- Abbaszade, M. ; Salari, V. ; Mousavi, S.S. ; Zomorodi, M. ; Zhou, X. Application of quantum natural language processing for language translation. 2021 IEEE Access. 9 130434-130448
Paper not yet in RePEc: Add citation now
- Abdar, M. ; Pourpanah, F. ; Hussain, S. ; Rezazadegan, D. ; Liu, L. ; Ghavamzadeh, M. A review of uncertainty quantification in deep learning: techniques, applications and challenges. 2021 Inf Fusion. 76 243-297
Paper not yet in RePEc: Add citation now
Bian, C. ; He, H. ; Yang, S. Stacked bidirectional long short-term memory networks for state-of-charge estimation of lithium-ion batteries. 2020 Energy. 191 -
- Che, Y. ; Deng, Z. ; Lin, X. ; Hu, L. ; Hu, X. Predictive battery health management with transfer learning and online model correction. 2021 IEEE Trans Veh Technol. 70 1269-1277
Paper not yet in RePEc: Add citation now
- Chen, K. ; Laghrouche, S. ; Djerdir, A. Fuel cell health prognosis using unscented kalman filter: postal fuel cell electric vehicles case study. 2019 Int J Hydrogen Energy. 44 1930-1939
Paper not yet in RePEc: Add citation now
- Chen, S.Y.C. ; Yoo, S. ; Fang, Y.L.L. Quantum long short-term memory. 2022 :
Paper not yet in RePEc: Add citation now
Cheng, G. ; Wang, X. ; He, Y. Remaining useful life and state of health prediction for lithium batteries based on empirical mode decomposition and a long and short memory neural network. 2021 Energy. 232 -
- Emmanoulopoulos D, Dimoska S. Quantum machine learning in finance: time series forecasting 2022;1–20 arXiv:2202.00599vol. 1..
Paper not yet in RePEc: Add citation now
Fan, L. ; Tu, Z. ; Chan, S.H. Technological and engineering design of a megawatt proton exchange membrane fuel cell system. 2022 Energy. 257 -
- Fasahat, M. ; Manthouri, M. State of charge estimation of lithium-ion batteries using hybrid autoencoder and long short term memory neural networks. 2020 J Power Sources. 469 -
Paper not yet in RePEc: Add citation now
- Fermín-Cueto, P. ; McTurk, E. ; Allerhand, M. ; Medina-Lopez, E. ; Anjos, M.F. ; Sylvester, J. Identification and machine learning prediction of knee-point and knee-onset in capacity degradation curves of lithium-ion cells. 2020 Energy & AI. 1 -
Paper not yet in RePEc: Add citation now
- Gourivaeu, R. ; Hilairet, M. ; Hissel, D. ; Jemeï, S. ; Jouin, M. ; Lechartier, E. . 2014 IEEE PHM 2014 data challenge: outline, experiments, scoring of results, winners. PHM. 1-12
Paper not yet in RePEc: Add citation now
- Guo, Y. ; Wang, Y. ; Ding, P. ; Huang, K. Future degradation trajectory prediction of lithium-ion battery based on a three-step similarity evaluation criterion for battery selection and transfer learning. 2023 J Energy Storage. 72 -
Paper not yet in RePEc: Add citation now
- Hochreiter, S. ; Schmidhuber, J. Long short-term memory. 1997 Neural Comput. 9 1735-1780
Paper not yet in RePEc: Add citation now
- Kandidayeni, M. ; Trovão, J.P. ; Soleymani, M. ; Boulon, L. Towards health-aware energy management strategies in fuel cell hybrid electric vehicles: a review. 2022 Int J Hydrogen Energy. 47 10021-10043
Paper not yet in RePEc: Add citation now
- Kebede, G.A. ; Lo, S.-C. ; Wang, F.-K. ; Chou, J.-H. Transfer learning-based deep learning models for proton exchange membrane fuel remaining useful life prediction. 2024 Fuel. 367 -
Paper not yet in RePEc: Add citation now
- Kim, S. ; Choi, Y.Y. ; Kim, K.J. ; Choi, J.-I. Forecasting state-of-health of lithium-ion batteries using variational long short-term memory with transfer learning. 2021 J Energy Storage. 41 -
Paper not yet in RePEc: Add citation now
- Li, P. ; Zhang, Z. ; Xiong, Q. ; Ding, B. ; Hou, J. ; Luo, D. State-of-health estimation and remaining useful life prediction for the lithium-ion battery based on a variant long short term memory neural network. 2020 J Power Sources. 459 -
Paper not yet in RePEc: Add citation now
- Li, S. ; Luan, W. ; Wang, C. ; Chen, Y. ; Zhuang, Z. Degradation prediction of proton exchange membrane fuel cell based on Bi-LSTM-GRU and ESN fusion prognostic framework. 2022 Int J Hydrogen Energy. 47 33466-33478
Paper not yet in RePEc: Add citation now
- Li, X. ; Yu, D. ; Søren Byg, V. ; Daniel, Ioan S. The development of machine learning-based remaining useful life prediction for lithium-ion batteries. 2023 J Energy Chem. 82 103-121
Paper not yet in RePEc: Add citation now
Liu, H. ; Chen, J. ; Hissel, D. ; Lu, J. ; Hou, M. ; Shao, Z. Prognostics methods and degradation indexes of proton exchange membrane fuel cells: a review. 2020 Renew Sustain Energy Rev. 123 -
- Liu, J. ; Li, Q. ; Chen, W. ; Yan, Y. ; Qiu, Y. ; Cao, T. Remaining useful life prediction of PEMFC based on long short-term memory recurrent neural networks. 2019 Int J Hydrogen Energy. 44 5470-5480
Paper not yet in RePEc: Add citation now
- Liu, J. ; Li, Q. ; Yang, H. ; Han, Y. ; Jiang, S. ; Chen, W. Sequence fault diagnosis for PEMFC water management subsystem using deep learning with t-SNE. 2019 IEEE Access. 7 92009-92019
Paper not yet in RePEc: Add citation now
- Liu, Y. ; He, Y. ; Bian, H. ; Guo, W. ; Zhang, X. A review of lithium-ion battery state of charge estimation based on deep learning: directions for improvement and future trends. 2022 J Energy Storage. 52 -
Paper not yet in RePEc: Add citation now
Liu, Z. ; Xu, S. ; Zhao, H. ; Wang, Y. Durability estimation and short-term voltage degradation forecasting of vehicle PEMFC system: development and evaluation of machine learning models. 2022 Appl Energy. 326 -
- Ma, J. ; Liu, X. ; Zou, X. ; Yue, M. ; Shang, P. ; Kang, L. Degradation prognosis for proton exchange membrane fuel cell based on hybrid transfer learning and intercell differences. 2021 ISA Trans. 113 149-165
Paper not yet in RePEc: Add citation now
Ma, R. ; Yang, T. ; Breaz, E. ; Li, Z. ; Briois, P. ; Gao, F. Data-driven proton exchange membrane fuel cell degradation predication through deep learning method. 2018 Appl Energy. 231 102-115
Ma, T. ; Xu, J. ; Li, R. ; Yao, N. ; Yang, Y. Online short-term remaining useful life prediction of fuel cell vehicles based on cloud system. 2021 Energies. 14 -
- Ming, W. ; Sun, P. ; Zhang, Z. ; Qiu, W. ; Du, J. ; Li, X. A systematic review of machine learning methods applied to fuel cells in performance evaluation, durability prediction, and application monitoring. 2023 Int J Hydrogen Energy. 48 5197-5228
Paper not yet in RePEc: Add citation now
Oyewole, I. ; Chehade, A. ; Kim, Y. A controllable deep transfer learning network with multiple domain adaptation for battery state-of-charge estimation. 2022 Appl Energy. 312 -
- Padha, A. ; Sahoo, A. QCLR: quantum-LSTM contrastive learning framework for continuous mental health monitoring. 2024 Expert Syst Appl. 238 -
Paper not yet in RePEc: Add citation now
Ren, X. ; Liu, S. ; Yu, X. ; Dong, X. A method for state-of-charge estimation of lithium-ion batteries based on PSO-LSTM. 2021 Energy. 234 -
- Sahajpal, K. ; Rana, K.P.S. ; Kumar, V. Accurate long-term prognostics of proton exchange membrane fuel cells using recurrent and convolutional neural networks. 2023 Int J Hydrogen Energy. -
Paper not yet in RePEc: Add citation now
- Shahvandi, M.K. ; Gou, J. ; Soja, B. Deep quantum learning with long short-term memory for geodetic time series prediction: application to length of day prediction. 2021 Earth Sp Sci Open Arch. 1 -
Paper not yet in RePEc: Add citation now
- Sun, B. ; Liu, X. ; Wang, J. ; Wei, X. ; Yuan, H. ; Dai, H. Short-term performance degradation prediction of a commercial vehicle fuel cell system based on CNN and LSTM hybrid neural network. 2023 Int J Hydrogen Energy. 48 8613-8628
Paper not yet in RePEc: Add citation now
- Sun, X. ; Xie, M. ; Fu, J. ; Zhou, F. ; Liu, J. An improved neural network model for predicting the remaining useful life of proton exchange membrane fuel cells. 2023 Int J Hydrogen Energy. 48 25499-25511
Paper not yet in RePEc: Add citation now
- Tang, X. ; Qin, X. ; Wei, K. ; Xu, S. A novel online degradation model for proton exchange membrane fuel cell based on online transfer learning. 2023 Int J Hydrogen Energy. 48 13617-13632
Paper not yet in RePEc: Add citation now
- Tian, J. ; Chen, C. ; Shen, W. ; Sun, F. ; Xiong, R. Deep learning framework for lithium-ion battery state of charge estimation: recent advances and future perspectives. 2023 Energy Storage Mater. 61 -
Paper not yet in RePEc: Add citation now
- Vichard, L. ; Steiner, N.Y. ; Zerhouni, N. ; Hissel, D. Hybrid fuel cell system degradation modeling methods: a comprehensive review. 2021 J Power Sources. 506 -
Paper not yet in RePEc: Add citation now
Wang, F.-K. ; Amogne, Z.E. ; Chou, J.-H. ; Tseng, C. Online remaining useful life prediction of lithium-ion batteries using bidirectional long short-term memory with attention mechanism. 2022 Energy. 254 -
Wang, S. ; Takyi-Aninakwa, P. ; Jin, S. ; Yu, C. ; Fernandez, C. ; Stroe, D.-I. An improved feedforward-long short-term memory modeling method for the whole-life-cycle state of charge prediction of lithium-ion batteries considering current-voltage-temperature variation. 2022 Energy. 254 -
- Wang, Y. ; Pang, Y. ; Xu, H. ; Martinez, A. ; Chen, K.S. PEM fuel cell and electrolysis cell technologies and hydrogen infrastructure development – a review. 2022 Energy Environ Sci. 15 2288-2328
Paper not yet in RePEc: Add citation now
Xie, Q. ; Liu, R. ; Huang, J. ; Su, J. Residual life prediction of lithium-ion batteries based on data preprocessing and a priori knowledge-assisted CNN-LSTM. 2023 Energy. 281 -
- Xu, Z. ; Yu, W. ; Zhang, C. ; Chen, Y. Quantum convolutional long short-term memory based on variational quantum algorithms in the era of NISQ. 2024 Inf. 15 175-
Paper not yet in RePEc: Add citation now
- Yue, M. ; Jemei, S. ; Gouriveau, R. ; Zerhouni, N. Review on health-conscious energy management strategies for fuel cell hybrid electric vehicles: degradation models and strategies. 2019 Int J Hydrogen Energy. 44 6844-6861
Paper not yet in RePEc: Add citation now
- Zhao, J. ; Tu, Z. ; Chan, S.H. Carbon corrosion mechanism and mitigation strategies in a proton exchange membrane fuel cell (PEMFC): a review. 2021 J Power Sources. 488 -
Paper not yet in RePEc: Add citation now
- Zhao, S. ; Zhang, C. ; Wang, Y. Lithium-ion battery capacity and remaining useful life prediction using board learning system and long short-term memory neural network. 2022 J Energy Storage. 52 -
Paper not yet in RePEc: Add citation now
- Zuo, B. ; Cheng, J. ; Zhang, Z. Degradation prediction model for proton exchange membrane fuel cells based on long short-term memory neural network and Savitzky-Golay filter. 2021 Int J Hydrogen Energy. 46 15928-15937
Paper not yet in RePEc: Add citation now
Zuo, J. ; Lv, H. ; Zhou, D. ; Xue, Q. ; Jin, L. ; Zhou, W. Deep learning based prognostic framework towards proton exchange membrane fuel cell for automotive application. 2021 Appl Energy. 281 -