create a website

A novel scenario generation method of renewable energy using improved VAEGAN with controllable interpretable features. (2024). Peng, Xiangang ; Cui, Wenbo ; Lai, Loi Lei ; Liu, Jianan ; Yuan, Haoliang ; Xu, Yilin.
In: Applied Energy.
RePEc:eee:appene:v:363:y:2024:i:c:s0306261924002885.

Full description at Econpapers || Download paper

Cited: 3

Citations received by this document

Cites: 48

References cited by this document

Cocites: 37

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. Complementary operation optimization of cascade hydropower reservoirs and photovoltaic energy using cooperation search algorithm and conditional generative adversarial networks. (2025). Feng, Zhong-Kai ; Wang, Xin ; Niu, Wen-Jing.
    In: Energy.
    RePEc:eee:energy:v:328:y:2025:i:c:s036054422502167x.

    Full description at Econpapers || Download paper

  2. Short-Term Output Scenario Generation of Renewable Energy Using Transformer–Wasserstein Generative Adversarial Nets-Gradient Penalty. (2024). Yu, YI ; Hua, Xiaojun ; Deng, Youhan ; Ke, Deping ; Xu, Jian ; Gu, Liuqing.
    In: Sustainability.
    RePEc:gam:jsusta:v:16:y:2024:i:24:p:10936-:d:1543102.

    Full description at Econpapers || Download paper

  3. Performance comparison on improved data-driven building energy prediction under data shortage scenarios in four perspectives: Data generation, incremental learning, transfer learning, and physics-informed. (2024). Fang, XI ; Gao, Jiajia ; Xu, Chengliang ; He, Xin ; Deng, Jiahui ; Xiong, Chenglong ; Zhan, Lei ; Li, Guannan.
    In: Energy.
    RePEc:eee:energy:v:312:y:2024:i:c:s0360544224034182.

    Full description at Econpapers || Download paper

References

References cited by this document

  1. Abdoos, A.A. ; Abdoos, H. ; Kazemitabar, J. ; Mobashsher, M.M. ; Khaloo, H. An intelligent hybrid method based on Monte Carlo simulation for short-term probabilistic wind power prediction. 2023 Energy. 278 -

  2. Ahmad, T. ; Zhang, D. ; Huang, C. ; Zhang, H. ; Dai, N. ; Song, Y. Artificial intelligence in sustainable energy industry: Status Quo, challenges and opportunities. 2021 J Clean Prod. 289 -
    Paper not yet in RePEc: Add citation now
  3. Arjovsky, M. ; Chintala, S. ; Bottou, L. Wasserstein generative adversarial networks. 2017 En : International conference on machine learning, PMLR. :
    Paper not yet in RePEc: Add citation now
  4. Chen Y, Li P, Zhang B. Bayesian renewables scenario generation via deep generative networks. In: 2018 52nd annual conference on information sciences and systems, IEEE 2018:1–6.
    Paper not yet in RePEc: Add citation now
  5. Chen, X. ; Duan, Y. ; Houthooft, R. ; Schulman, J. ; Sutskever, I. ; Abbeel, P. Infogan: interpretable representation learning by information maximizing generative adversarial nets. 2016 Adv Neural Inform Process Syst. 29 -
    Paper not yet in RePEc: Add citation now
  6. Chen, Y. ; Wang, Y. ; Kirschen, D. ; Zhang, B. Model-free renewable scenario generation using generative adversarial networks. 2018 IEEE Trans Power Syst. 33 3265-3275
    Paper not yet in RePEc: Add citation now
  7. Cramer, E. ; Gorjao, L.R. ; Mitsos, A. ; Schäfer, B. ; Witthaut, D. ; Dahmen, M. Validation methods for energy time series scenarios from deep generative models. 2022 IEEE Access. 10 8194-8207
    Paper not yet in RePEc: Add citation now
  8. Cramer, E. ; Paeleke, L. ; Mitsos, A. ; Dahmen, M. Normalizing flow-based day-ahead wind power scenario generation for profitable and reliable delivery commitments by wind farm operators. 2022 Comput Chem Eng. 166 -
    Paper not yet in RePEc: Add citation now
  9. Cremer, J.L. ; Konstantelos, I. ; Strbac, G. From optimization-based machine learning to interpretable security rules for operation. 2019 IEEE Trans Power Syst. 34 3826-3836
    Paper not yet in RePEc: Add citation now
  10. Delikaraoglou, S. ; Pinson, P. High-quality wind power scenario forecasts for decision-making under uncertainty in power systems. 2014 En : 13th International workshop on large-scale integration of wind power into power systems as well as on transmission networks for offshore wind power, WIW. :
    Paper not yet in RePEc: Add citation now
  11. Dong, W. ; Chen, X. ; Yang, Q. Data-driven scenario generation of renewable energy production based on controllable generative adversarial networks with interpretability. 2022 Appl Energy. 308 -

  12. Dumas, J. ; Wehenkel, A. ; Lanaspeze, D. ; Cornélusse, B. ; Sutera, A. A deep generative model for probabilistic energy forecasting in power systems: normalizing flows. 2022 Appl Energy. 305 -

  13. Goodfellow, I. ; Bengio, Y. ; Courville, A. Deep learning. 2016 MIT Press:
    Paper not yet in RePEc: Add citation now
  14. Goodfellow, I. ; Pouget-Abadie, J. ; Mirza, M. ; Xu, B. ; Warde-Farley, D. ; Ozair, S. Generative adversarial nets. 2014 Adv Neural Inform Process Syst. 27 2672-2780
    Paper not yet in RePEc: Add citation now
  15. Jiang, C. ; Chai, Y. ; Yu, M. ; Tao, S.B. Scenario generation for wind power using improved generative adversarial networks. 2018 IEEE Access. 6 62193-62203
    Paper not yet in RePEc: Add citation now
  16. Kim, J.Y. ; Cho, S.B. Explainable prediction of electric energy demand using a deep autoencoder with interpretable latent space. 2021 Expert Syst Appl. 186 -
    Paper not yet in RePEc: Add citation now
  17. Kingma, D.P. ; Welling, M. Auto-encoding variational bayes. 2013 :
    Paper not yet in RePEc: Add citation now
  18. Kobyzev, I. ; Prince, S.J.D. ; Brubaker, M.A. Normalizing flows: an introduction and review of current methods. 2020 IEEE Trans Pattern Anal Mach Intell. 43 3964-3979
    Paper not yet in RePEc: Add citation now
  19. Kobyzev, I. ; Prince, S.J.D. ; Brubaker, M.A. Normalizing flows: an introduction and review of current methods. 2020 IEEE Trans Pattern Anal Mach Intell. 43 3964-3979
    Paper not yet in RePEc: Add citation now
  20. Krishna, A.B. ; Abhyankar, A.R. Time-coupled day-ahead wind power scenario generation: a combined regular vine copula and variance reduction method. 2023 Energy. 265 -

  21. Kullback, S. ; Leibler, R.A. On information and sufficiency. 1951 Ann Math Stat. 22 79-86
    Paper not yet in RePEc: Add citation now
  22. Lai, C.S. ; Jia, Y. ; Lai, L.L. ; Xu, Z. ; McCulloch, M.D. ; Wong, K.P. A comprehensive review on large-scale photovoltaic system with applications of electrical energy storage. 2017 Renew Sustain Energy Rev. 78 439-451

  23. Lee, D. ; Baldick, R. Load and wind power scenario generation through the generalized dynamic factor model. 2016 IEEE Trans Power Syst. 32 400-410
    Paper not yet in RePEc: Add citation now
  24. Lee, M. ; Seok, J. Controllable generative adversarial network. 2019 IEEE Access. 7 28158-28169
    Paper not yet in RePEc: Add citation now
  25. Li, J. ; Zhou, J. ; Chen, B. Review of wind power scenario generation methods for optimal operation of renewable energy systems. 2020 Appl Energy. 280 -

  26. Liang, J. ; Tang, W. Sequence generative adversarial networks for wind power scenario generation. 2019 IEEE J Sel Areas Commun. 38 110-118
    Paper not yet in RePEc: Add citation now
  27. Liang, X. ; Hao, W. Synthesis of realistic load data: Adversarial networks for learning and generating residential load patterns. 2022 En : Tackling climate change with machine learning 2022, NIPS. :
    Paper not yet in RePEc: Add citation now
  28. Long, S. ; Marjanovic, O. ; Parisiov, A. Generalised control-oriented modelling framework for multi-energy systems. 2019 Appl Energy. 235 320-331

  29. Machlev, R. ; Heistrene, L. ; Perl, M. ; Levy, K.Y. ; Belikov, J. ; Mannor, S. Explainable artificial intelligence (XAI) techniques for energy and power systems: review, challenges and opportunities. 2022 Energy AI. 9 -
    Paper not yet in RePEc: Add citation now
  30. Mirza, M. ; Osindero, S. Conditional generative adversarial nets. 2014 Comput Sci. 2672-2680
    Paper not yet in RePEc: Add citation now
  31. Miyato, T. ; Kataoka, T. ; Koyama, M. ; Yoshida, Y. Spectral normalization for generative adversarial networks. 2018 :
    Paper not yet in RePEc: Add citation now
  32. Papaefthymio, G. ; Kurowicka, D. Using copulas for modeling stochastic dependence in power system uncertainty analysis. 2008 IEEE Trans Power Syst. 24 40-49
    Paper not yet in RePEc: Add citation now
  33. Papamakarios, G. ; Nalisnick, E. ; Rezende, D.J. ; Mohamed, S. ; Lakshminarayanan, B. Normalizing flows for probabilistic modeling and inference. 2021 J Mach Learn Res. 22 2617-2680
    Paper not yet in RePEc: Add citation now
  34. Qiao, J. ; Pu, T. ; Wang, X. Renewable scenario generation using controllable generative adversarial networks with transparent latent space. 2021 CSEE J Power Energy Syst. 7 66-77
    Paper not yet in RePEc: Add citation now
  35. Radford, A. ; Metz, L. ; Chintala, S. Unsupervised representation learning with deep convolutional generative adversarial networks. 2015 Comput Sci. -
    Paper not yet in RePEc: Add citation now
  36. Saatci, Y. ; Andrew, G.W. Bayesian GAN. 2017 Adv Neural Inform Process Syst. 30 -
    Paper not yet in RePEc: Add citation now
  37. Sun, M. ; Cremer, J. ; Strbac, G. A novel data-driven scenario generation framework for transmission expansion planning with high renewable energy penetration. 2018 Appl Energy. 228 546-555

  38. Togelou, A. ; Sideratos, G. ; Hatziargyriou, N.D. Wind power forecasting in the absence of historical data. 2012 IEEE Trans Sustain Energy. 3 416-421
    Paper not yet in RePEc: Add citation now
  39. Veena, R. ; Mathew, S. ; Petra, M.I. Artificially intelligent models for the site-specific performance of wind turbines. 2020 Int J Energy Environ Eng. 11 289-297
    Paper not yet in RePEc: Add citation now
  40. Wu, K. ; Peng, X. ; Li, Z. ; Cui, W. ; Yuan, H. ; Lai, C.S. A short-term photovoltaic power forecasting method combining a deep learning model with trend feature extraction and feature selection. 2022 Energies. 15-
    Paper not yet in RePEc: Add citation now
  41. Ye, F. ; Bors, A.G. Learning joint latent representations based on information maximization. 2021 Inform Sci. 567 216-236
    Paper not yet in RePEc: Add citation now
  42. Yin, X. ; Han, Y. ; Xu, Z. ; Liu, J. VAECGAN: a generating framework for long-term prediction in multivariate time series. 2021 Cybersecurity. 4 1-12
    Paper not yet in RePEc: Add citation now
  43. Yoshida, Y. ; Miyato, T. Spectral norm regularization for improving the generalizability of deep learning. 2017 :
    Paper not yet in RePEc: Add citation now
  44. Yu L, Zhang W, Wang J, Yu Y. Seqgan: Sequence generative adversarial nets with policy gradient. In: Proceedings of the AAAI conference on artificial intelligence 2017;31(1).
    Paper not yet in RePEc: Add citation now
  45. Yu, H. ; Chung, C. ; Wong, K. ; Lee, H. ; Zhang, J. Probabilistic load flow evaluation with hybrid latin hypercube sampling and Cholesky decomposition. 2009 IEEE Trans Power Syst. 24 661-667
    Paper not yet in RePEc: Add citation now
  46. Zhang, S. ; Cheng, H. ; Li, K. ; Bazargan, M. ; Yao, L. Optimal siting and sizing of intermittent distributed generators in distribution system. 2015 IEEJ Trans Electric Electron Eng. 10 628-635
    Paper not yet in RePEc: Add citation now
  47. Zhang, Y. ; Ai, Q. ; Wang, H. ; Li, Z. ; Zhou, X. Energy theft detection in an edge data center using threshold-based abnormality detector. 2020 Int J Electric Power Energy Syst. 121 -
    Paper not yet in RePEc: Add citation now
  48. Zhang, Y. ; Ai, Q. ; Xiao, F. ; Hao, R. ; Lu, T. Typical wind power scenario generation for multiple wind farms using conditional improved wasserstein generative adversarial network. 2020 Int J Electric Power Energy Syst. 114 -
    Paper not yet in RePEc: Add citation now

Cocites

Documents in RePEc which have cited the same bibliography

  1. A Two-Stage Hidden Markov Model for Medium- to Long-Term Multiple Wind Farm Power Scenario Generation. (2025). Yang, Chengwei ; Liu, Jun ; You, Zuowei ; Lin, Lingxue.
    In: Energies.
    RePEc:gam:jeners:v:18:y:2025:i:8:p:1917-:d:1631385.

    Full description at Econpapers || Download paper

  2. Statistical Foundations of Generative AI for Optimal Control Problems in Power Systems: Comprehensive Review and Future Directions. (2025). Ginzburg-Ganz, Elinor ; Horodi, Eden Dina ; Shadafny, Omar ; Savir, Uri ; MacHlev, Ram ; Levron, Yoash.
    In: Energies.
    RePEc:gam:jeners:v:18:y:2025:i:10:p:2461-:d:1653296.

    Full description at Econpapers || Download paper

  3. A comprehensive wind power prediction system based on correct multiscale clustering ensemble, similarity matching, and improved whale optimization algorithm—A case study in China. (2025). Yu, Chunsheng.
    In: Renewable Energy.
    RePEc:eee:renene:v:243:y:2025:i:c:s0960148125001910.

    Full description at Econpapers || Download paper

  4. Complementary operation optimization of cascade hydropower reservoirs and photovoltaic energy using cooperation search algorithm and conditional generative adversarial networks. (2025). Feng, Zhong-Kai ; Wang, Xin ; Niu, Wen-Jing.
    In: Energy.
    RePEc:eee:energy:v:328:y:2025:i:c:s036054422502167x.

    Full description at Econpapers || Download paper

  5. Demand response of PEV networks by dynamic distributed pinning control scheme. (2025). Yu, Jie ; Lai, Meiyi ; Fan, Yueyun ; Hu, Jianqiang.
    In: Energy.
    RePEc:eee:energy:v:317:y:2025:i:c:s0360544225002543.

    Full description at Econpapers || Download paper

  6. Low-carbon planning for integrated power-gas-hydrogen system with Wasserstein-distance based scenario generation method. (2025). Wang, Hong ; Qiu, Jing ; Wu, Ting ; Zhang, Xian ; Wen, Ziyi.
    In: Energy.
    RePEc:eee:energy:v:316:y:2025:i:c:s0360544225000301.

    Full description at Econpapers || Download paper

  7. Weather-informed probabilistic forecasting and scenario generation in power systems. (2025). van Hentenryck, Pascal ; Tanneau, Mathieu ; Zandehshahvar, Reza ; Zhang, Hanyu.
    In: Applied Energy.
    RePEc:eee:appene:v:384:y:2025:i:c:s0306261925000996.

    Full description at Econpapers || Download paper

  8. Revolutionizing solar energy resources: The central role of generative AI in elevating system sustainability and efficiency. (2025). Mousavi, Arash ; Fekih, Afef ; Alfi, Alireza ; Kucukdemiral, Ibrahim Beklan ; Arab, Aliasghar ; Tavasoli, Mahsa.
    In: Applied Energy.
    RePEc:eee:appene:v:382:y:2025:i:c:s0306261925000261.

    Full description at Econpapers || Download paper

  9. Deep generative models in energy system applications: Review, challenges, and future directions. (2025). King, Ryan N ; Emami, Patrick ; Zhang, Xiangyu ; Cortiella, Alexandre ; Glaws, Andrew.
    In: Applied Energy.
    RePEc:eee:appene:v:380:y:2025:i:c:s0306261924024437.

    Full description at Econpapers || Download paper

  10. Data-driven climate resilience assessment for distributed energy systems using diffusion transformer and polynomial expansions. (2025). Tan, Qinliang ; He, Jiaming ; Lv, Hanyu.
    In: Applied Energy.
    RePEc:eee:appene:v:380:y:2025:i:c:s0306261924023407.

    Full description at Econpapers || Download paper

  11. A novel conditional diffusion model for joint source-load scenario generation considering both diversity and controllability. (2025). Lu, Xinhui ; Yang, Shanlin ; Shao, Zhen ; Zhao, Wei.
    In: Applied Energy.
    RePEc:eee:appene:v:377:y:2025:i:pc:s030626192401938x.

    Full description at Econpapers || Download paper

  12. An Adaptive Distributionally Robust Optimization Approach for Optimal Sizing of Hybrid Renewable Energy Systems. (2024). Keyvandarian, Ali ; Saif, Ahmed.
    In: Journal of Optimization Theory and Applications.
    RePEc:spr:joptap:v:203:y:2024:i:2:d:10.1007_s10957-024-02518-y.

    Full description at Econpapers || Download paper

  13. Short-Term Output Scenario Generation of Renewable Energy Using Transformer–Wasserstein Generative Adversarial Nets-Gradient Penalty. (2024). Yu, YI ; Hua, Xiaojun ; Deng, Youhan ; Ke, Deping ; Xu, Jian ; Gu, Liuqing.
    In: Sustainability.
    RePEc:gam:jsusta:v:16:y:2024:i:24:p:10936-:d:1543102.

    Full description at Econpapers || Download paper

  14. Leveraging the Synergy of Digital Twins and Artificial Intelligence for Sustainable Power Grids: A Scoping Review. (2024). Hewapathirana, Kushan ; Sun, Yuan ; Alahakoon, Damminda ; Ranawaka, Ama.
    In: Energies.
    RePEc:gam:jeners:v:17:y:2024:i:21:p:5342-:d:1507745.

    Full description at Econpapers || Download paper

  15. Scenario Generation Based on Ant Colony Optimization for Modelling Stochastic Variables in Power Systems. (2024). Guerrero, Juan Ignacio ; Valderrama, Daniel Fernndez ; de Mora, Carlos Len ; Robba, Michela.
    In: Energies.
    RePEc:gam:jeners:v:17:y:2024:i:21:p:5293-:d:1505966.

    Full description at Econpapers || Download paper

  16. Generating synthetic energy time series: A review. (2024). Phipps, K ; Springer, L ; Weingrtner, L ; Heidrich, B ; Turowski, M ; Hagenmeyer, V ; Mikut, R ; Schfer, B.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:206:y:2024:i:c:s1364032124005689.

    Full description at Econpapers || Download paper

  17. Net-zero carbon emission oriented Bi-level optimal capacity planning of integrated energy system considering carbon capture and hydrogen facilities. (2024). Yang, Qiang ; Dong, Wei ; Chen, Xianqing.
    In: Renewable Energy.
    RePEc:eee:renene:v:237:y:2024:i:pb:s0960148124016926.

    Full description at Econpapers || Download paper

  18. Design optimization of community energy systems based on dual uncertainties of meteorology and load for robustness improvement. (2024). Zhang, Shuo ; Zhao, Quanbin ; Ou, Kejie ; Xue, Kai ; Wang, Jinshi ; Hu, Guangtao ; Sun, Zhiyong ; Chen, Weixiong.
    In: Renewable Energy.
    RePEc:eee:renene:v:232:y:2024:i:c:s0960148124010243.

    Full description at Econpapers || Download paper

  19. Flexibility-based expansion planning of active distribution networks considering optimal operation of multi-community integrated energy systems. (2024). Zhou, Xiulin ; Zhang, Gao Yuan ; Liu, Chunming ; Wang, Chunling.
    In: Energy.
    RePEc:eee:energy:v:307:y:2024:i:c:s0360544224023752.

    Full description at Econpapers || Download paper

  20. Matrix Wasserstein distance generative adversarial network with gradient penalty for fast low-carbon economic dispatch of novel power systems. (2024). Yin, Linfei ; Lin, Chen.
    In: Energy.
    RePEc:eee:energy:v:298:y:2024:i:c:s0360544224011307.

    Full description at Econpapers || Download paper

  21. A GCN-based adaptive generative adversarial network model for short-term wind speed scenario prediction. (2024). Xiang, XI ; Liu, Xin ; Gong, Lin ; Yu, Jingjia.
    In: Energy.
    RePEc:eee:energy:v:294:y:2024:i:c:s0360544224007035.

    Full description at Econpapers || Download paper

  22. The ultra-short-term wind power point-interval forecasting model based on improved variational mode decomposition and bidirectional gated recurrent unit improved by improved sparrow search algorithm and attention mechanism. (2024). Cui, Xiwen ; Yu, Xiaoyu ; Niu, Dongxiao.
    In: Energy.
    RePEc:eee:energy:v:288:y:2024:i:c:s0360544223031079.

    Full description at Econpapers || Download paper

  23. A novel informer-time-series generative adversarial networks for day-ahead scenario generation of wind power. (2024). Li, Zhuo ; Peng, Yishu ; Ye, Lin.
    In: Applied Energy.
    RePEc:eee:appene:v:364:y:2024:i:c:s0306261924005658.

    Full description at Econpapers || Download paper

  24. A novel scenario generation method of renewable energy using improved VAEGAN with controllable interpretable features. (2024). Peng, Xiangang ; Cui, Wenbo ; Lai, Loi Lei ; Liu, Jianan ; Yuan, Haoliang ; Xu, Yilin.
    In: Applied Energy.
    RePEc:eee:appene:v:363:y:2024:i:c:s0306261924002885.

    Full description at Econpapers || Download paper

  25. Sensing anomaly of photovoltaic systems with sequential conditional variational autoencoder. (2024). Yang, Zheng ; Zhang, Yufei ; Jin, Yaohui ; Xu, Yanyan ; Li, Ding.
    In: Applied Energy.
    RePEc:eee:appene:v:353:y:2024:i:pa:s0306261923014885.

    Full description at Econpapers || Download paper

  26. Bayesian deep neural networks for spatio-temporal probabilistic optimal power flow with multi-source renewable energy. (2024). Xu, Zidong ; Yin, Linfei ; Gao, Fang.
    In: Applied Energy.
    RePEc:eee:appene:v:353:y:2024:i:pa:s0306261923014708.

    Full description at Econpapers || Download paper

  27. Integrated Transmission Network Planning by Considering Wind Power’s Uncertainty and Disasters. (2023). Yang, Zhanxin ; Tang, Yuchen ; Shi, Yishan ; Lin, YI ; Guo, Ruipeng.
    In: Energies.
    RePEc:gam:jeners:v:16:y:2023:i:14:p:5336-:d:1192583.

    Full description at Econpapers || Download paper

  28. A hybrid meteorological data simulation framework based on time-series generative adversarial network for global daily solar radiation estimation. (2023). Ding, Tao ; Cheng, Lilin ; Liu, Jingxuan ; Zang, Haixiang ; Sun, Guoqiang ; Zhang, Fengchun ; Wei, Zhinong.
    In: Renewable Energy.
    RePEc:eee:renene:v:219:y:2023:i:p1:s0960148123012892.

    Full description at Econpapers || Download paper

  29. Scenario-based robust capacity planning of regional integrated energy systems considering carbon emissions. (2023). Chen, Xianqing ; Dong, Wei ; Yang, Qiang.
    In: Renewable Energy.
    RePEc:eee:renene:v:207:y:2023:i:c:p:359-375.

    Full description at Econpapers || Download paper

  30. TimeGAN based distributionally robust optimization for biomass-photovoltaic-hydrogen scheduling under source-load-market uncertainties. (2023). Wang, Yuwei ; Song, Minghao ; Jia, Mengyao ; Shi, Lin ; Li, Bingkang.
    In: Energy.
    RePEc:eee:energy:v:284:y:2023:i:c:s0360544223019837.

    Full description at Econpapers || Download paper

  31. Distribution network expansion planning considering a distributed hydrogen-thermal storage system based on photovoltaic development of the Whole County of China. (2023). Guo, YU ; Zhao, Xuanyuan ; Wang, Rijun ; Huang, Nantian ; Cai, Guowei.
    In: Energy.
    RePEc:eee:energy:v:278:y:2023:i:c:s0360544223011556.

    Full description at Econpapers || Download paper

  32. Revealing the impact of renewable uncertainty on grid-assisted power-to-X: A data-driven reliability-based design optimization approach. (2023). Qi, Meng ; Park, Jinwoo ; Kim, Jeongdong ; Moon, IL.
    In: Applied Energy.
    RePEc:eee:appene:v:339:y:2023:i:c:s0306261923003793.

    Full description at Econpapers || Download paper

  33. Hydrogen yield prediction for supercritical water gasification based on generative adversarial network data augmentation. (2023). Ma, Zherui ; Zhao, Zhenghui ; Feng, Yingsong ; Wang, Ruikun ; Chen, Hongwei.
    In: Applied Energy.
    RePEc:eee:appene:v:336:y:2023:i:c:s0306261923001782.

    Full description at Econpapers || Download paper

  34. Federated-WDCGAN: A federated smart meter data sharing framework for privacy preservation. (2023). Chen, Zhiqiang ; Liu, Xiufeng ; Cheng, Long.
    In: Applied Energy.
    RePEc:eee:appene:v:334:y:2023:i:c:s0306261923000752.

    Full description at Econpapers || Download paper

  35. Transmission Expansion Planning Considering Wind Power and Load Uncertainties. (2022). Xu, Ying ; Xie, Yilin.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:19:p:7140-:d:928174.

    Full description at Econpapers || Download paper

  36. Robust optimal capacity planning of grid-connected microgrid considering energy management under multi-dimensional uncertainties. (2022). Chen, Xianqing ; Dong, Wei ; Yang, Qiang.
    In: Applied Energy.
    RePEc:eee:appene:v:323:y:2022:i:c:s0306261922009436.

    Full description at Econpapers || Download paper

  37. Lightweight actor-critic generative adversarial networks for real-time smart generation control of microgrids. (2022). Yin, Linfei ; Han, Kunlun ; Yang, Kai.
    In: Applied Energy.
    RePEc:eee:appene:v:317:y:2022:i:c:s0306261922005359.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-09-23 12:48:06 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.