create a website

Industrial artificial intelligence based energy management system: Integrated framework for electricity load forecasting and fault prediction. (2022). Hu, Yusha ; Man, YI ; Hong, Mengna ; Ren, Jingzheng ; Li, Jigeng.
In: Energy.
RePEc:eee:energy:v:244:y:2022:i:pb:s0360544222000986.

Full description at Econpapers || Download paper

Cited: 6

Citations received by this document

Cites: 37

References cited by this document

Cocites: 44

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. Non-Intrusive Load Monitoring in industrial settings: A systematic review. (2024). Squartini, Stefano ; Tanoni, Giulia ; Principi, Emanuele.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:202:y:2024:i:c:s1364032124004295.

    Full description at Econpapers || Download paper

  2. Energy consumption and carbon emissions forecasting for industrial processes: Status, challenges and perspectives. (2023). Hu, Yusha ; Man, YI.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:182:y:2023:i:c:s1364032123002629.

    Full description at Econpapers || Download paper

  3. A novel approach based on integration of convolutional neural networks and echo state network for daily electricity demand prediction. (2023). Nguyen-Huy, Thong ; Ghimire, Sujan ; Salcedo-Sanz, Sancho ; Deo, Ravinesh C ; Al-Musaylh, Mohanad S ; Casillas-Perez, David.
    In: Energy.
    RePEc:eee:energy:v:275:y:2023:i:c:s0360544223008241.

    Full description at Econpapers || Download paper

  4. Two-stage energy management method of integrated energy system considering pre-transaction behavior of energy service provider and users. (2023). Wang, Yudong ; Hu, Junjie.
    In: Energy.
    RePEc:eee:energy:v:271:y:2023:i:c:s0360544223004590.

    Full description at Econpapers || Download paper

  5. Two-stage energy scheduling optimization model for complex industrial process and its industrial verification. (2022). Hu, Yusha ; Man, YI.
    In: Renewable Energy.
    RePEc:eee:renene:v:193:y:2022:i:c:p:879-894.

    Full description at Econpapers || Download paper

  6. Mid-term electricity demand forecasting using improved variational mode decomposition and extreme learning machine optimized by sparrow search algorithm. (2022). Ji, Zhengsen ; Gao, Tian ; Sun, Lijie ; Niu, Dongxiao.
    In: Energy.
    RePEc:eee:energy:v:261:y:2022:i:pb:s0360544222022125.

    Full description at Econpapers || Download paper

References

References cited by this document

  1. Bari, P. ; Karande, P. Application of PROMETHEE-GAIA method to priority sequencing rules in a dynamic job shop for single machine. 2021 Mater Today Proc. 46 7258-7264
    Paper not yet in RePEc: Add citation now
  2. Cheng, G. ; Wang, X. ; He, Y. Remaining useful life and state of health prediction for lithium batteries based on empirical mode decomposition and a long and short memory neural network. 2021 Energy. 232 121022-

  3. Fong, J.T. ; Filliben, J.J. ; Heckert, N.A. ; Marcal, P.V. ; Rainsberger, R. ; Ma, L. Uncertainty quantification of stresses in a cracked pipe elbow weldment using a logistic function fit, a nonlinear least square algorithm, and a super-parametric method. 2015 Procedia Eng. 130 135-149
    Paper not yet in RePEc: Add citation now
  4. Gao, X. ; Yan, X. ; Gao, P. ; Gao, X. ; Zhang, S. Automatic detection of epileptic seizure based on approximate entropy, recurrence quantification analysis and convolutional neural networks. 2020 Artif Intell Med. 102 -
    Paper not yet in RePEc: Add citation now
  5. Ghasemi-Mobtaker, H. ; Mostashari-Rad, F. ; Saber, Z. ; Chau, K wing ; Nabavi-Pelesaraei, A. Application of photovoltaic system to modify energy use, environmental damages and cumulative exergy demand of two irrigation systems-A case study: barley production of Iran. 2020 Renew Energy. 160 1316-1334

  6. Hu, Y. ; Li, J. ; Hong, M. ; Ren, J. ; Lin, R. ; Liu, Y. Short term electric load forecasting model and its verification for process industrial enterprises based on hybrid GA-PSO-BPNN algorithm—a case study of papermaking process. 2019 Energy. 170 1215-1227

  7. Jaseena, K.U. ; Kovoor, B.C. Decomposition-based hybrid wind speed forecasting model using deep bidirectional LSTM networks. 2021 Energy Convers Manag. 234 113944-
    Paper not yet in RePEc: Add citation now
  8. Kaytez, F. A hybrid approach based on autoregressive integrated moving average and least-square support vector machine for long-term forecasting of net electricity consumption. 2020 Energy. 197 117200-

  9. Kazemzadeh, M.R. ; Amjadian, A. ; Amraee, T. A hybrid data mining driven algorithm for long term electric peak load and energy demand forecasting. 2020 Energy. 204 117948-

  10. Kychkin, A.V. ; Chasparis, G.C. Feature and model selection for day-ahead electricity-load forecasting in residential buildings. 2021 Energy Build. 249 111200-
    Paper not yet in RePEc: Add citation now
  11. Li, J. ; Wu, Q. ; Tian, Y. ; Fan, L. Monthly Henry Hub natural gas spot prices forecasting using variational mode decomposition and deep belief network. 2021 Energy. 227 120478-

  12. Liang, T. ; Zhao, Q. ; Lv, Q. ; Sun, H. A novel wind speed prediction strategy based on Bi-LSTM, MOOFADA and transfer learning for centralized control centers. 2021 Energy. 230 120904-

  13. Moreno, S.R. ; Mariani, V.C. ; dos SantosCoelho LCoelho, L. ; dos, S. Hybrid multi-stage decomposition with parametric model applied to wind speed forecasting in Brazilian Northeast. 2021 Renew Energy. 164 1508-1526

  14. Nabavi-Pelesaraei, A. ; Azadi, H. ; Van Passel, S. ; Saber, Z. ; Hosseini-Fashami, F. ; Mostashari-Rad, F. Prospects of solar systems in production chain of sunflower oil using cold press method with concentrating energy and life cycle assessment. 2021 Energy. 223 120117-

  15. National Bureau of Statistics of the People's Republic of China China energy statisyical yearbook. 2020 China Statistical Publishing House: Beijing
    Paper not yet in RePEc: Add citation now
  16. Niu, D. ; Ji, Z. ; Li, W. ; Xu, X. ; Liu, D. Research and application of a hybrid model for mid-term power demand forecasting based on secondary decomposition and interval optimization. 2021 Energy. 234 121145-

  17. Niu, X. ; Wang, J. A combined model based on data preprocessing strategy and multi-objective optimization algorithm for short-term wind speed forecasting. 2019 Appl Energy. 241 519-539

  18. Ofori-Ntow Jnr, E. ; Ziggah, Y.Y. ; Relvas, S. Hybrid ensemble intelligent model based on wavelet transform, swarm intelligence and artificial neural network for electricity demand forecasting. 2021 Sustain Cities Soc. 66 102679-
    Paper not yet in RePEc: Add citation now
  19. Ogliari, E. ; Guilizzoni, M. ; Giglio, A. ; Pretto, S. Wind power 24-h ahead forecast by an artificial neural network and an hybrid model: comparison of the predictive performance. 2021 Renew Energy. 178 1466-1474

  20. Pi, Z.X. ; Li, X.H. ; Ding, Y.M. ; Zhao, M. ; Liu, Z.X. Demand response scheduling algorithm of the economic energy consumption in buildings for considering comfortable working time and user target price. 2021 Energy Build. 250 111252-
    Paper not yet in RePEc: Add citation now
  21. Prasad, S.M.M. ; Nguyen-Huy, T. ; Deo, R. Support vector machine model for multistep wind speed forecasting. 2020 En : Deo, R. ; Samui, P. ; Roy, S.S. Predictive modelling for energy management and power systems engineering. Elsvier: Amsterdam
    Paper not yet in RePEc: Add citation now
  22. Qian, Z. ; Pei, Y. ; Zareipour, H. ; Chen, N. A review and discussion of decomposition-based hybrid models for wind energy forecasting applications. 2019 Appl Energy. 235 939-953

  23. Shao, Z. ; Chao, F. ; Fu, C. ; Yang, S.L. ; Zhou, K Le A review of the decomposition methodology for extracting and identifying the fluctuation characteristics in electricity demand forecasting. 2017 Renew Sustain Energy Rev. 75 123-136
    Paper not yet in RePEc: Add citation now
  24. Shao, Z. ; Zheng, Q. ; Liu, C. ; Gao, S. ; Wang, G. ; Chu, Y. A feature extraction- and ranking-based framework for electricity spot price forecasting using a hybrid deep neural network. 2021 Elec Power Syst Res. 200 107453-
    Paper not yet in RePEc: Add citation now
  25. Smiti, A. A critical overview of outlier detection methods. 2020 Comput Sci Rev. 38 100306-
    Paper not yet in RePEc: Add citation now
  26. Talaat, M. ; Farahat, M.A. ; Mansour, N. ; Hatata, A.Y. Load forecasting based on grasshopper optimization and a multilayer feed-forward neural network using regressive approach. 2020 Energy. 196 117087-

  27. Tang, X. ; Liu, K. ; Lu, J. ; Liu, B. ; Wang, X. ; Gao, F. Battery incremental capacity curve extraction by a two-dimensional Luenberger–Gaussian-moving-average filter. 2020 Appl Energy. 280 115895-

  28. Tavassoli-Hojati, Z. ; Ghaderi, S.F. ; Iranmanesh, H. ; Hilber, P. ; Shayesteh, E. A self-partitioning local neuro fuzzy model for short-term load forecasting in smart grids. 2020 Energy. 199 117514-

  29. Tawn, R. ; Browell, J. ; Dinwoodie, I. Missing data in wind farm time series: properties and effect on forecasts. 2020 Elec Power Syst Res. 189 106640-
    Paper not yet in RePEc: Add citation now
  30. United Nations Framework Convention on Climate Change The Paris agreement. 2018 :
    Paper not yet in RePEc: Add citation now
  31. Waheed, R. ; Sarwar, S. ; Wei, C. The survey of economic growth, energy consumption and carbon emission. 2019 Energy Rep. 5 1103-1115
    Paper not yet in RePEc: Add citation now
  32. Wang, Y. ; Sun, S. ; Chen, X. ; Zeng, X. ; Kong, Y. ; Chen, J. Short-term load forecasting of industrial customers based on SVMD and XGBoost. 2021 Int J Electr Power Energy Syst. 129 106830-
    Paper not yet in RePEc: Add citation now
  33. Zhang, L. ; Su, H. ; Zio, E. ; Zhang, Z. ; Chi, L. ; Fan, L. A data-driven approach to anomaly detection and vulnerability dynamic analysis for large-scale integrated energy systems. 2021 Energy Convers Manag. 234 113926-
    Paper not yet in RePEc: Add citation now
  34. Zhang, S. ; Chen, Y. ; Xiao, J. ; Zhang, W. ; Feng, R. Hybrid wind speed forecasting model based on multivariate data secondary decomposition approach and deep learning algorithm with attention mechanism. 2021 Renew Energy. 174 688-704

  35. Zhang, T. ; Tang, Z. ; Wu, J. ; Du, X. ; Chen, K. Multi-step-ahead crude oil price forecasting based on two-layer decomposition technique and extreme learning machine optimized by the particle swarm optimization algorithm. 2021 Energy. 229 120797-

  36. Zhang, X. ; Wang, J. ; Gao, Y. A hybrid short-term electricity price forecasting framework: cuckoo search-based feature selection with singular spectrum analysis and SVM. 2019 Energy Econ. 81 899-913

  37. Zhang, Z. ; Hong, W.C. Application of variational mode decomposition and chaotic grey wolf optimizer with support vector regression for forecasting electric loads. 2021 Knowl Base Syst. 228 107297-
    Paper not yet in RePEc: Add citation now

Cocites

Documents in RePEc which have cited the same bibliography

  1. Jointed SOH Estimation of Electric Bus Batteries Based on Operating Conditions and Multiple Indicators. (2025). Wu, Xiaohua ; Deng, Pengyi ; Yang, Jibin ; Xu, Xiaohui ; Zhou, Haolan ; Cheng, Linsui.
    In: Sustainability.
    RePEc:gam:jsusta:v:17:y:2025:i:3:p:812-:d:1572318.

    Full description at Econpapers || Download paper

  2. State of Health Prediction of Pure Electric Vehicle Batteries Based on Patch Wavelet Transformer. (2025). Chen, Lin ; Yuan, Siquan ; Liu, Yuhang ; Hu, Jie ; Wei, Min.
    In: Mathematics.
    RePEc:gam:jmathe:v:13:y:2025:i:13:p:2099-:d:1688004.

    Full description at Econpapers || Download paper

  3. An adaptive mixture prior in Bayesian convolutional autoencoder for early detecting anomalous degradation behaviors in lithium-ion batteries. (2025). Chae, Sun Geu ; Bae, Suk Joo.
    In: Reliability Engineering and System Safety.
    RePEc:eee:reensy:v:259:y:2025:i:c:s0951832025001292.

    Full description at Econpapers || Download paper

  4. Deep learning model-based real-time state-of-health estimation of lithium-ion batteries under dynamic operating conditions. (2025). Zhou, Chaobin ; Wang, Yufan ; Tang, Telu ; Yang, Xiangguo ; Li, Muheng ; Huang, Hai ; Guan, Cong.
    In: Energy.
    RePEc:eee:energy:v:317:y:2025:i:c:s0360544225003391.

    Full description at Econpapers || Download paper

  5. A deep learning multi-feature based fusion model for predicting the state of health of lithium-ion batteries. (2025). Chinnathambi, Arunachalam ; Varuvel, Edwin Geo ; Femilda, J S ; Sonthalia, Ankit ; Subramanian, Thiyagarajan ; Kiani, Farzad.
    In: Energy.
    RePEc:eee:energy:v:317:y:2025:i:c:s0360544225002117.

    Full description at Econpapers || Download paper

  6. Prognostication of lithium-ion battery capacity fade based on data space compression visualization and SMA-ISVR. (2025). Li, Jiaqi ; Ma, Yan ; Chen, Hong ; Gao, Jinwu.
    In: Applied Energy.
    RePEc:eee:appene:v:380:y:2025:i:c:s0306261924023584.

    Full description at Econpapers || Download paper

  7. A collaborative interaction gate-based deep learning model with optimal bandwidth adjustment strategies for lithium-ion battery capacity point-interval forecasting. (2025). Lin, Jun-Jie ; Chen, Xiao-Rui ; Luo, Xing-Fu ; Zhang, Shu-Rui ; Huang, Ya-He ; Liu, Zhi-Feng ; Tang, YU ; Guo, Liang.
    In: Applied Energy.
    RePEc:eee:appene:v:377:y:2025:i:pd:s030626192402124x.

    Full description at Econpapers || Download paper

  8. Remaining Useful Life Estimation of Lithium-Ion Batteries Based on Small Sample Models. (2024). Xia, Weihuan ; Zhu, Yunhai ; Yue, Chuanxu ; Sun, Wei ; Liu, LU.
    In: Energies.
    RePEc:gam:jeners:v:17:y:2024:i:19:p:4932-:d:1490941.

    Full description at Econpapers || Download paper

  9. Multi-Timeframe Forecasting Using Deep Learning Models for Solar Energy Efficiency in Smart Agriculture. (2024). Cho, Yongyun ; Venkatesan, Saravanakumar.
    In: Energies.
    RePEc:gam:jeners:v:17:y:2024:i:17:p:4322-:d:1466745.

    Full description at Econpapers || Download paper

  10. Applications of artificial neural network based battery management systems: A literature review. (2024). Yetgin, Zeki ; Ozbaltan, Mete ; Kurucan, Mehmet ; Alkaya, Alkan.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:192:y:2024:i:c:s1364032123011206.

    Full description at Econpapers || Download paper

  11. An embedding layer-based quantum long short-term memory model with transfer learning for proton exchange membrane fuel stack remaining useful life prediction. (2024). Woldegiorgis, Bereket Haile ; Lo, Shih-Che ; Kebede, Getnet Awoke ; Wang, Fu-Kwun.
    In: Energy.
    RePEc:eee:energy:v:308:y:2024:i:c:s0360544224028299.

    Full description at Econpapers || Download paper

  12. An improved dung beetle optimizer- hybrid kernel least square support vector regression algorithm for state of health estimation of lithium-ion batteries based on variational model decomposition. (2024). Fan, Yongcun ; Zhu, Tao ; Wang, Shunli ; Huang, QI ; Hai, Nan ; Fernandez, Carlos.
    In: Energy.
    RePEc:eee:energy:v:306:y:2024:i:c:s0360544224022382.

    Full description at Econpapers || Download paper

  13. A deep learning framework for the joint prediction of the SOH and RUL of lithium-ion batteries based on bimodal images. (2024). Zhou, Yinghong ; Zhang, XU ; Que, Xiaoping ; Feng, Weiguo ; Cai, Nian.
    In: Energy.
    RePEc:eee:energy:v:302:y:2024:i:c:s0360544224014737.

    Full description at Econpapers || Download paper

  14. A hybrid deep learning approach for remaining useful life prediction of lithium-ion batteries based on discharging fragments. (2024). Chen, Zhongwei ; Mao, Zhiyu ; Liu, Yunpeng ; Ahmed, Moin ; Feng, Jiangtao ; Hou, BO.
    In: Applied Energy.
    RePEc:eee:appene:v:358:y:2024:i:c:s0306261923019190.

    Full description at Econpapers || Download paper

  15. Decomposition prediction fractional-order PID reinforcement learning for short-term smart generation control of integrated energy systems. (2024). Yin, Linfei ; Zheng, DA.
    In: Applied Energy.
    RePEc:eee:appene:v:355:y:2024:i:c:s0306261923016100.

    Full description at Econpapers || Download paper

  16. Lithium-Ion Battery Remaining Useful Life Prediction Based on Hybrid Model. (2023). Tang, Xuliang ; Wang, Weiwen ; Gu, Mengxu ; Gan, Linfeng.
    In: Sustainability.
    RePEc:gam:jsusta:v:15:y:2023:i:7:p:6261-:d:1116838.

    Full description at Econpapers || Download paper

  17. Prognosis of Lithium-Ion Batteries’ Remaining Useful Life Based on a Sequence-to-Sequence Model with Variational Mode Decomposition. (2023). He, Zhiwei ; Bao, Zhengyi ; Gao, Mingyu ; Zhu, Chunxiang.
    In: Energies.
    RePEc:gam:jeners:v:16:y:2023:i:2:p:803-:d:1031238.

    Full description at Econpapers || Download paper

  18. A Review on Testing of Electrochemical Cells for Aging Models in BESS. (2023). Mandelli, Stefano ; Colnago, Silvia ; Pakjoo, Mehrshad ; Merlo, Marco ; Piegari, Luigi ; Mengou, Joseph Epoupa ; Rancilio, Giuliano ; Gorni, Giacomo ; Bresciani, Federico.
    In: Energies.
    RePEc:gam:jeners:v:16:y:2023:i:19:p:6887-:d:1250891.

    Full description at Econpapers || Download paper

  19. A Method for Predicting the Life of Lithium-Ion Batteries Based on Successive Variational Mode Decomposition and Optimized Long Short-Term Memory. (2023). Hu, Yujun ; Shi, Yongsheng ; Zhai, Xinran ; Li, Tailin ; Wang, Leicheng ; Lu, Hongzhou ; He, Beichen.
    In: Energies.
    RePEc:gam:jeners:v:16:y:2023:i:16:p:5952-:d:1215894.

    Full description at Econpapers || Download paper

  20. Bioinspired spiking spatiotemporal attention framework for lithium-ion batteries state-of-health estimation. (2023). Zhang, Ying ; Li, Yan-Fu ; Wang, Huan.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:188:y:2023:i:c:s1364032123005853.

    Full description at Econpapers || Download paper

  21. CAD system for inter-turn fault diagnosis of offshore wind turbines via multi-CNNs & feature selection. (2023). Ibrahim, Rania A ; Attallah, Omneya ; Zakzouk, Nahla E.
    In: Renewable Energy.
    RePEc:eee:renene:v:203:y:2023:i:c:p:870-880.

    Full description at Econpapers || Download paper

  22. Improved anti-noise adaptive long short-term memory neural network modeling for the robust remaining useful life prediction of lithium-ion batteries. (2023). Fan, Yongcun ; Jin, Siyu ; Wang, Shunli ; Takyi-Aninakwa, Paul ; Fernandez, Carlos.
    In: Reliability Engineering and System Safety.
    RePEc:eee:reensy:v:230:y:2023:i:c:s095183202200535x.

    Full description at Econpapers || Download paper

  23. Multiple health indicators fusion-based health prognostic for lithium-ion battery using transfer learning and hybrid deep learning method. (2023). Ma, Yan ; Gao, Jinwu ; Chen, Hong ; Shan, CE.
    In: Reliability Engineering and System Safety.
    RePEc:eee:reensy:v:229:y:2023:i:c:s0951832022004379.

    Full description at Econpapers || Download paper

  24. State of health estimation of lithium-ion batteries based on fine-tuning or rebuilding transfer learning strategies combined with new features mining. (2023). Lv, Ziteng ; Guo, Yongfang ; Yao, Kaixin ; Huang, Kai.
    In: Energy.
    RePEc:eee:energy:v:282:y:2023:i:c:s0360544223021333.

    Full description at Econpapers || Download paper

  25. A deep feature learning method for remaining useful life prediction of drilling pumps. (2023). Guo, Junyu ; Wan, Jia-Lun ; Li, HE ; Zhang, Fangfang ; Huang, Bangkui ; Tang, Aimin ; Yang, Yan ; Dai, LE.
    In: Energy.
    RePEc:eee:energy:v:282:y:2023:i:c:s0360544223018364.

    Full description at Econpapers || Download paper

  26. Hybrid deep neural network with dimension attention for state-of-health estimation of Lithium-ion Batteries. (2023). Bao, Xinyuan ; Li, Xin ; Xie, Siqiang ; Chen, Liping ; Lopes, Antonio M.
    In: Energy.
    RePEc:eee:energy:v:278:y:2023:i:c:s0360544223011283.

    Full description at Econpapers || Download paper

  27. A novel hybrid scheme for remaining useful life prognostic based on secondary decomposition, BiGRU and error correction. (2023). Wang, Wenbo ; Zhu, Ting ; Yu, Min.
    In: Energy.
    RePEc:eee:energy:v:276:y:2023:i:c:s0360544223009593.

    Full description at Econpapers || Download paper

  28. Prediction of remaining useful life and state of health of lithium batteries based on time series feature and Savitzky-Golay filter combined with gated recurrent unit neural network. (2023). Wu, Xiongwei ; Wang, Tao ; Liu, Lili ; Fu, Lijun ; Ye, Jilei ; Guo, Fei.
    In: Energy.
    RePEc:eee:energy:v:270:y:2023:i:c:s0360544223002748.

    Full description at Econpapers || Download paper

  29. A novel state-of-health estimation for the lithium-ion battery using a convolutional neural network and transformer model. (2023). Li, Penghua ; Zhang, Neng ; Zhao, Liang ; See, K W ; Shan, Kangheng ; Lim, Kai Chin ; Wang, Yunpeng ; Gu, Xinyu.
    In: Energy.
    RePEc:eee:energy:v:262:y:2023:i:pb:s0360544222023830.

    Full description at Econpapers || Download paper

  30. Prognostics of battery capacity based on charging data and data-driven methods for on-road vehicles. (2023). Deng, Zhongwei ; Duan, Zhixuan ; Xu, YU ; Hu, Xiaosong ; Liu, Hongao.
    In: Applied Energy.
    RePEc:eee:appene:v:339:y:2023:i:c:s0306261923003185.

    Full description at Econpapers || Download paper

  31. Remaining Useful Life Prediction for Lithium-Ion Batteries Based on Improved Variational Mode Decomposition and Machine Learning Algorithm. (2022). Jia, Zhenhong ; Shi, Qiyang ; Zhang, Jun ; Sun, Chuang ; Qu, AN.
    In: Energies.
    RePEc:gam:jeners:v:16:y:2022:i:1:p:313-:d:1017133.

    Full description at Econpapers || Download paper

  32. A New Hybrid Neural Network Method for State-of-Health Estimation of Lithium-Ion Battery. (2022). Bao, Zhengyi ; Gao, Mingyu ; Jiang, Jiahao ; Zhu, Chunxiang.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:12:p:4399-:d:840636.

    Full description at Econpapers || Download paper

  33. Remaining useful life prediction for 18650 sodium-ion batteries based on incremental capacity analysis. (2022). Song, Ziyou ; Balaya, Palani ; Ye, Min ; Wei, Meng.
    In: Energy.
    RePEc:eee:energy:v:261:y:2022:i:pa:s036054422202045x.

    Full description at Econpapers || Download paper

  34. A fast state-of-health estimation method using single linear feature for lithium-ion batteries. (2022). Mei, Xuesong ; Shi, Mingjie ; Xu, Jun ; Lin, Chuanping.
    In: Energy.
    RePEc:eee:energy:v:256:y:2022:i:c:s0360544222015559.

    Full description at Econpapers || Download paper

  35. Battery monitoring and prognostics optimization techniques: Challenges and opportunities. (2022). Dassisti, Michele ; Caggiano, Mariateresa ; Semeraro, Concetta ; Olabi, Abdul-Ghani.
    In: Energy.
    RePEc:eee:energy:v:255:y:2022:i:c:s0360544222014414.

    Full description at Econpapers || Download paper

  36. A novel method for state of health estimation of lithium-ion batteries based on improved LSTM and health indicators extraction. (2022). Ma, Yan ; Gao, Jinwu ; Chen, Hong ; Shan, CE.
    In: Energy.
    RePEc:eee:energy:v:251:y:2022:i:c:s0360544222008763.

    Full description at Econpapers || Download paper

  37. Remaining useful life prediction of lithium-ion batteries using a hybrid model. (2022). Wu, Youxi ; He, Wenxuan ; Ding, Fei ; Yao, Fang ; Meng, Defang.
    In: Energy.
    RePEc:eee:energy:v:248:y:2022:i:c:s0360544222005254.

    Full description at Econpapers || Download paper

  38. Adaptive online capacity prediction based on transfer learning for fast charging lithium-ion batteries. (2022). Chen, Zhang ; Shen, Wenjing ; Wang, Shuqiang.
    In: Energy.
    RePEc:eee:energy:v:248:y:2022:i:c:s0360544222004406.

    Full description at Econpapers || Download paper

  39. Industrial artificial intelligence based energy management system: Integrated framework for electricity load forecasting and fault prediction. (2022). Hu, Yusha ; Man, YI ; Hong, Mengna ; Ren, Jingzheng ; Li, Jigeng.
    In: Energy.
    RePEc:eee:energy:v:244:y:2022:i:pb:s0360544222000986.

    Full description at Econpapers || Download paper

  40. A hybrid method with cascaded structure for early-stage remaining useful life prediction of lithium-ion battery. (2022). Liu, Yongjie ; Yan, Lisen ; Peng, Jun ; Gao, Dianzhu ; Huang, Zhiwu ; Wu, Yue.
    In: Energy.
    RePEc:eee:energy:v:243:y:2022:i:c:s0360544221032874.

    Full description at Econpapers || Download paper

  41. A review on second-life of Li-ion batteries: prospects, challenges, and issues. (2022). Roy, Probir Kumar ; Shahjalal, Mohammad ; Ahmed, Md Rishad ; Liu, Kailong ; Chowdhury, Jahedul Islam ; Fly, Ashley ; Shams, Tamanna.
    In: Energy.
    RePEc:eee:energy:v:241:y:2022:i:c:s0360544221031303.

    Full description at Econpapers || Download paper

  42. A fault diagnosis method for small pressurized water reactors based on long short-term memory networks. (2022). Wu, Shifa ; Wang, Pengfei ; Zhang, Jiaxuan.
    In: Energy.
    RePEc:eee:energy:v:239:y:2022:i:pc:s0360544221025469.

    Full description at Econpapers || Download paper

  43. Integrated framework for SOH estimation of lithium-ion batteries using multiphysics features. (2022). Jeong, Siheon ; Son, Seho ; Oh, Ki-Yong ; Kim, Jun-Hyeong ; Kwak, Eunji.
    In: Energy.
    RePEc:eee:energy:v:238:y:2022:i:pa:s0360544221019605.

    Full description at Econpapers || Download paper

  44. Novel informed deep learning-based prognostics framework for on-board health monitoring of lithium-ion batteries. (2022). Kim, Sungwook ; Lee, Seungchul ; Oh, Ki-Yong.
    In: Applied Energy.
    RePEc:eee:appene:v:315:y:2022:i:c:s0306261922004196.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-10-04 06:16:38 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.