Abdoos, A.A. ; Abdoos, H. ; Kazemitabar, J. ; Mobashsher, M.M. ; Khaloo, H. An intelligent hybrid method based on Monte Carlo simulation for short-term probabilistic wind power prediction. 2023 Energy. 278 -
- Ahmad, T. ; Zhang, D. ; Huang, C. ; Zhang, H. ; Dai, N. ; Song, Y. Artificial intelligence in sustainable energy industry: Status Quo, challenges and opportunities. 2021 J Clean Prod. 289 -
Paper not yet in RePEc: Add citation now
- Arjovsky, M. ; Chintala, S. ; Bottou, L. Wasserstein generative adversarial networks. 2017 En : International conference on machine learning, PMLR. :
Paper not yet in RePEc: Add citation now
- Chen Y, Li P, Zhang B. Bayesian renewables scenario generation via deep generative networks. In: 2018 52nd annual conference on information sciences and systems, IEEE 2018:1–6.
Paper not yet in RePEc: Add citation now
- Chen, X. ; Duan, Y. ; Houthooft, R. ; Schulman, J. ; Sutskever, I. ; Abbeel, P. Infogan: interpretable representation learning by information maximizing generative adversarial nets. 2016 Adv Neural Inform Process Syst. 29 -
Paper not yet in RePEc: Add citation now
- Chen, Y. ; Wang, Y. ; Kirschen, D. ; Zhang, B. Model-free renewable scenario generation using generative adversarial networks. 2018 IEEE Trans Power Syst. 33 3265-3275
Paper not yet in RePEc: Add citation now
- Cramer, E. ; Gorjao, L.R. ; Mitsos, A. ; Schäfer, B. ; Witthaut, D. ; Dahmen, M. Validation methods for energy time series scenarios from deep generative models. 2022 IEEE Access. 10 8194-8207
Paper not yet in RePEc: Add citation now
- Cramer, E. ; Paeleke, L. ; Mitsos, A. ; Dahmen, M. Normalizing flow-based day-ahead wind power scenario generation for profitable and reliable delivery commitments by wind farm operators. 2022 Comput Chem Eng. 166 -
Paper not yet in RePEc: Add citation now
- Cremer, J.L. ; Konstantelos, I. ; Strbac, G. From optimization-based machine learning to interpretable security rules for operation. 2019 IEEE Trans Power Syst. 34 3826-3836
Paper not yet in RePEc: Add citation now
- Delikaraoglou, S. ; Pinson, P. High-quality wind power scenario forecasts for decision-making under uncertainty in power systems. 2014 En : 13th International workshop on large-scale integration of wind power into power systems as well as on transmission networks for offshore wind power, WIW. :
Paper not yet in RePEc: Add citation now
Dong, W. ; Chen, X. ; Yang, Q. Data-driven scenario generation of renewable energy production based on controllable generative adversarial networks with interpretability. 2022 Appl Energy. 308 -
Dumas, J. ; Wehenkel, A. ; Lanaspeze, D. ; Cornélusse, B. ; Sutera, A. A deep generative model for probabilistic energy forecasting in power systems: normalizing flows. 2022 Appl Energy. 305 -
- Goodfellow, I. ; Bengio, Y. ; Courville, A. Deep learning. 2016 MIT Press:
Paper not yet in RePEc: Add citation now
- Goodfellow, I. ; Pouget-Abadie, J. ; Mirza, M. ; Xu, B. ; Warde-Farley, D. ; Ozair, S. Generative adversarial nets. 2014 Adv Neural Inform Process Syst. 27 2672-2780
Paper not yet in RePEc: Add citation now
- Jiang, C. ; Chai, Y. ; Yu, M. ; Tao, S.B. Scenario generation for wind power using improved generative adversarial networks. 2018 IEEE Access. 6 62193-62203
Paper not yet in RePEc: Add citation now
- Kim, J.Y. ; Cho, S.B. Explainable prediction of electric energy demand using a deep autoencoder with interpretable latent space. 2021 Expert Syst Appl. 186 -
Paper not yet in RePEc: Add citation now
- Kingma, D.P. ; Welling, M. Auto-encoding variational bayes. 2013 :
Paper not yet in RePEc: Add citation now
- Kobyzev, I. ; Prince, S.J.D. ; Brubaker, M.A. Normalizing flows: an introduction and review of current methods. 2020 IEEE Trans Pattern Anal Mach Intell. 43 3964-3979
Paper not yet in RePEc: Add citation now
- Kobyzev, I. ; Prince, S.J.D. ; Brubaker, M.A. Normalizing flows: an introduction and review of current methods. 2020 IEEE Trans Pattern Anal Mach Intell. 43 3964-3979
Paper not yet in RePEc: Add citation now
Krishna, A.B. ; Abhyankar, A.R. Time-coupled day-ahead wind power scenario generation: a combined regular vine copula and variance reduction method. 2023 Energy. 265 -
- Kullback, S. ; Leibler, R.A. On information and sufficiency. 1951 Ann Math Stat. 22 79-86
Paper not yet in RePEc: Add citation now
Lai, C.S. ; Jia, Y. ; Lai, L.L. ; Xu, Z. ; McCulloch, M.D. ; Wong, K.P. A comprehensive review on large-scale photovoltaic system with applications of electrical energy storage. 2017 Renew Sustain Energy Rev. 78 439-451
- Lee, D. ; Baldick, R. Load and wind power scenario generation through the generalized dynamic factor model. 2016 IEEE Trans Power Syst. 32 400-410
Paper not yet in RePEc: Add citation now
- Lee, M. ; Seok, J. Controllable generative adversarial network. 2019 IEEE Access. 7 28158-28169
Paper not yet in RePEc: Add citation now
Li, J. ; Zhou, J. ; Chen, B. Review of wind power scenario generation methods for optimal operation of renewable energy systems. 2020 Appl Energy. 280 -
- Liang, J. ; Tang, W. Sequence generative adversarial networks for wind power scenario generation. 2019 IEEE J Sel Areas Commun. 38 110-118
Paper not yet in RePEc: Add citation now
- Liang, X. ; Hao, W. Synthesis of realistic load data: Adversarial networks for learning and generating residential load patterns. 2022 En : Tackling climate change with machine learning 2022, NIPS. :
Paper not yet in RePEc: Add citation now
Long, S. ; Marjanovic, O. ; Parisiov, A. Generalised control-oriented modelling framework for multi-energy systems. 2019 Appl Energy. 235 320-331
- Machlev, R. ; Heistrene, L. ; Perl, M. ; Levy, K.Y. ; Belikov, J. ; Mannor, S. Explainable artificial intelligence (XAI) techniques for energy and power systems: review, challenges and opportunities. 2022 Energy AI. 9 -
Paper not yet in RePEc: Add citation now
- Mirza, M. ; Osindero, S. Conditional generative adversarial nets. 2014 Comput Sci. 2672-2680
Paper not yet in RePEc: Add citation now
- Miyato, T. ; Kataoka, T. ; Koyama, M. ; Yoshida, Y. Spectral normalization for generative adversarial networks. 2018 :
Paper not yet in RePEc: Add citation now
- Papaefthymio, G. ; Kurowicka, D. Using copulas for modeling stochastic dependence in power system uncertainty analysis. 2008 IEEE Trans Power Syst. 24 40-49
Paper not yet in RePEc: Add citation now
- Papamakarios, G. ; Nalisnick, E. ; Rezende, D.J. ; Mohamed, S. ; Lakshminarayanan, B. Normalizing flows for probabilistic modeling and inference. 2021 J Mach Learn Res. 22 2617-2680
Paper not yet in RePEc: Add citation now
- Qiao, J. ; Pu, T. ; Wang, X. Renewable scenario generation using controllable generative adversarial networks with transparent latent space. 2021 CSEE J Power Energy Syst. 7 66-77
Paper not yet in RePEc: Add citation now
- Radford, A. ; Metz, L. ; Chintala, S. Unsupervised representation learning with deep convolutional generative adversarial networks. 2015 Comput Sci. -
Paper not yet in RePEc: Add citation now
- Saatci, Y. ; Andrew, G.W. Bayesian GAN. 2017 Adv Neural Inform Process Syst. 30 -
Paper not yet in RePEc: Add citation now
Sun, M. ; Cremer, J. ; Strbac, G. A novel data-driven scenario generation framework for transmission expansion planning with high renewable energy penetration. 2018 Appl Energy. 228 546-555
- Togelou, A. ; Sideratos, G. ; Hatziargyriou, N.D. Wind power forecasting in the absence of historical data. 2012 IEEE Trans Sustain Energy. 3 416-421
Paper not yet in RePEc: Add citation now
- Veena, R. ; Mathew, S. ; Petra, M.I. Artificially intelligent models for the site-specific performance of wind turbines. 2020 Int J Energy Environ Eng. 11 289-297
Paper not yet in RePEc: Add citation now
- Wu, K. ; Peng, X. ; Li, Z. ; Cui, W. ; Yuan, H. ; Lai, C.S. A short-term photovoltaic power forecasting method combining a deep learning model with trend feature extraction and feature selection. 2022 Energies. 15-
Paper not yet in RePEc: Add citation now
- Ye, F. ; Bors, A.G. Learning joint latent representations based on information maximization. 2021 Inform Sci. 567 216-236
Paper not yet in RePEc: Add citation now
- Yin, X. ; Han, Y. ; Xu, Z. ; Liu, J. VAECGAN: a generating framework for long-term prediction in multivariate time series. 2021 Cybersecurity. 4 1-12
Paper not yet in RePEc: Add citation now
- Yoshida, Y. ; Miyato, T. Spectral norm regularization for improving the generalizability of deep learning. 2017 :
Paper not yet in RePEc: Add citation now
- Yu L, Zhang W, Wang J, Yu Y. Seqgan: Sequence generative adversarial nets with policy gradient. In: Proceedings of the AAAI conference on artificial intelligence 2017;31(1).
Paper not yet in RePEc: Add citation now
- Yu, H. ; Chung, C. ; Wong, K. ; Lee, H. ; Zhang, J. Probabilistic load flow evaluation with hybrid latin hypercube sampling and Cholesky decomposition. 2009 IEEE Trans Power Syst. 24 661-667
Paper not yet in RePEc: Add citation now
- Zhang, S. ; Cheng, H. ; Li, K. ; Bazargan, M. ; Yao, L. Optimal siting and sizing of intermittent distributed generators in distribution system. 2015 IEEJ Trans Electric Electron Eng. 10 628-635
Paper not yet in RePEc: Add citation now
- Zhang, Y. ; Ai, Q. ; Wang, H. ; Li, Z. ; Zhou, X. Energy theft detection in an edge data center using threshold-based abnormality detector. 2020 Int J Electric Power Energy Syst. 121 -
Paper not yet in RePEc: Add citation now
- Zhang, Y. ; Ai, Q. ; Xiao, F. ; Hao, R. ; Lu, T. Typical wind power scenario generation for multiple wind farms using conditional improved wasserstein generative adversarial network. 2020 Int J Electric Power Energy Syst. 114 -
Paper not yet in RePEc: Add citation now