create a website

A GCN-based adaptive generative adversarial network model for short-term wind speed scenario prediction. (2024). Xiang, XI ; Liu, Xin ; Gong, Lin ; Yu, Jingjia.
In: Energy.
RePEc:eee:energy:v:294:y:2024:i:c:s0360544224007035.

Full description at Econpapers || Download paper

Cited: 1

Citations received by this document

Cites: 37

References cited by this document

Cocites: 33

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. Data-augmented trend-fluctuation representations by interpretable contrastive learning for wind power forecasting. (2025). Pan, Shiji ; Zhao, Yuan ; Liao, Haohan.
    In: Applied Energy.
    RePEc:eee:appene:v:380:y:2025:i:c:s030626192402436x.

    Full description at Econpapers || Download paper

References

References cited by this document

  1. Antipov, G. ; Baccouche, M. ; Dugelay, J.L. Face aging with conditional generative adversarial networks[C]. 2017 IEEE international conference on image processing (ICIP). 2017 IEEE:
    Paper not yet in RePEc: Add citation now
  2. Arjovsky, M. ; Chintala, S. ; Bottou, L. Wasserstein generative adversarial networks[C]. International conference on machine learning. 2017 PMLR:
    Paper not yet in RePEc: Add citation now
  3. Becker, R. Generation of time-coupled wind power infeed scenarios using pair-copula construction. 2017 IEEE Trans Sustain Energy. 9 1298-1306
    Paper not yet in RePEc: Add citation now
  4. Chen, Y. ; Wang, Y. ; Kirschen, D. ; Zhang, B. Model-free renewable scenario generation using generative adversarial networks. 2018 IEEE Power Syst. 33 3265-3275
    Paper not yet in RePEc: Add citation now
  5. Cheng, L. Augmented convolutional network for wind power prediction: a new recurrent architecture design with spatial-temporal image inputs. 2021 IEEE Trans Ind Inf. 17 6981-6993
    Paper not yet in RePEc: Add citation now
  6. Cho, Y.H. Wind power scenario generation using graph convolutional generative adversarial network[C]. IEEE power & energy society general meeting (PESGM). 2023 IEEE. 1-5
    Paper not yet in RePEc: Add citation now
  7. Dai, J. ; He, K. ; Li, Y. ; Ren, S. ; Sun, J. Instance-sensitive fully convolutional networks. 2016 Lect Notes Comput Sci. 534-549
    Paper not yet in RePEc: Add citation now
  8. Dong, W. ; Chen, X. ; Yang, Q. Data-driven scenario generation of renewable energy production based on controllable generative adversarial networks with interpretability. 2022 Appl Energy. 308 -

  9. Gan, Z. ; Li, C. ; Zhou, J. ; Tang, G. Temporal convolutional networks interval prediction model for wind speed forecasting. 2021 Elec Power Syst Res. 191 -
    Paper not yet in RePEc: Add citation now
  10. Gao, J. MTGNN: multi-task graph neural network based few-shot learning for disease similarity measurement. 2022 Methods. 198 88-95
    Paper not yet in RePEc: Add citation now
  11. Goodfellow, I. Generative adversarial networks. 2014 Conf Neural Inform Processing Syst. 2672-2680
    Paper not yet in RePEc: Add citation now
  12. He, X. ; Nie, Y. ; Guo, H. ; Wang, J. Research on a novel combination system on the basis of deep learning and swarm intelligence optimization algorithm for wind speed forecasting. 2020 IEEE Access. 8 51482-51499
    Paper not yet in RePEc: Add citation now
  13. Jiang, C. ; Mao, Y. ; Chai, Y. ; Yu, M. ; Tao, S. Scenario generation for wind power using improved generative adversarial networks. 2018 IEEE Access. 6 62193-62203
    Paper not yet in RePEc: Add citation now
  14. Ke, L. An efficient wind speed prediction method based on a deep neural network without future information leakage. 2023 Energy. 267 -
    Paper not yet in RePEc: Add citation now
  15. Kim, T.Y. ; Cho, S.B. Predicting residential energy consumption using CNN-LSTM neural networks. 2019 Energy. 182 72-81
    Paper not yet in RePEc: Add citation now
  16. Kipf, T.N. ; Welling, M. Semi-supervised classification with graph convolutional networks[J] ICLR. 2017 :
    Paper not yet in RePEc: Add citation now
  17. Krishna, A.B. ; Abhyankar, A.R. Time-coupled day-ahead wind power scenario generation: a combined regular vine copula and variance reduction method. 2023 Energy. 265-

  18. Liu, X. ; Yang, L. ; Zhang, Z. Short-term multi-step ahead wind power predictions based on A novel deep convolutional recurrent network method. 2021 IEEE Trans Sustain Energy. 12 1820-1833
    Paper not yet in RePEc: Add citation now
  19. Ma, X. ; Sun, Y. ; Fang, H. Scenario generation of wind power based on statistical uncertainty and variability. 2013 IEEE Trans Sustain Energy. 4 894-904
    Paper not yet in RePEc: Add citation now
  20. Morales, J.M. ; Conejo, A.J. ; Madsen, H. ; Pinson, P. ; Zugno, M. Integrating renewables in electricity markets: operational problems. 2013 Springer Science & Business Media:
    Paper not yet in RePEc: Add citation now
  21. Niu, D. ; Sun, L. ; Yu, M. ; Wang, K. Point and interval forecasting of ultra-short-term wind power based on a data-driven method and hybrid deep learning model. 2022 Energy. 254 1-12
    Paper not yet in RePEc: Add citation now
  22. Santos, V.O. ; Rocha, P.A.C. ; Scott, J. ; Griensven, J.V. ; Gharabaghi, B. Spatiotemporal analysis of bidimensional wind speed forecasting: development and thorough assessment of LSTM and ensemble graph neural networks on the Dutch database. 2023 Energy. 278 -

  23. Sideratos, G. ; Hatziargyriou, N.D. Probabilistic wind power forecasting using radial basis function neural networks. 2012 IEEE Trans Power Syst. 27 1788-1796
    Paper not yet in RePEc: Add citation now
  24. Song, D. ; Li, Z. ; Wang, L. Energy capture efficiency enhancement of wind turbines via stochastic model predictive yaw control based on intelligent scenarios generation. 2022 Appl Energy. 312 -

  25. Stappers, B. ; Paterakis, N.G. ; Kok, J.K. ; Gibescu, M. A class-driven approach based on long short-term memory networks for electricity price scenario generation and reduction. 2020 IEEE Trans Power Syst. 35 3040-3050
    Paper not yet in RePEc: Add citation now
  26. Sun, M. ; Cremer, J. ; Strbac, G. A novel data-driven scenario generation framework for transmission expansion planning with high renewable energy penetration. 2018 Appl Energy. 228 546-555

  27. Tawn, R. ; Browell, J. ; Dinwoodie, I. Missing data in wind farm time series: properties and effect on forecasts. 2020 Elec Power Syst Res. 189 -
    Paper not yet in RePEc: Add citation now
  28. Wang, H. Deep learning based ensemble approach for probabilistic wind power forecasting. 2017 Appl Energy. 188 56-70

  29. Wang, L. Effective wind power prediction using novel deep learning network: stacked independently recurrent autoencoder. 2021 Renew Energy. 164 642-655
    Paper not yet in RePEc: Add citation now
  30. Wang, Y. ; Wei, S. ; Yang, W. ; Chai, Y. Robust active yaw control for offshore wind farms using stochastic predictive control based on online adaptive scenario generation. 2023 Ocean Eng. 286 -
    Paper not yet in RePEc: Add citation now
  31. Wen, P. ; Zhang, S. ; Xing, Y. ; Huo, L. ; Bohlooli, N. A novel method based on lower–upper bound approximation to predict the wind energy. 2020 J Clean Prod. 259 -
    Paper not yet in RePEc: Add citation now
  32. Zhang, G. ; Li, H.X. ; Gan, M. Design a wind speed prediction model using probabilistic fuzzy system. 2012 IEEE Trans Ind Inf. 8 819-827
    Paper not yet in RePEc: Add citation now
  33. Zhang, Y. ; Ai, Q. ; Xiao, F. ; Hao, R. ; Lu, T. Typical wind power scenario generation for multiple wind farms using conditional improved wasserstein generative adversarial network. 2020 Elec Power Syst Res. 114 -
    Paper not yet in RePEc: Add citation now
  34. Zhang, Z. ; Cui, P. ; Zhu, W. Deep learning on graphs: a survey. 2022 IEEE Trans Knowl Data Eng. 34 249-270
    Paper not yet in RePEc: Add citation now
  35. Zheng, Z. Generative probabilistic wind speed forecasting: a variational recurrent autoencoder based method. 2021 IEEE Trans Power Syst. 37 1386-1398
    Paper not yet in RePEc: Add citation now
  36. Zhou, J. ; Cui, G. ; Hu, S. Graph neural networks: a review of methods and applications. 2020 AI open. 1 57-81
    Paper not yet in RePEc: Add citation now
  37. Zhu, R. ; Liao, W. ; Wang, Y. Short-term prediction for wind power based on temporal convolutional network. 2020 Energy Rep. 424-429
    Paper not yet in RePEc: Add citation now

Cocites

Documents in RePEc which have cited the same bibliography

  1. A Two-Stage Hidden Markov Model for Medium- to Long-Term Multiple Wind Farm Power Scenario Generation. (2025). Yang, Chengwei ; Liu, Jun ; You, Zuowei ; Lin, Lingxue.
    In: Energies.
    RePEc:gam:jeners:v:18:y:2025:i:8:p:1917-:d:1631385.

    Full description at Econpapers || Download paper

  2. Statistical Foundations of Generative AI for Optimal Control Problems in Power Systems: Comprehensive Review and Future Directions. (2025). Ginzburg-Ganz, Elinor ; Horodi, Eden Dina ; Shadafny, Omar ; Savir, Uri ; MacHlev, Ram ; Levron, Yoash.
    In: Energies.
    RePEc:gam:jeners:v:18:y:2025:i:10:p:2461-:d:1653296.

    Full description at Econpapers || Download paper

  3. Complementary operation optimization of cascade hydropower reservoirs and photovoltaic energy using cooperation search algorithm and conditional generative adversarial networks. (2025). Feng, Zhong-Kai ; Wang, Xin ; Niu, Wen-Jing.
    In: Energy.
    RePEc:eee:energy:v:328:y:2025:i:c:s036054422502167x.

    Full description at Econpapers || Download paper

  4. Demand response of PEV networks by dynamic distributed pinning control scheme. (2025). Yu, Jie ; Lai, Meiyi ; Fan, Yueyun ; Hu, Jianqiang.
    In: Energy.
    RePEc:eee:energy:v:317:y:2025:i:c:s0360544225002543.

    Full description at Econpapers || Download paper

  5. Weather-informed probabilistic forecasting and scenario generation in power systems. (2025). van Hentenryck, Pascal ; Tanneau, Mathieu ; Zandehshahvar, Reza ; Zhang, Hanyu.
    In: Applied Energy.
    RePEc:eee:appene:v:384:y:2025:i:c:s0306261925000996.

    Full description at Econpapers || Download paper

  6. Revolutionizing solar energy resources: The central role of generative AI in elevating system sustainability and efficiency. (2025). Mousavi, Arash ; Fekih, Afef ; Alfi, Alireza ; Kucukdemiral, Ibrahim Beklan ; Arab, Aliasghar ; Tavasoli, Mahsa.
    In: Applied Energy.
    RePEc:eee:appene:v:382:y:2025:i:c:s0306261925000261.

    Full description at Econpapers || Download paper

  7. Deep generative models in energy system applications: Review, challenges, and future directions. (2025). King, Ryan N ; Emami, Patrick ; Zhang, Xiangyu ; Cortiella, Alexandre ; Glaws, Andrew.
    In: Applied Energy.
    RePEc:eee:appene:v:380:y:2025:i:c:s0306261924024437.

    Full description at Econpapers || Download paper

  8. Data-driven climate resilience assessment for distributed energy systems using diffusion transformer and polynomial expansions. (2025). Tan, Qinliang ; He, Jiaming ; Lv, Hanyu.
    In: Applied Energy.
    RePEc:eee:appene:v:380:y:2025:i:c:s0306261924023407.

    Full description at Econpapers || Download paper

  9. A novel conditional diffusion model for joint source-load scenario generation considering both diversity and controllability. (2025). Lu, Xinhui ; Yang, Shanlin ; Shao, Zhen ; Zhao, Wei.
    In: Applied Energy.
    RePEc:eee:appene:v:377:y:2025:i:pc:s030626192401938x.

    Full description at Econpapers || Download paper

  10. An Adaptive Distributionally Robust Optimization Approach for Optimal Sizing of Hybrid Renewable Energy Systems. (2024). Keyvandarian, Ali ; Saif, Ahmed.
    In: Journal of Optimization Theory and Applications.
    RePEc:spr:joptap:v:203:y:2024:i:2:d:10.1007_s10957-024-02518-y.

    Full description at Econpapers || Download paper

  11. Short-Term Output Scenario Generation of Renewable Energy Using Transformer–Wasserstein Generative Adversarial Nets-Gradient Penalty. (2024). Yu, YI ; Hua, Xiaojun ; Deng, Youhan ; Ke, Deping ; Xu, Jian ; Gu, Liuqing.
    In: Sustainability.
    RePEc:gam:jsusta:v:16:y:2024:i:24:p:10936-:d:1543102.

    Full description at Econpapers || Download paper

  12. Leveraging the Synergy of Digital Twins and Artificial Intelligence for Sustainable Power Grids: A Scoping Review. (2024). Hewapathirana, Kushan ; Sun, Yuan ; Alahakoon, Damminda ; Ranawaka, Ama.
    In: Energies.
    RePEc:gam:jeners:v:17:y:2024:i:21:p:5342-:d:1507745.

    Full description at Econpapers || Download paper

  13. Scenario Generation Based on Ant Colony Optimization for Modelling Stochastic Variables in Power Systems. (2024). Guerrero, Juan Ignacio ; Valderrama, Daniel Fernndez ; de Mora, Carlos Len ; Robba, Michela.
    In: Energies.
    RePEc:gam:jeners:v:17:y:2024:i:21:p:5293-:d:1505966.

    Full description at Econpapers || Download paper

  14. Generating synthetic energy time series: A review. (2024). Phipps, K ; Springer, L ; Weingrtner, L ; Heidrich, B ; Turowski, M ; Hagenmeyer, V ; Mikut, R ; Schfer, B.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:206:y:2024:i:c:s1364032124005689.

    Full description at Econpapers || Download paper

  15. Net-zero carbon emission oriented Bi-level optimal capacity planning of integrated energy system considering carbon capture and hydrogen facilities. (2024). Yang, Qiang ; Dong, Wei ; Chen, Xianqing.
    In: Renewable Energy.
    RePEc:eee:renene:v:237:y:2024:i:pb:s0960148124016926.

    Full description at Econpapers || Download paper

  16. Flexibility-based expansion planning of active distribution networks considering optimal operation of multi-community integrated energy systems. (2024). Zhou, Xiulin ; Zhang, Gao Yuan ; Liu, Chunming ; Wang, Chunling.
    In: Energy.
    RePEc:eee:energy:v:307:y:2024:i:c:s0360544224023752.

    Full description at Econpapers || Download paper

  17. Matrix Wasserstein distance generative adversarial network with gradient penalty for fast low-carbon economic dispatch of novel power systems. (2024). Yin, Linfei ; Lin, Chen.
    In: Energy.
    RePEc:eee:energy:v:298:y:2024:i:c:s0360544224011307.

    Full description at Econpapers || Download paper

  18. A GCN-based adaptive generative adversarial network model for short-term wind speed scenario prediction. (2024). Xiang, XI ; Liu, Xin ; Gong, Lin ; Yu, Jingjia.
    In: Energy.
    RePEc:eee:energy:v:294:y:2024:i:c:s0360544224007035.

    Full description at Econpapers || Download paper

  19. A novel informer-time-series generative adversarial networks for day-ahead scenario generation of wind power. (2024). Li, Zhuo ; Peng, Yishu ; Ye, Lin.
    In: Applied Energy.
    RePEc:eee:appene:v:364:y:2024:i:c:s0306261924005658.

    Full description at Econpapers || Download paper

  20. A novel scenario generation method of renewable energy using improved VAEGAN with controllable interpretable features. (2024). Peng, Xiangang ; Cui, Wenbo ; Lai, Loi Lei ; Liu, Jianan ; Yuan, Haoliang ; Xu, Yilin.
    In: Applied Energy.
    RePEc:eee:appene:v:363:y:2024:i:c:s0306261924002885.

    Full description at Econpapers || Download paper

  21. Sensing anomaly of photovoltaic systems with sequential conditional variational autoencoder. (2024). Yang, Zheng ; Zhang, Yufei ; Jin, Yaohui ; Xu, Yanyan ; Li, Ding.
    In: Applied Energy.
    RePEc:eee:appene:v:353:y:2024:i:pa:s0306261923014885.

    Full description at Econpapers || Download paper

  22. Bayesian deep neural networks for spatio-temporal probabilistic optimal power flow with multi-source renewable energy. (2024). Xu, Zidong ; Yin, Linfei ; Gao, Fang.
    In: Applied Energy.
    RePEc:eee:appene:v:353:y:2024:i:pa:s0306261923014708.

    Full description at Econpapers || Download paper

  23. Integrated Transmission Network Planning by Considering Wind Power’s Uncertainty and Disasters. (2023). Yang, Zhanxin ; Tang, Yuchen ; Shi, Yishan ; Lin, YI ; Guo, Ruipeng.
    In: Energies.
    RePEc:gam:jeners:v:16:y:2023:i:14:p:5336-:d:1192583.

    Full description at Econpapers || Download paper

  24. A hybrid meteorological data simulation framework based on time-series generative adversarial network for global daily solar radiation estimation. (2023). Ding, Tao ; Cheng, Lilin ; Liu, Jingxuan ; Zang, Haixiang ; Sun, Guoqiang ; Zhang, Fengchun ; Wei, Zhinong.
    In: Renewable Energy.
    RePEc:eee:renene:v:219:y:2023:i:p1:s0960148123012892.

    Full description at Econpapers || Download paper

  25. Scenario-based robust capacity planning of regional integrated energy systems considering carbon emissions. (2023). Chen, Xianqing ; Dong, Wei ; Yang, Qiang.
    In: Renewable Energy.
    RePEc:eee:renene:v:207:y:2023:i:c:p:359-375.

    Full description at Econpapers || Download paper

  26. TimeGAN based distributionally robust optimization for biomass-photovoltaic-hydrogen scheduling under source-load-market uncertainties. (2023). Wang, Yuwei ; Song, Minghao ; Jia, Mengyao ; Shi, Lin ; Li, Bingkang.
    In: Energy.
    RePEc:eee:energy:v:284:y:2023:i:c:s0360544223019837.

    Full description at Econpapers || Download paper

  27. Distribution network expansion planning considering a distributed hydrogen-thermal storage system based on photovoltaic development of the Whole County of China. (2023). Guo, YU ; Zhao, Xuanyuan ; Wang, Rijun ; Huang, Nantian ; Cai, Guowei.
    In: Energy.
    RePEc:eee:energy:v:278:y:2023:i:c:s0360544223011556.

    Full description at Econpapers || Download paper

  28. Revealing the impact of renewable uncertainty on grid-assisted power-to-X: A data-driven reliability-based design optimization approach. (2023). Qi, Meng ; Park, Jinwoo ; Kim, Jeongdong ; Moon, IL.
    In: Applied Energy.
    RePEc:eee:appene:v:339:y:2023:i:c:s0306261923003793.

    Full description at Econpapers || Download paper

  29. Hydrogen yield prediction for supercritical water gasification based on generative adversarial network data augmentation. (2023). Ma, Zherui ; Zhao, Zhenghui ; Feng, Yingsong ; Wang, Ruikun ; Chen, Hongwei.
    In: Applied Energy.
    RePEc:eee:appene:v:336:y:2023:i:c:s0306261923001782.

    Full description at Econpapers || Download paper

  30. Federated-WDCGAN: A federated smart meter data sharing framework for privacy preservation. (2023). Chen, Zhiqiang ; Liu, Xiufeng ; Cheng, Long.
    In: Applied Energy.
    RePEc:eee:appene:v:334:y:2023:i:c:s0306261923000752.

    Full description at Econpapers || Download paper

  31. Transmission Expansion Planning Considering Wind Power and Load Uncertainties. (2022). Xu, Ying ; Xie, Yilin.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:19:p:7140-:d:928174.

    Full description at Econpapers || Download paper

  32. Robust optimal capacity planning of grid-connected microgrid considering energy management under multi-dimensional uncertainties. (2022). Chen, Xianqing ; Dong, Wei ; Yang, Qiang.
    In: Applied Energy.
    RePEc:eee:appene:v:323:y:2022:i:c:s0306261922009436.

    Full description at Econpapers || Download paper

  33. Lightweight actor-critic generative adversarial networks for real-time smart generation control of microgrids. (2022). Yin, Linfei ; Han, Kunlun ; Yang, Kai.
    In: Applied Energy.
    RePEc:eee:appene:v:317:y:2022:i:c:s0306261922005359.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-09-29 16:37:14 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.