create a website

A hybrid deep learning approach for remaining useful life prediction of lithium-ion batteries based on discharging fragments. (2024). Chen, Zhongwei ; Mao, Zhiyu ; Liu, Yunpeng ; Ahmed, Moin ; Feng, Jiangtao ; Hou, BO.
In: Applied Energy.
RePEc:eee:appene:v:358:y:2024:i:c:s0306261923019190.

Full description at Econpapers || Download paper

Cited: 3

Citations received by this document

Cites: 40

References cited by this document

Cocites: 25

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. Early prediction of battery lifetime for lithium-ion batteries based on a hybrid clustered CNN model. (2025). Su, Taian ; Hou, Jing ; Xue, Wei ; Yang, Yan ; Gao, Tian.
    In: Energy.
    RePEc:eee:energy:v:319:y:2025:i:c:s0360544225006346.

    Full description at Econpapers || Download paper

  2. A multi-time-resolution attention-based interaction network for co-estimation of multiple battery states. (2025). Liu, Ruixue ; Jiang, Benben.
    In: Applied Energy.
    RePEc:eee:appene:v:381:y:2025:i:c:s0306261924024814.

    Full description at Econpapers || Download paper

  3. State-of-health estimation for lithium-ion batteries based on Kullback–Leibler divergence and a retentive network. (2024). Lyu, Ximin ; Fan, Yuqian ; Peng, Weiwen ; Yang, Fangfang ; Chen, Guanxu.
    In: Applied Energy.
    RePEc:eee:appene:v:376:y:2024:i:pb:s0306261924016490.

    Full description at Econpapers || Download paper

References

References cited by this document

  1. Che, Y. ; Deng, Z. ; Li, P. ; Tang, X. ; Khosravinia, K. ; Lin, X. ; Hu, X. State of health prognostics for series battery packs: A universal deep learning method. 2022 Energy. 238 -

  2. Chen, D. ; Meng, J. ; Huang, H. ; Wu, J. ; Liu, P. ; Lu, J. An empirical-data hybrid driven approach for remaining useful life prediction of lithium-ion batteries considering capacity diving. 2022 Energy. 245 -

  3. Chen, Z. ; Chen, L. ; Shen, W. ; Xu, K. Remaining useful life prediction of lithium-ion battery via a sequence decomposition and deep learning integrated approach. 2021 IEEE Trans Veh Technol. 71 1466-1479
    Paper not yet in RePEc: Add citation now
  4. Chen, Z. ; Shi, N. ; Ji, Y. ; Niu, M. ; Wang, Y. Lithium-ion batteries remaining useful life prediction based on BLS-RVM. 2021 Energy. 234 -

  5. Cheng, G. ; Wang, X. ; He, Y. Remaining useful life and state of health prediction for lithium batteries based on empirical mode decomposition and a long and short memory neural network. 2021 Energy. 232 -

  6. Cho, K. ; Van Merriënboer, B. ; Gulcehre, C. ; Bahdanau, D. ; Bougares, F. ; Schwenk, H. Learning phrase representations using RNN encoder-decoder for statistical machine translation. 2014 :
    Paper not yet in RePEc: Add citation now
  7. Downey, A. ; Lui, Y.-H. ; Hu, C. ; Laflamme, S. ; Hu, S. Physics-based prognostics of lithium-ion battery using non-linear least squares with dynamic bounds. 2019 Reliab Eng Syst Saf. 182 1-12

  8. Fei, Z. ; Zhang, Z. ; Yang, F. ; Tsui, K.-L. A deep attention-assisted and memory-augmented temporal convolutional network based model for rapid lithium-ion battery remaining useful life predictions with limited data. 2023 J Energy Storage. 62 -
    Paper not yet in RePEc: Add citation now
  9. Hsu, C.-W. ; Xiong, R. ; Chen, N.-Y. ; Li, J. ; Tsou, N.-T. Deep neural network battery life and voltage prediction by using data of one cycle only. 2022 Appl Energy. 306 -

  10. Hu, X. ; Che, Y. ; Lin, X. ; Deng, Z. Health prognosis for electric vehicle battery packs: A data-driven approach. 2020 IEEE/ASME Trans Mech. 25 2622-2632
    Paper not yet in RePEc: Add citation now
  11. Huang, N.E. ; Shen, Z. ; Long, S.R. ; Wu, M.C. ; Shih, H.H. ; Zheng, Q. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. 1998 Proc Math Phys Eng Sci. 454 903-995
    Paper not yet in RePEc: Add citation now
  12. Huang, Y. ; Tang, Y. ; VanZwieten, J. Prognostics with variational autoencoder by generative adversarial learning. 2021 IEEE Trans Ind Electron. 69 856-867
    Paper not yet in RePEc: Add citation now
  13. Le Son, K. ; Fouladirad, M. ; Barros, A. ; Levrat, E. ; Iung, B. Remaining useful life estimation based on stochastic deterioration models: A comparative study. 2013 Reliab Eng Syst Saf. 112 165-175

  14. LeCun, Y. ; Bengio, Y. ; Hinton, G. Deep learning. 2015 Nature. 521 436-444
    Paper not yet in RePEc: Add citation now
  15. Lei, Y. ; Li, N. ; Gontarz, S. ; Lin, J. ; Radkowski, S. ; Dybala, J. A model-based method for remaining useful life prediction of machinery. 2016 IEEE Trans Reliab. 65 1314-1326
    Paper not yet in RePEc: Add citation now
  16. Li, P. ; Zhang, Z. ; Grosu, R. ; Deng, Z. ; Hou, J. ; Rong, Y. An end-to-end neural network framework for state-of-health estimation and remaining useful life prediction of electric vehicle lithium batteries. 2022 Renew Sustain Energy Rev. 156 -

  17. Li, X. ; Yuan, C. ; Li, X. ; Wang, Z. State of health estimation for li-ion battery using incremental capacity analysis and Gaussian process regression. 2020 Energy. 190 -

  18. Li, X. ; Yuan, C. ; Wang, Z. State of health estimation for li-ion battery via partial incremental capacity analysis based on support vector regression. 2020 Energy. 203 -

  19. Lipu, M.H. ; Hannan, M. ; Hussain, A. ; Hoque, M. ; Ker, P.J. ; Saad, M.M. A review of state of health and remaining useful life estimation methods for lithium-ion battery in electric vehicles: Challenges and recommendations. 2018 J Cleaner Prod. 205 115-133
    Paper not yet in RePEc: Add citation now
  20. Liu, D. ; Luo, Y. ; Liu, J. ; Peng, Y. ; Guo, L. ; Pecht, M. Lithium-ion battery remaining useful life estimation based on fusion nonlinear degradation AR model and RPF algorithm. 2014 Neural Comput Appl. 25 557-572
    Paper not yet in RePEc: Add citation now
  21. Liu, H. ; Liu, Z. ; Jia, W. ; Lin, X. Remaining useful life prediction using a novel feature-attention-based end-to-end approach. 2020 IEEE Trans Ind Inform. 17 1197-1207
    Paper not yet in RePEc: Add citation now
  22. Lu, J. ; Xiong, R. ; Tian, J. ; Wang, C. ; Hsu, C.-W. ; Tsou, N.-T. Battery degradation prediction against uncertain future conditions with recurrent neural network enabled deep learning. 2022 Energy Storage Mater. 50 -
    Paper not yet in RePEc: Add citation now
  23. M., P. Battery data set. 2011 En : Center for advanced life cycle engineering CALCE. University of Maryland:
    Paper not yet in RePEc: Add citation now
  24. Ma, G. ; Zhang, Y. ; Cheng, C. ; Zhou, B. ; Yuan, Y. Remaining useful life prediction of lithium-ion batteries based on false nearest neighbors and a hybrid neural network. 2019 Appl Energy. 253 -

  25. Pan, D. ; Li, H. ; Wang, S. Transfer learning-based hybrid remaining useful life prediction for lithium-ion batteries under different stresses. 2022 IEEE Trans Instrum Meas. 71 1-10
    Paper not yet in RePEc: Add citation now
  26. Severson, K.A. ; Attia, P.M. ; Jin, N. ; Perkins, N. ; Jiang, B. ; Yang, Z. Data-driven prediction of battery cycle life before capacity degradation. 2019 Nat Energy. 4 383-391

  27. Tang, T. ; Yuan, H. A hybrid approach based on decomposition algorithm and neural network for remaining useful life prediction of lithium-ion battery. 2022 Reliab Eng Syst Saf. 217 -

  28. Tian, J. ; Xiong, R. ; Shen, W. ; Lu, J. State-of-charge estimation of LiFePO4 batteries in electric vehicles: A deep-learning enabled approach. 2021 Appl Energy. 291 -

  29. Tian, J. ; Xiong, R. ; Shen, W. ; Lu, J. ; Yang, X.-G. Deep neural network battery charging curve prediction using 30 points collected in 10 min. 2021 Joule. 5 1521-1534
    Paper not yet in RePEc: Add citation now
  30. Tong, Z. ; Miao, J. ; Tong, S. ; Lu, Y. Early prediction of remaining useful life for lithium-ion batteries based on a hybrid machine learning method. 2021 J Cleaner Prod. 317 -
    Paper not yet in RePEc: Add citation now
  31. Yan, W. ; Zhang, B. ; Zhao, G. ; Tang, S. ; Niu, G. ; Wang, X. A battery management system with a lebesgue-sampling-based extended kalman filter. 2019 IEEE Trans Ind Electron. 66 3227-3236
    Paper not yet in RePEc: Add citation now
  32. Yang, Y. A machine-learning prediction method of lithium-ion battery life based on charge process for different applications. 2021 Appl Energy. 292 -

  33. Yang, Z. ; Wang, Y. ; Kong, C. Remaining useful life prediction of lithium-ion batteries based on a mixture of ensemble empirical mode decomposition and GWO-SVR model. 2021 IEEE Trans Instrum Meas. 70 1-11
    Paper not yet in RePEc: Add citation now
  34. Yuchen, S. ; Datong, L. ; Yandong, H. ; Jinxiang, Y. ; Yu, P. Satellite lithium-ion battery remaining useful life estimation with an iterative updated RVM fused with the KF algorithm. 2018 Chin J Aeronaut. 31 31-40
    Paper not yet in RePEc: Add citation now
  35. Zhang, C. ; Zhao, S. ; He, Y. An integrated method of the future capacity and RUL prediction for lithium-ion battery pack. 2021 IEEE Trans Veh Technol. 71 2601-2613
    Paper not yet in RePEc: Add citation now
  36. Zhang, Q. ; Yang, L. ; Guo, W. ; Qiang, J. ; Peng, C. ; Li, Q. A deep learning method for lithium-ion battery remaining useful life prediction based on sparse segment data via cloud computing system. 2022 Energy. 241 -

  37. Zhang, Y. ; Tang, Q. ; Zhang, Y. ; Wang, J. ; Stimming, U. ; Lee, A.A. Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning. 2020 Nature Commun. 11 1706-

  38. Zhou, D. ; Li, Z. ; Zhu, J. ; Zhang, H. ; Hou, L. State of health monitoring and remaining useful life prediction of lithium-ion batteries based on temporal convolutional network. 2020 IEEE Access. 8 53307-53320
    Paper not yet in RePEc: Add citation now
  39. Zhou, Y. ; Huang, M. Lithium-ion batteries remaining useful life prediction based on a mixture of empirical mode decomposition and ARIMA model. 2016 Microelectron Reliab. 65 265-273
    Paper not yet in RePEc: Add citation now
  40. Zraibi, B. ; Okar, C. ; Chaoui, H. ; Mansouri, M. Remaining useful life assessment for lithium-ion batteries using CNN-LSTM-DNN hybrid method. 2021 IEEE Trans Veh Technol. 70 4252-4261
    Paper not yet in RePEc: Add citation now

Cocites

Documents in RePEc which have cited the same bibliography

  1. Multi-modal framework for battery state of health evaluation using open-source electric vehicle data. (2025). Li, Chang ; Liu, Hongao ; Song, Ziyou ; Wu, Ranglei ; Xie, Yang ; Zhang, Kai ; Hu, Xiaosong.
    In: Nature Communications.
    RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56485-7.

    Full description at Econpapers || Download paper

  2. Safety and reliability analysis of lithium-ion batteries with real-time health monitoring. (2025). Pecht, Michael ; Kong, Lingxi ; Boles, Steven Tyler ; Lin, Chun-Pang ; Bhargava, Cherry ; Naqvi, Ijaz Haider ; Khan, Ayesha.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:212:y:2025:i:c:s1364032125000814.

    Full description at Econpapers || Download paper

  3. Toward the ensemble consistency: Condition-driven ensemble balance representation learning and nonstationary anomaly detection for battery energy storage system. (2025). Chen, XU ; Yang, Jiayang ; Zhao, Chunhui.
    In: Applied Energy.
    RePEc:eee:appene:v:381:y:2025:i:c:s0306261924025443.

    Full description at Econpapers || Download paper

  4. Life prediction of on-board supercapacitor energy storage system based on gate recurrent unit neural network using sparse monitoring data. (2025). Huang, Xuelin ; Yan, Rong ; Wei, LI ; Wang, YU ; Lin, Tingrun.
    In: Applied Energy.
    RePEc:eee:appene:v:379:y:2025:i:c:s0306261924023006.

    Full description at Econpapers || Download paper

  5. Mathematical modelling of electrochemical, thermal and degradation processes in lithium-ion cells—A comprehensive review. (2024). Mehta, Rohit ; Gupta, Amit.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:192:y:2024:i:c:s136403212301122x.

    Full description at Econpapers || Download paper

  6. Deep transfer learning enables battery state of charge and state of health estimation. (2024). Yang, Yongsong ; Liu, Shizhuo ; Yu, Quanqing ; Zhao, Lijun ; Zhang, Chengming ; Nie, Yuwei ; Xu, Yuchen.
    In: Energy.
    RePEc:eee:energy:v:294:y:2024:i:c:s0360544224005516.

    Full description at Econpapers || Download paper

  7. A novel method of battery pack energy health estimation based on visual feature learning. (2024). Zhang, Yanru ; Fan, Xinyuan ; Zhao, BO ; Sun, Bingxiang.
    In: Energy.
    RePEc:eee:energy:v:293:y:2024:i:c:s0360544224004286.

    Full description at Econpapers || Download paper

  8. Lithium-ion battery capacity estimation based on fragment charging data using deep residual shrinkage networks and uncertainty evaluation. (2024). Li, Qingbo ; Pan, Long ; Xie, Jingying ; Lai, Chunyan ; Ma, Changjun ; Zhu, Yunpeng ; Lu, Taolin.
    In: Energy.
    RePEc:eee:energy:v:290:y:2024:i:c:s0360544223036022.

    Full description at Econpapers || Download paper

  9. A hybrid deep learning approach for remaining useful life prediction of lithium-ion batteries based on discharging fragments. (2024). Chen, Zhongwei ; Mao, Zhiyu ; Liu, Yunpeng ; Ahmed, Moin ; Feng, Jiangtao ; Hou, BO.
    In: Applied Energy.
    RePEc:eee:appene:v:358:y:2024:i:c:s0306261923019190.

    Full description at Econpapers || Download paper

  10. Improved electric-thermal-aging multi-physics domain coupling modeling and identification decoupling of complex kinetic processes based on timescale quantification in lithium-ion batteries. (2024). Zhang, Mengyun ; Wang, Liping ; Liang, Jianhong ; Shi, Haotian ; Qi, Chuangshi ; Fernandez, Carlos ; Huang, QI.
    In: Applied Energy.
    RePEc:eee:appene:v:353:y:2024:i:pb:s0306261923015386.

    Full description at Econpapers || Download paper

  11. Data-driven capacity estimation for lithium-ion batteries with feature matching based transfer learning method. (2024). Zhang, Xuan ; Fu, Shiyi ; Tao, Shengyu ; He, Kun ; Zuo, Junxiong ; Fan, Hongtao ; Wang, YU ; Sun, Yaojie ; Liu, Xutao.
    In: Applied Energy.
    RePEc:eee:appene:v:353:y:2024:i:pa:s0306261923013557.

    Full description at Econpapers || Download paper

  12. Data-Driven GWO-BRNN-Based SOH Estimation of Lithium-Ion Batteries in EVs for Their Prognostics and Health Management. (2023). Waseem, Muhammad ; Huang, Jingyuan ; Wong, Chak-Nam ; C. K. M. Lee, .
    In: Mathematics.
    RePEc:gam:jmathe:v:11:y:2023:i:20:p:4263-:d:1258573.

    Full description at Econpapers || Download paper

  13. Electrochemical Impedance Spectroscopy: A New Chapter in the Fast and Accurate Estimation of the State of Health for Lithium-Ion Batteries. (2023). Liu, Yanshuo ; Cui, Xiaoli ; Zhang, Ming ; Wang, Licheng.
    In: Energies.
    RePEc:gam:jeners:v:16:y:2023:i:4:p:1599-:d:1058666.

    Full description at Econpapers || Download paper

  14. Deep feature extraction in lifetime prognostics of lithium-ion batteries: Advances, challenges and perspectives. (2023). Bai, Yun ; Yang, Shuai ; Ding, Ping ; Zhang, Huahua ; Li, Chuan.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:184:y:2023:i:c:s1364032123004331.

    Full description at Econpapers || Download paper

  15. Optimal dispatch approach for second-life batteries considering degradation with online SoH estimation. (2023). Zhang, Xuan ; Cheng, Ming ; Sun, Hongbin ; Wei, Guodan ; Ran, Aihua.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:173:y:2023:i:c:s1364032122009340.

    Full description at Econpapers || Download paper

  16. State of health estimation of the lithium-ion power battery based on the principal component analysis-particle swarm optimization-back propagation neural network. (2023). Wang, Yuqing ; Zhong, Yiming ; Wu, Muyao.
    In: Energy.
    RePEc:eee:energy:v:283:y:2023:i:c:s0360544223024556.

    Full description at Econpapers || Download paper

  17. State of health estimation of the LiFePO4 power battery based on the forgetting factor recursive Total Least Squares and the temperature correction. (2023). Wu, Muyao ; Wang, LI.
    In: Energy.
    RePEc:eee:energy:v:282:y:2023:i:c:s0360544223018315.

    Full description at Econpapers || Download paper

  18. State of health estimation with attentional long short-term memory network for lithium-ion batteries. (2023). Wang, Wei ; Lin, Mingqiang ; Wu, JI ; Meng, Jinhao.
    In: Energy.
    RePEc:eee:energy:v:268:y:2023:i:c:s0360544223001007.

    Full description at Econpapers || Download paper

  19. An efficient and robust method for lithium-ion battery capacity estimation using constant-voltage charging time. (2023). Cai, Yingfeng ; Li, Xin ; Sun, Xiaodong ; Yang, Jufeng ; Mi, Chris.
    In: Energy.
    RePEc:eee:energy:v:263:y:2023:i:pb:s0360544222026299.

    Full description at Econpapers || Download paper

  20. Neural network extended state-observer for energy system monitoring. (2023). Zhang, Zuoyi ; Cheng, Zhonghua ; Dong, Zhe ; Zhu, Yunlong ; Huang, Xiaojin.
    In: Energy.
    RePEc:eee:energy:v:263:y:2023:i:pa:s0360544222026226.

    Full description at Econpapers || Download paper

  21. State-of-health estimation for lithium-ion batteries with hierarchical feature construction and auto-configurable Gaussian process regression. (2023). Cui, Ningmin ; Cai, Lei ; Li, Junxin ; Meng, Jinhao ; Peng, Jichang ; Jin, Haiyan ; Zhao, Xinchao.
    In: Energy.
    RePEc:eee:energy:v:262:y:2023:i:pb:s0360544222023854.

    Full description at Econpapers || Download paper

  22. Transferable data-driven capacity estimation for lithium-ion batteries with deep learning: A case study from laboratory to field applications. (2023). Cai, Xue ; Li, Weihan ; Wang, Qiao ; Ye, Min ; Sauer, Dirk Uwe.
    In: Applied Energy.
    RePEc:eee:appene:v:350:y:2023:i:c:s030626192301111x.

    Full description at Econpapers || Download paper

  23. Electrochemical Impedance Spectroscopy Based on the State of Health Estimation for Lithium-Ion Batteries. (2022). Li, Liwei ; Wang, Licheng ; Yang, Dongfang.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:18:p:6665-:d:913208.

    Full description at Econpapers || Download paper

  24. Battery capacity trajectory prediction by capturing the correlation between different vehicles. (2022). Deng, Zhongwei ; Xie, YI ; Li, Jinwen ; Liu, Hongao ; Lu, Chen.
    In: Energy.
    RePEc:eee:energy:v:260:y:2022:i:c:s0360544222020175.

    Full description at Econpapers || Download paper

  25. Data efficient health prognostic for batteries based on sequential information-driven probabilistic neural network. (2022). Yang, Yalian ; Sui, Xin ; Hu, Xiaosong ; Teodorescu, Remus ; Bharadwaj, Pallavi ; Stroe, Daniel-Ioan ; Zheng, Yusheng ; Che, Yunhong ; Wu, Yue.
    In: Applied Energy.
    RePEc:eee:appene:v:323:y:2022:i:c:s0306261922009618.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-10-04 15:57:49 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.