25

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. Battery asynchronous fractional-order thermoelectric coupling modeling and state of charge estimation based on frequency characteristic separation at low temperatures. (2024). Zhou, Yifei ; Cao, Wen ; Wang, Shunli ; Guerrero, Josep M ; Zeng, Jiawei ; Fernandez, Carlos.
    In: Energy.
    RePEc:eee:energy:v:307:y:2024:i:c:s0360544224025040.

    Full description at Econpapers || Download paper

References

References cited by this document

  1. Alavi, S.M.M. ; Birkl, C.R. ; Howey, D.A. Time-domain fitting of battery electrochemical impedance models. 2015 J Power Sources. 288 345-352
    Paper not yet in RePEc: Add citation now
  2. Che, Y. ; Deng, Z. ; Li, P. State of health prognostics for series battery packs: a universal deep learning method. 2022 Energy. 238 -

  3. Che, Y. ; Deng, Z. ; Lin, X. Predictive battery health management with transfer learning and online model correction. 2021 IEEE Trans Vehicul Technol. 70 1269-1277
    Paper not yet in RePEc: Add citation now
  4. Che, Y. ; Hu, X. ; Lin, X. Health prognostics for lithium-ion batteries: mechanisms, methods, and prospects. 2023 Energ Environ Sci. 16 338-371

  5. Che, Y. ; Stroe, D.I. ; Hu, X. Semi-supervised self-learning-based lifetime prediction for batteries. 2022 IEEE Trans Industr Inform. 19 6471-6481
    Paper not yet in RePEc: Add citation now
  6. Che, Y. ; Zheng, Y. ; Wu, Y. Data efficient health prognostic for batteries based on sequential information-driven probabilistic neural network. 2022 Appl Energy. 323 -

  7. Dai, H. ; Xu, T. ; Zhu, L. Adaptive model parameter identification for large capacity Li-ion batteries on separated time scales. 2016 Appl Energy. 184 119-131

  8. Ding, Q. ; Wang, Y. ; Chen, Z. Parameter identification of reduced-order electrochemical model simplified by spectral methods and state estimation based on square-root cubature Kalman filter. 2022 J Energy Storage. 46 -
    Paper not yet in RePEc: Add citation now
  9. Duan, Y. ; Tian, J. ; Lu, J. Deep neural network battery impedance spectra prediction by only using constant-current curve. 2021 Energy Stor Mater. 41 24-31
    Paper not yet in RePEc: Add citation now
  10. Feng, X. ; Ouyang, M. ; Liu, X. Thermal runaway mechanism of lithium ion battery for electric vehicles: a review. 2018 Energy Stor Mater. 10 246-267
    Paper not yet in RePEc: Add citation now
  11. Hu, X. ; Che, Y. ; Lin, X. Battery health prediction using fusion-based feature selection and machine learning. 2020 IEEE Trans Transp Electrific. 7 382-398
    Paper not yet in RePEc: Add citation now
  12. Hu, X. ; Xu, L. ; Lin, X. Battery lifetime prognostics. 2020 Joule. 4 310-346
    Paper not yet in RePEc: Add citation now
  13. Hu, Y. ; Wang, Y.Y. Two time-scaled battery model identification with application to battery state estimation. 2014 IEEE Trans Control Syst Technol. 23 1180-1188
    Paper not yet in RePEc: Add citation now
  14. Jiang, B. ; Dai, H. ; Wei, X. Joint estimation of lithium-ion battery state of charge and capacity within an adaptive variable multi-timescale framework considering current measurement offset. 2019 Appl Energy. 253 -

  15. Jiang, C. ; Wang, S. ; Wu, B. A state-of-charge estimation method of the power lithium-ion battery in complex conditions based on adaptive square root extended Kalman filter. 2021 Energy. 219 -

  16. Lacressonnière, F. ; Varais, A. ; Roboam, X. Scale electro-thermal model of a lithium-ion battery for time-accelerated experiments in a hardware in the loop process. 2021 J Energy Storage. 39 -
    Paper not yet in RePEc: Add citation now
  17. Li, H. ; Saini, A. ; Liu, C. Electrochemical and thermal characteristics of prismatic lithium-ion battery based on a three-dimensional electrochemical-thermal coupled model. 2021 J Energy Storage. 42 -
    Paper not yet in RePEc: Add citation now
  18. Liu, K. ; Zou, C. ; Li, K. Charging pattern optimization for lithium-ion batteries with an electrothermal-aging model. 2018 IEEE Trans Industr Inform. 14 5463-5474
    Paper not yet in RePEc: Add citation now
  19. Liu, L. ; Yan, Z. ; Xu, B. A highly scalable integrated voltage equalizer based on parallel-transformers for high-voltage energy storage systems. 2023 IEEE Trans Industr Electron. -
    Paper not yet in RePEc: Add citation now
  20. Lu, Y. ; Zhao, C.Z. ; Huang, J.Q. The timescale identification decoupling complicated kinetic processes in lithium batteries. 2022 Joule. 6 1172-1198
    Paper not yet in RePEc: Add citation now
  21. Lu, Y. ; Zhao, C.Z. ; Yuan, H. Dry electrode technology, the rising star in solid-state battery industrialization. 2022 Matter. 5 876-898
    Paper not yet in RePEc: Add citation now
  22. Marqusee, J. ; Becker, W. ; Ericson, S. Resilience and economics of microgrids with PV, battery storage, and networked diesel generators. 2021 Adv Appl Energy. 3 -
    Paper not yet in RePEc: Add citation now
  23. Moy, K. ; Lee, S.B. ; Harris, S. Design and validation of synthetic duty cycles for grid energy storage dispatch using lithium-ion batteries. 2021 Adv Appl Energy. 4 -
    Paper not yet in RePEc: Add citation now
  24. Osaka, T. ; Mukoyama, D. ; Nara, H. Development of diagnostic process for commercially available batteries, especially lithium ion battery, by electrochemical impedance spectroscopy. 2015 J Electrochem Soc. 162 A2529-
    Paper not yet in RePEc: Add citation now
  25. Pang, H. ; Guo, L. ; Wu, L. A novel extended Kalman filter-based battery internal and surface temperature estimation based on an improved electro-thermal model. 2021 J Energy Storage. 41 -
    Paper not yet in RePEc: Add citation now
  26. Pang, H. ; Wu, L. ; Liu, J. Physics-informed neural network approach for heat generation rate estimation of lithium-ion battery under various driving conditions. 2023 J Energy Chem. 78 1-12
    Paper not yet in RePEc: Add citation now
  27. Peng, J. ; Shi, H. ; Wang, S. A novel equivalent modeling method combined with the splice-electrochemical polarization model and prior generalized inverse least-square parameter identification for UAV lithium-ion batteries. 2022 Energy Sci Eng. 10 3727-3740
    Paper not yet in RePEc: Add citation now
  28. Peng, S. ; Sun, Y. ; Yu, Q. State of health estimation of lithium-ion batteries based on multi-health features extraction and improved long short-term memory neural network. 2023 Energy. 282 -

  29. Raijmakers, L.H.J. ; Danilov, D.L. ; Eichel, R.A. A review on various temperature-indication methods for Li-ion batteries. 2019 Appl Energy. 240 918-945

  30. Samadani, E. ; Farhad, S. ; Scott, W. Empirical modeling of lithium-ion batteries based on electrochemical impedance spectroscopy tests. 2015 Electrochim Acta. 160 169-177
    Paper not yet in RePEc: Add citation now
  31. Severson, K.A. ; Attia, P.M. ; Jin, N. Data-driven prediction of battery cycle life before capacity degradation. 2019 Nat Energy. 4 383-391

  32. Shi, H. ; Wang, L. ; Wang, S. A novel lumped thermal characteristic modeling strategy for the online adaptive temperature and parameter co-estimation of vehicle lithium-ion batteries. 2022 J Energy Storage. 50 -
    Paper not yet in RePEc: Add citation now
  33. Shi, H. ; Wang, S. ; Fernandez, C. Improved multi-time scale lumped thermoelectric coupling modeling and parameter dispersion evaluation of lithium-ion batteries. 2022 Appl Energy. 324 -

  34. Shi, H. ; Wang, S. ; Liang, J. Multi-time scale identification of key kinetic processes for lithium-ion batteries considering variable characteristic frequency. 2023 J Energy Chem. 82 521-536
    Paper not yet in RePEc: Add citation now
  35. Shi, H. ; Wang, S. ; Wang, L. On-line adaptive asynchronous parameter identification of lumped electrical characteristic model for vehicle lithium-ion battery considering multi-time scale effects. 2022 J Power Sources. 517 -
    Paper not yet in RePEc: Add citation now
  36. Takyi-Aninakwa, P. ; Wang, S. ; Zhang, H. An optimized long short-term memory-weighted fading extended Kalman filtering model with wide temperature adaptation for the state of charge estimation of lithium-ion batteries. 2022 Appl Energy. 326 -

  37. Tian, J. ; Liu, X. ; Chen, C. Feature fusion-based inconsistency evaluation for battery pack: improved Gaussian mixture model. 2022 IEEE Trans Intellig Transp Syst. 24 446-458
    Paper not yet in RePEc: Add citation now
  38. Tian, J. ; Wang, Y. ; Chen, Z. An improved single particle model for lithium-ion batteries based on main stress factor compensation. 2021 J Clean Prod. 278 -
    Paper not yet in RePEc: Add citation now
  39. Tian, J. ; Xiong, R. ; Lu, J. Battery state-of-charge estimation amid dynamic usage with physics-informed deep learning. 2022 Energy Stor Mater. 50 718-729
    Paper not yet in RePEc: Add citation now
  40. Tian, J. ; Xiong, R. ; Shen, W. Flexible battery state of health and state of charge estimation using partial charging data and deep learning. 2022 Energy Stor Mater. 51 372-381
    Paper not yet in RePEc: Add citation now
  41. Tian, J. ; Xu, R. ; Wang, Y. Capacity attenuation mechanism modeling and health assessment of lithium-ion batteries. 2021 Energy. 221 -

  42. Wang, N. ; Zhao, G. ; Kang, Y. Core temperature estimation method for Lithium-ion battery based on long short-term memory model with transfer learning. 2023 IEEE J Emerg Select Top Power Electron. 11 201-213
    Paper not yet in RePEc: Add citation now
  43. Wang, S. ; Takyi-Aninakwa, P. ; Jin, S. An improved feedforward-long short-term memory modeling method for the whole-life-cycle state of charge prediction of lithium-ion batteries considering current-voltage-temperature variation. 2022 Energy. 254 -

  44. Wang, Y. ; Chen, Z. A framework for state-of-charge and remaining discharge time prediction using unscented particle filter. 2020 Appl Energy. 260 -

  45. Wang, Y. ; Tian, J. ; Sun, Z. A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems. 2020 Renew Sustain Energy Rev. 131 -

  46. Wang, Y. ; Xu, R. ; Zhou, C. Digital twin and cloud-side-end collaboration for intelligent battery management system. 2022 J Manufact Syst. 62 124-134
    Paper not yet in RePEc: Add citation now
  47. Wang, Y. ; Zhang, X. ; Chen, Z. Low temperature preheating techniques for Lithium-ion batteries: recent advances and future challenges. 2022 Appl Energy. 313 -

  48. Wang, Y. ; Zhou, C. ; Chen, Z. Optimization of battery charging strategy based on nonlinear model predictive control. 2022 Energy. 241 -

  49. Wang, Y. ; Zhou, C. ; Zhao, G. A framework for battery internal temperature and state-of-charge estimation based on fractional-order thermoelectric model. 2022 Trans Inst Measurem Control. -
    Paper not yet in RePEc: Add citation now
  50. Wu, L. ; Liu, K. ; Pang, H. Evaluation and observability analysis of an improved reduced-order electrochemical model for lithium-ion battery. 2021 Electrochim Acta. 368 -
    Paper not yet in RePEc: Add citation now
  51. Xie, Y. ; Wang, S. ; Zhang, G. Optimized multi-hidden layer long short-term memory modeling and suboptimal fading extended Kalman filtering strategies for the synthetic state of charge estimation of lithium-ion batteries. 2023 Appl Energy. 336 -

  52. Xiong, R. ; Tian, J. ; Shen, W. Semi-supervised estimation of capacity degradation for lithium ion batteries with electrochemical impedance spectroscopy. 2023 J Energy Chem. 76 404-413
    Paper not yet in RePEc: Add citation now
  53. Xu, L. ; Lin, X. ; Xie, Y. Enabling high-fidelity electrochemical P2D modeling of lithium-ion batteries via fast and non-destructive parameter identification. 2022 Energy Stor Mater. 45 952-968
    Paper not yet in RePEc: Add citation now
  54. Xu, M. ; Zhang, Z. ; Wang, X. A pseudo three-dimensional electrochemical–thermal model of a prismatic LiFePO4 battery during discharge process. 2015 Energy. 80 303-317

  55. Yang, B. ; Wang, J. ; Cao, P. Classification, summarization and perspectives on state-of-charge estimation of lithium-ion batteries used in electric vehicles: a critical comprehensive survey. 2021 J Energy Storage. 39 -
    Paper not yet in RePEc: Add citation now
  56. Zhu, C. ; Shang, Y. ; Lu, F. Core temperature estimation for self-heating automotive lithium-ion batteries in cold climates. 2019 IEEE Trans Industr Inform. 16 3366-3375
    Paper not yet in RePEc: Add citation now

Cocites

Documents in RePEc which have cited the same bibliography

  1. Multi-modal framework for battery state of health evaluation using open-source electric vehicle data. (2025). Li, Chang ; Liu, Hongao ; Song, Ziyou ; Wu, Ranglei ; Xie, Yang ; Zhang, Kai ; Hu, Xiaosong.
    In: Nature Communications.
    RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56485-7.

    Full description at Econpapers || Download paper

  2. Safety and reliability analysis of lithium-ion batteries with real-time health monitoring. (2025). Pecht, Michael ; Kong, Lingxi ; Boles, Steven Tyler ; Lin, Chun-Pang ; Bhargava, Cherry ; Naqvi, Ijaz Haider ; Khan, Ayesha.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:212:y:2025:i:c:s1364032125000814.

    Full description at Econpapers || Download paper

  3. Toward the ensemble consistency: Condition-driven ensemble balance representation learning and nonstationary anomaly detection for battery energy storage system. (2025). Chen, XU ; Yang, Jiayang ; Zhao, Chunhui.
    In: Applied Energy.
    RePEc:eee:appene:v:381:y:2025:i:c:s0306261924025443.

    Full description at Econpapers || Download paper

  4. Life prediction of on-board supercapacitor energy storage system based on gate recurrent unit neural network using sparse monitoring data. (2025). Huang, Xuelin ; Yan, Rong ; Wei, LI ; Wang, YU ; Lin, Tingrun.
    In: Applied Energy.
    RePEc:eee:appene:v:379:y:2025:i:c:s0306261924023006.

    Full description at Econpapers || Download paper

  5. Mathematical modelling of electrochemical, thermal and degradation processes in lithium-ion cells—A comprehensive review. (2024). Mehta, Rohit ; Gupta, Amit.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:192:y:2024:i:c:s136403212301122x.

    Full description at Econpapers || Download paper

  6. Deep transfer learning enables battery state of charge and state of health estimation. (2024). Yang, Yongsong ; Liu, Shizhuo ; Yu, Quanqing ; Zhao, Lijun ; Zhang, Chengming ; Nie, Yuwei ; Xu, Yuchen.
    In: Energy.
    RePEc:eee:energy:v:294:y:2024:i:c:s0360544224005516.

    Full description at Econpapers || Download paper

  7. A novel method of battery pack energy health estimation based on visual feature learning. (2024). Zhang, Yanru ; Fan, Xinyuan ; Zhao, BO ; Sun, Bingxiang.
    In: Energy.
    RePEc:eee:energy:v:293:y:2024:i:c:s0360544224004286.

    Full description at Econpapers || Download paper

  8. Lithium-ion battery capacity estimation based on fragment charging data using deep residual shrinkage networks and uncertainty evaluation. (2024). Li, Qingbo ; Pan, Long ; Xie, Jingying ; Lai, Chunyan ; Ma, Changjun ; Zhu, Yunpeng ; Lu, Taolin.
    In: Energy.
    RePEc:eee:energy:v:290:y:2024:i:c:s0360544223036022.

    Full description at Econpapers || Download paper

  9. A hybrid deep learning approach for remaining useful life prediction of lithium-ion batteries based on discharging fragments. (2024). Chen, Zhongwei ; Mao, Zhiyu ; Liu, Yunpeng ; Ahmed, Moin ; Feng, Jiangtao ; Hou, BO.
    In: Applied Energy.
    RePEc:eee:appene:v:358:y:2024:i:c:s0306261923019190.

    Full description at Econpapers || Download paper

  10. Improved electric-thermal-aging multi-physics domain coupling modeling and identification decoupling of complex kinetic processes based on timescale quantification in lithium-ion batteries. (2024). Zhang, Mengyun ; Wang, Liping ; Liang, Jianhong ; Shi, Haotian ; Qi, Chuangshi ; Fernandez, Carlos ; Huang, QI.
    In: Applied Energy.
    RePEc:eee:appene:v:353:y:2024:i:pb:s0306261923015386.

    Full description at Econpapers || Download paper

  11. Data-driven capacity estimation for lithium-ion batteries with feature matching based transfer learning method. (2024). Zhang, Xuan ; Fu, Shiyi ; Tao, Shengyu ; He, Kun ; Zuo, Junxiong ; Fan, Hongtao ; Wang, YU ; Sun, Yaojie ; Liu, Xutao.
    In: Applied Energy.
    RePEc:eee:appene:v:353:y:2024:i:pa:s0306261923013557.

    Full description at Econpapers || Download paper

  12. Data-Driven GWO-BRNN-Based SOH Estimation of Lithium-Ion Batteries in EVs for Their Prognostics and Health Management. (2023). Waseem, Muhammad ; Huang, Jingyuan ; Wong, Chak-Nam ; C. K. M. Lee, .
    In: Mathematics.
    RePEc:gam:jmathe:v:11:y:2023:i:20:p:4263-:d:1258573.

    Full description at Econpapers || Download paper

  13. Electrochemical Impedance Spectroscopy: A New Chapter in the Fast and Accurate Estimation of the State of Health for Lithium-Ion Batteries. (2023). Liu, Yanshuo ; Cui, Xiaoli ; Zhang, Ming ; Wang, Licheng.
    In: Energies.
    RePEc:gam:jeners:v:16:y:2023:i:4:p:1599-:d:1058666.

    Full description at Econpapers || Download paper

  14. Deep feature extraction in lifetime prognostics of lithium-ion batteries: Advances, challenges and perspectives. (2023). Bai, Yun ; Yang, Shuai ; Ding, Ping ; Zhang, Huahua ; Li, Chuan.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:184:y:2023:i:c:s1364032123004331.

    Full description at Econpapers || Download paper

  15. Optimal dispatch approach for second-life batteries considering degradation with online SoH estimation. (2023). Zhang, Xuan ; Cheng, Ming ; Sun, Hongbin ; Wei, Guodan ; Ran, Aihua.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:173:y:2023:i:c:s1364032122009340.

    Full description at Econpapers || Download paper

  16. State of health estimation of the lithium-ion power battery based on the principal component analysis-particle swarm optimization-back propagation neural network. (2023). Wang, Yuqing ; Zhong, Yiming ; Wu, Muyao.
    In: Energy.
    RePEc:eee:energy:v:283:y:2023:i:c:s0360544223024556.

    Full description at Econpapers || Download paper

  17. State of health estimation of the LiFePO4 power battery based on the forgetting factor recursive Total Least Squares and the temperature correction. (2023). Wu, Muyao ; Wang, LI.
    In: Energy.
    RePEc:eee:energy:v:282:y:2023:i:c:s0360544223018315.

    Full description at Econpapers || Download paper

  18. State of health estimation with attentional long short-term memory network for lithium-ion batteries. (2023). Wang, Wei ; Lin, Mingqiang ; Wu, JI ; Meng, Jinhao.
    In: Energy.
    RePEc:eee:energy:v:268:y:2023:i:c:s0360544223001007.

    Full description at Econpapers || Download paper

  19. An efficient and robust method for lithium-ion battery capacity estimation using constant-voltage charging time. (2023). Cai, Yingfeng ; Li, Xin ; Sun, Xiaodong ; Yang, Jufeng ; Mi, Chris.
    In: Energy.
    RePEc:eee:energy:v:263:y:2023:i:pb:s0360544222026299.

    Full description at Econpapers || Download paper

  20. Neural network extended state-observer for energy system monitoring. (2023). Zhang, Zuoyi ; Cheng, Zhonghua ; Dong, Zhe ; Zhu, Yunlong ; Huang, Xiaojin.
    In: Energy.
    RePEc:eee:energy:v:263:y:2023:i:pa:s0360544222026226.

    Full description at Econpapers || Download paper

  21. State-of-health estimation for lithium-ion batteries with hierarchical feature construction and auto-configurable Gaussian process regression. (2023). Cui, Ningmin ; Cai, Lei ; Li, Junxin ; Meng, Jinhao ; Peng, Jichang ; Jin, Haiyan ; Zhao, Xinchao.
    In: Energy.
    RePEc:eee:energy:v:262:y:2023:i:pb:s0360544222023854.

    Full description at Econpapers || Download paper

  22. Transferable data-driven capacity estimation for lithium-ion batteries with deep learning: A case study from laboratory to field applications. (2023). Cai, Xue ; Li, Weihan ; Wang, Qiao ; Ye, Min ; Sauer, Dirk Uwe.
    In: Applied Energy.
    RePEc:eee:appene:v:350:y:2023:i:c:s030626192301111x.

    Full description at Econpapers || Download paper

  23. Electrochemical Impedance Spectroscopy Based on the State of Health Estimation for Lithium-Ion Batteries. (2022). Li, Liwei ; Wang, Licheng ; Yang, Dongfang.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:18:p:6665-:d:913208.

    Full description at Econpapers || Download paper

  24. Battery capacity trajectory prediction by capturing the correlation between different vehicles. (2022). Deng, Zhongwei ; Xie, YI ; Li, Jinwen ; Liu, Hongao ; Lu, Chen.
    In: Energy.
    RePEc:eee:energy:v:260:y:2022:i:c:s0360544222020175.

    Full description at Econpapers || Download paper

  25. Data efficient health prognostic for batteries based on sequential information-driven probabilistic neural network. (2022). Yang, Yalian ; Sui, Xin ; Hu, Xiaosong ; Teodorescu, Remus ; Bharadwaj, Pallavi ; Stroe, Daniel-Ioan ; Zheng, Yusheng ; Che, Yunhong ; Wu, Yue.
    In: Applied Energy.
    RePEc:eee:appene:v:323:y:2022:i:c:s0306261922009618.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-10-05 04:22:17 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.