- Al-Ali, E.M.; Hajji, Y.; Said, Y.; Hleili, M.; Alanzi, A.M.; Laatar, A.H.; Atri, M. Solar energy production forecasting based on a hybrid CNN-LSTM-transformer model. Mathematics 2023, 11, 676. [CrossRef]
Paper not yet in RePEc: Add citation now
- Arjovsky, M.; Bottou, L. Towards principled methods for training generative adversarial networks. arXiv 2017, arXiv:1701.04862.
Paper not yet in RePEc: Add citation now
- Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein generative adversarial networks. In Proceedings of the International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 214–223.
Paper not yet in RePEc: Add citation now
Boubii, C.; Kafazi, I.E.; Bannari, R.; El Bhiri, B.; Bossoufi, B.; Kotb, H.; AboRas, K.M.; Emara, A.; Nasiri, B. Synergizing Wind and Solar Power: An Advanced Control System for Grid Stability. Sustainability 2024, 16, 815. [CrossRef]
- Chen, Y.; Wang, X.; Zhang, B. An unsupervised deep learning approach for scenario forecasts. In Proceedings of the 2018 Power Systems Computation Conference (PSCC), Dublin, Ireland, 11–15 June 2018; pp. 1–7.
Paper not yet in RePEc: Add citation now
- Chen, Y.; Wang, Y.; Kirschen, D.; Zhang, B. Model-free renewable scenario generation using generative adversarial networks. IEEE Trans. Power Syst. 2018, 33, 3265–3275. [CrossRef]
Paper not yet in RePEc: Add citation now
- Dai, Z.; Liu, H.; Le, Q.V.; Tan, M. Coatnet: Marrying convolution and attention for all data sizes. Adv. Neural Inf. Process. Syst. 2021, 34, 3965–3977.
Paper not yet in RePEc: Add citation now
Dong, W.; Chen, X.; Yang, Q. Data-driven scenario generation of renewable energy production based on controllable generative adversarial networks with interpretability. Appl. Energy 2022, 308, 118387. [CrossRef]
- Dong, X.; Mao, Z.; Sun, Y.; Xu, X. Short-term wind power scenario generation based on conditional latent diffusion models. IEEE Trans. Sustain. Energy 2023, 15, 1074–1085. [CrossRef]
Paper not yet in RePEc: Add citation now
Draxl, C.; Clifton, A.; Hodge, B.M.; McCaa, J. The wind integration national dataset (wind) toolkit. Appl. Energy 2015, 151, 355–366. [CrossRef]
Dumas, J.; Wehenkel, A.; Lanaspeze, D.; Cornélusse, B.; Sutera, A. A deep generative model for probabilistic energy forecasting in power systems: Normalizing flows. Appl. Energy 2022, 305, 117871. [CrossRef]
Fusco, A.; Gioffrè, D.; Castelli, A.F.; Bovo, C.; Martelli, E. A multi-stage stochastic programming model for the unit commitment of conventional and virtual power plants bidding in the day-ahead and ancillary services markets. Appl. Energy 2023, 336, 120739. [CrossRef]
Gao, F.; Xu, Z.; Yin, L. Bayesian deep neural networks for spatio-temporal probabilistic optimal power flow with multi-source renewable energy. Appl. Energy 2024, 353, 122106. [CrossRef]
- GE Energy. Western Wind and Solar Integration Study; Technical Report; Citeseer: New York, NY, USA, 2010. Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Paper not yet in RePEc: Add citation now
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. Adv. Neural Inf. Process. Syst. 2014, 27, 1–9.
Paper not yet in RePEc: Add citation now
- Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; Courville, A.C. Improved training of wasserstein gans. Adv. Neural Inf. Process. Syst. 2017, 30, 1–11.
Paper not yet in RePEc: Add citation now
- He, J.; Shi, C.; Wei, T.; Jia, D. Stochastic model predictive control of hybrid energy storage for improving AGC performance of thermal generators. IEEE Trans. Smart Grid 2021, 13, 393–405. [CrossRef]
Paper not yet in RePEc: Add citation now
Jang, S.Y.; Oh, B.T.; Oh, E. A Deep Learning-Based Solar Power Generation Forecasting Method Applicable to Multiple Sites. Sustainability 2024, 16, 5240. [CrossRef]
Li, F.; Wang, D.; Liu, D.; Yang, S.; Sun, K.; Liu, Z.; Yu, H.; Qin, J. A comprehensive review on energy storage system optimal planning and benefit evaluation methods in smart grids. Sustainability 2023, 15, 9584. [CrossRef]
Li, J.; Zhou, J.; Chen, B. Review of wind power scenario generation methods for optimal operation of renewable energy systems. Appl. Energy 2020, 280, 115992. [CrossRef]
Li, Z.; Peng, X.; Cui, W.; Xu, Y.; Liu, J.; Yuan, H.; Lai, C.S.; Lai, L.L. A novel scenario generation method of renewable energy using improved VAEGAN with controllable interpretable features. Appl. Energy 2024, 363, 122905. [CrossRef]
Liu, C.; Wang, C.; Yin, Y.; Yang, P.; Jiang, H. Bi-level dispatch and control strategy based on model predictive control for community integrated energy system considering dynamic response performance. Appl. Energy 2022, 310, 118641. [CrossRef]
Morales, J.M.; Minguez, R.; Conejo, A.J. A methodology to generate statistically dependent wind speed scenarios. Appl. Energy 2010, 87, 843–855. [CrossRef]
- Osório, G.; Lujano-Rojas, J.; Matias, J.; Catalão, J. A new scenario generation-based method to solve the unit commitment problem with high penetration of renewable energies. Int. J. Electr. Power Energy Syst. 2015, 64, 1063–1072. [CrossRef]
Paper not yet in RePEc: Add citation now
- Papaefthymiou, G.; Klockl, B. MCMC for wind power simulation. IEEE Trans. Energy Convers. 2008, 23, 234–240. [CrossRef]
Paper not yet in RePEc: Add citation now
Qi, Y.; Hu, W.; Dong, Y.; Fan, Y.; Dong, L.; Xiao, M. Optimal configuration of concentrating solar power in multienergy power systems with an improved variational autoencoder. Appl. Energy 2020, 274, 115124. [CrossRef]
- Rayati, M.; Bozorg, M.; Carpita, M.; Cherkaoui, R. Stochastic optimization and Markov chain-based scenario generation for exploiting the underlying flexibilities of an active distribution network. Sustain. Energy Grids Netw. 2023, 34, 100999. [CrossRef] Sustainability 2024, 16, 10936 20 of 20
Paper not yet in RePEc: Add citation now
- Saharia, C.; Ho, J.; Chan, W.; Salimans, T.; Fleet, D.J.; Norouzi, M. Image super-resolution via iterative refinement. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 4713–4726. [CrossRef]
Paper not yet in RePEc: Add citation now
- Shirsat, A.; Tang, W. Data-driven stochastic model predictive control for DC-coupled residential PV-storage systems. IEEE Trans. Energy Convers. 2021, 36, 1435–1448. [CrossRef]
Paper not yet in RePEc: Add citation now
- Tang, C.; Wang, Y.; Xu, J.; Sun, Y.; Zhang, B. Economic dispatch considering spatial and temporal correlations of multiple renewable power plants. arXiv 2017, arXiv:1707.00237.
Paper not yet in RePEc: Add citation now
- Vargas-Sosa, D.F.; Montoya, O.D.; Grisales-Noreña, L.F. Efficient Integration of Photovoltaic Solar Generators in Monopolar DC Networks through a Convex Mixed-Integer Optimization Model. Sustainability 2023, 15, 8093. [CrossRef]
Paper not yet in RePEc: Add citation now
- Vaswani, A. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 1–11.
Paper not yet in RePEc: Add citation now
Wang, C.; Liu, C.; Chen, J.; Zhang, G. Cooperative planning of renewable energy generation and multi-timescale flexible resources in active distribution networks. Appl. Energy 2024, 356, 122429. [CrossRef]
Wei, H.; Hongxuan, Z.; Yu, D.; Yiting, W.; Ling, D.; Ming, X. Short-term optimal operation of hydro-wind-solar hybrid system with improved generative adversarial networks. Appl. Energy 2019, 250, 389–403. [CrossRef]
- Wu, L.; Shahidehpour, M.; Li, Z. Comparison of scenario-based and interval optimization approaches to stochastic SCUC. IEEE Trans. Power Syst. 2011, 27, 913–921. [CrossRef]
Paper not yet in RePEc: Add citation now
Yoo, J.; Son, Y.; Yoon, M.; Choi, S. A Wind Power Scenario Generation Method Based on Copula Functions and Forecast Errors. Sustainability 2023, 15, 16536. [CrossRef]
- Yu, H.; Chung, C.; Wong, K.; Lee, H.; Zhang, J. Probabilistic load flow evaluation with hybrid latin hypercube sampling and cholesky decomposition. IEEE Trans. Power Syst. 2009, 24, 661–667. [CrossRef]
Paper not yet in RePEc: Add citation now
- Yuan, R.; Wang, B.; Sun, Y.; Song, X.; Watada, J. Conditional style-based generative adversarial networks for renewable scenario generation. IEEE Trans. Power Syst. 2022, 38, 1281–1296. [CrossRef]
Paper not yet in RePEc: Add citation now
- Zhu, J.; Zhao, Z.; Zheng, X.; An, Z.; Guo, Q.; Li, Z.; Sun, J.; Guo, Y. Time-series power forecasting for wind and solar energy based on the SL-transformer. Energies 2023, 16, 7610. [CrossRef]
Paper not yet in RePEc: Add citation now