Che, Y. ; Deng, Z. ; Li, P. ; Tang, X. ; Khosravinia, K. ; Lin, X. ; Hu, X. State of health prognostics for series battery packs: A universal deep learning method. 2022 Energy. 238 -
Chen, D. ; Meng, J. ; Huang, H. ; Wu, J. ; Liu, P. ; Lu, J. An empirical-data hybrid driven approach for remaining useful life prediction of lithium-ion batteries considering capacity diving. 2022 Energy. 245 -
- Chen, Z. ; Chen, L. ; Shen, W. ; Xu, K. Remaining useful life prediction of lithium-ion battery via a sequence decomposition and deep learning integrated approach. 2021 IEEE Trans Veh Technol. 71 1466-1479
Paper not yet in RePEc: Add citation now
Chen, Z. ; Shi, N. ; Ji, Y. ; Niu, M. ; Wang, Y. Lithium-ion batteries remaining useful life prediction based on BLS-RVM. 2021 Energy. 234 -
Cheng, G. ; Wang, X. ; He, Y. Remaining useful life and state of health prediction for lithium batteries based on empirical mode decomposition and a long and short memory neural network. 2021 Energy. 232 -
- Cho, K. ; Van Merriënboer, B. ; Gulcehre, C. ; Bahdanau, D. ; Bougares, F. ; Schwenk, H. Learning phrase representations using RNN encoder-decoder for statistical machine translation. 2014 :
Paper not yet in RePEc: Add citation now
Downey, A. ; Lui, Y.-H. ; Hu, C. ; Laflamme, S. ; Hu, S. Physics-based prognostics of lithium-ion battery using non-linear least squares with dynamic bounds. 2019 Reliab Eng Syst Saf. 182 1-12
- Fei, Z. ; Zhang, Z. ; Yang, F. ; Tsui, K.-L. A deep attention-assisted and memory-augmented temporal convolutional network based model for rapid lithium-ion battery remaining useful life predictions with limited data. 2023 J Energy Storage. 62 -
Paper not yet in RePEc: Add citation now
Hsu, C.-W. ; Xiong, R. ; Chen, N.-Y. ; Li, J. ; Tsou, N.-T. Deep neural network battery life and voltage prediction by using data of one cycle only. 2022 Appl Energy. 306 -
- Hu, X. ; Che, Y. ; Lin, X. ; Deng, Z. Health prognosis for electric vehicle battery packs: A data-driven approach. 2020 IEEE/ASME Trans Mech. 25 2622-2632
Paper not yet in RePEc: Add citation now
- Huang, N.E. ; Shen, Z. ; Long, S.R. ; Wu, M.C. ; Shih, H.H. ; Zheng, Q. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. 1998 Proc Math Phys Eng Sci. 454 903-995
Paper not yet in RePEc: Add citation now
- Huang, Y. ; Tang, Y. ; VanZwieten, J. Prognostics with variational autoencoder by generative adversarial learning. 2021 IEEE Trans Ind Electron. 69 856-867
Paper not yet in RePEc: Add citation now
Le Son, K. ; Fouladirad, M. ; Barros, A. ; Levrat, E. ; Iung, B. Remaining useful life estimation based on stochastic deterioration models: A comparative study. 2013 Reliab Eng Syst Saf. 112 165-175
- LeCun, Y. ; Bengio, Y. ; Hinton, G. Deep learning. 2015 Nature. 521 436-444
Paper not yet in RePEc: Add citation now
- Lei, Y. ; Li, N. ; Gontarz, S. ; Lin, J. ; Radkowski, S. ; Dybala, J. A model-based method for remaining useful life prediction of machinery. 2016 IEEE Trans Reliab. 65 1314-1326
Paper not yet in RePEc: Add citation now
Li, P. ; Zhang, Z. ; Grosu, R. ; Deng, Z. ; Hou, J. ; Rong, Y. An end-to-end neural network framework for state-of-health estimation and remaining useful life prediction of electric vehicle lithium batteries. 2022 Renew Sustain Energy Rev. 156 -
Li, X. ; Yuan, C. ; Li, X. ; Wang, Z. State of health estimation for li-ion battery using incremental capacity analysis and Gaussian process regression. 2020 Energy. 190 -
Li, X. ; Yuan, C. ; Wang, Z. State of health estimation for li-ion battery via partial incremental capacity analysis based on support vector regression. 2020 Energy. 203 -
- Lipu, M.H. ; Hannan, M. ; Hussain, A. ; Hoque, M. ; Ker, P.J. ; Saad, M.M. A review of state of health and remaining useful life estimation methods for lithium-ion battery in electric vehicles: Challenges and recommendations. 2018 J Cleaner Prod. 205 115-133
Paper not yet in RePEc: Add citation now
- Liu, D. ; Luo, Y. ; Liu, J. ; Peng, Y. ; Guo, L. ; Pecht, M. Lithium-ion battery remaining useful life estimation based on fusion nonlinear degradation AR model and RPF algorithm. 2014 Neural Comput Appl. 25 557-572
Paper not yet in RePEc: Add citation now
- Liu, H. ; Liu, Z. ; Jia, W. ; Lin, X. Remaining useful life prediction using a novel feature-attention-based end-to-end approach. 2020 IEEE Trans Ind Inform. 17 1197-1207
Paper not yet in RePEc: Add citation now
- Lu, J. ; Xiong, R. ; Tian, J. ; Wang, C. ; Hsu, C.-W. ; Tsou, N.-T. Battery degradation prediction against uncertain future conditions with recurrent neural network enabled deep learning. 2022 Energy Storage Mater. 50 -
Paper not yet in RePEc: Add citation now
- M., P. Battery data set. 2011 En : Center for advanced life cycle engineering CALCE. University of Maryland:
Paper not yet in RePEc: Add citation now
Ma, G. ; Zhang, Y. ; Cheng, C. ; Zhou, B. ; Yuan, Y. Remaining useful life prediction of lithium-ion batteries based on false nearest neighbors and a hybrid neural network. 2019 Appl Energy. 253 -
- Pan, D. ; Li, H. ; Wang, S. Transfer learning-based hybrid remaining useful life prediction for lithium-ion batteries under different stresses. 2022 IEEE Trans Instrum Meas. 71 1-10
Paper not yet in RePEc: Add citation now
Severson, K.A. ; Attia, P.M. ; Jin, N. ; Perkins, N. ; Jiang, B. ; Yang, Z. Data-driven prediction of battery cycle life before capacity degradation. 2019 Nat Energy. 4 383-391
Tang, T. ; Yuan, H. A hybrid approach based on decomposition algorithm and neural network for remaining useful life prediction of lithium-ion battery. 2022 Reliab Eng Syst Saf. 217 -
Tian, J. ; Xiong, R. ; Shen, W. ; Lu, J. State-of-charge estimation of LiFePO4 batteries in electric vehicles: A deep-learning enabled approach. 2021 Appl Energy. 291 -
- Tian, J. ; Xiong, R. ; Shen, W. ; Lu, J. ; Yang, X.-G. Deep neural network battery charging curve prediction using 30 points collected in 10 min. 2021 Joule. 5 1521-1534
Paper not yet in RePEc: Add citation now
- Tong, Z. ; Miao, J. ; Tong, S. ; Lu, Y. Early prediction of remaining useful life for lithium-ion batteries based on a hybrid machine learning method. 2021 J Cleaner Prod. 317 -
Paper not yet in RePEc: Add citation now
- Yan, W. ; Zhang, B. ; Zhao, G. ; Tang, S. ; Niu, G. ; Wang, X. A battery management system with a lebesgue-sampling-based extended kalman filter. 2019 IEEE Trans Ind Electron. 66 3227-3236
Paper not yet in RePEc: Add citation now
Yang, Y. A machine-learning prediction method of lithium-ion battery life based on charge process for different applications. 2021 Appl Energy. 292 -
- Yang, Z. ; Wang, Y. ; Kong, C. Remaining useful life prediction of lithium-ion batteries based on a mixture of ensemble empirical mode decomposition and GWO-SVR model. 2021 IEEE Trans Instrum Meas. 70 1-11
Paper not yet in RePEc: Add citation now
- Yuchen, S. ; Datong, L. ; Yandong, H. ; Jinxiang, Y. ; Yu, P. Satellite lithium-ion battery remaining useful life estimation with an iterative updated RVM fused with the KF algorithm. 2018 Chin J Aeronaut. 31 31-40
Paper not yet in RePEc: Add citation now
- Zhang, C. ; Zhao, S. ; He, Y. An integrated method of the future capacity and RUL prediction for lithium-ion battery pack. 2021 IEEE Trans Veh Technol. 71 2601-2613
Paper not yet in RePEc: Add citation now
Zhang, Q. ; Yang, L. ; Guo, W. ; Qiang, J. ; Peng, C. ; Li, Q. A deep learning method for lithium-ion battery remaining useful life prediction based on sparse segment data via cloud computing system. 2022 Energy. 241 -
Zhang, Y. ; Tang, Q. ; Zhang, Y. ; Wang, J. ; Stimming, U. ; Lee, A.A. Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning. 2020 Nature Commun. 11 1706-
- Zhou, D. ; Li, Z. ; Zhu, J. ; Zhang, H. ; Hou, L. State of health monitoring and remaining useful life prediction of lithium-ion batteries based on temporal convolutional network. 2020 IEEE Access. 8 53307-53320
Paper not yet in RePEc: Add citation now
- Zhou, Y. ; Huang, M. Lithium-ion batteries remaining useful life prediction based on a mixture of empirical mode decomposition and ARIMA model. 2016 Microelectron Reliab. 65 265-273
Paper not yet in RePEc: Add citation now
- Zraibi, B. ; Okar, C. ; Chaoui, H. ; Mansouri, M. Remaining useful life assessment for lithium-ion batteries using CNN-LSTM-DNN hybrid method. 2021 IEEE Trans Veh Technol. 70 4252-4261
Paper not yet in RePEc: Add citation now