create a website

A novel battery SOC estimation method based on random search optimized LSTM neural network. (2024). Chai, Xuqing ; Li, Shihao ; Liang, Fengwei.
In: Energy.
RePEc:eee:energy:v:306:y:2024:i:c:s0360544224023570.

Full description at Econpapers || Download paper

Cited: 5

Citations received by this document

Cites: 37

References cited by this document

Cocites: 39

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. Spatial Prediction of Soil Organic Carbon Based on a Multivariate Feature Set and Stacking Ensemble Algorithm: A Case Study of Wei-Ku Oasis in China. (2025). Luo, Xiaowei ; Wang, Xuemei ; Li, Dun ; Cao, Zuming.
    In: Sustainability.
    RePEc:gam:jsusta:v:17:y:2025:i:13:p:6168-:d:1695199.

    Full description at Econpapers || Download paper

  2. Combined State-of-Charge Estimation Method for Lithium-Ion Batteries Using Long Short-Term Memory Network and Unscented Kalman Filter. (2025). Pu, Long ; Wang, Chun.
    In: Energies.
    RePEc:gam:jeners:v:18:y:2025:i:5:p:1106-:d:1598628.

    Full description at Econpapers || Download paper

  3. A highly effective and robust structure-based LSTM with feature-vector tuning framework for high-accuracy SOC estimation in EV. (2025). Jeon, Joonhyeon ; Lee, Yoonseok ; Ahn, Junyoung ; Han, Byeongjik ; Chung, Daewon ; Kim, Yunsun.
    In: Energy.
    RePEc:eee:energy:v:325:y:2025:i:c:s0360544225017761.

    Full description at Econpapers || Download paper

  4. SOC prediction for electric buses based on interpretable transformer model: Impact of traffic conditions and feature importance. (2025). Tang, Jinjun ; Hu, Lipeng ; Liang, Xiao ; Xu, Fuqiao.
    In: Energy.
    RePEc:eee:energy:v:324:y:2025:i:c:s0360544225015774.

    Full description at Econpapers || Download paper

  5. Which uncertainty measure better predicts gold prices? New evidence from a CNN-LSTM approach. (2025). Ren, Yinghua ; You, Wanhai ; Chen, Jianyong ; Xie, Haoqi.
    In: The North American Journal of Economics and Finance.
    RePEc:eee:ecofin:v:76:y:2025:i:c:s1062940825000154.

    Full description at Econpapers || Download paper

References

References cited by this document

  1. Bergstra, J. ; Bengio, Y. Random search for hyper-parameter optimization. 2012 Journal of machine learning research. 13 -
    Paper not yet in RePEc: Add citation now
  2. Bian, C. ; He, H. ; Yang, S. Stacked bidirectional long short-term memory networks for state-of-charge estimation of lithium-ion batteries. 2020 Energy. 191 -
    Paper not yet in RePEc: Add citation now
  3. Bian, C. ; He, H. ; Yang, S. Stacked bidirectional long short-term memory networks for state-of-charge estimation of lithium-ion batteries. 2020 Energy. 191 -

  4. Breiman, L. Classification and regression trees[M]. 2017 Routledge:
    Paper not yet in RePEc: Add citation now
  5. Chen, C. ; Xiong, R. ; Yang, R. State-of-charge estimation of lithium-ion battery using an improved neural network model and extended Kalman filter. 2019 J Clean Prod. 234 1153-1164
    Paper not yet in RePEc: Add citation now
  6. Chen, D. ; Zhang, W. ; Zhang, C. Data-driven rapid lifetime prediction method for lithium-ion batteries under diverse fast charging protocols. 2023 J Energy Storage. 74 -
    Paper not yet in RePEc: Add citation now
  7. Chen, J. ; Feng, X. ; Jiang, L. State of charge estimation of lithium-ion battery using denoising autoencoder and gated recurrent unit recurrent neural network. 2021 Energy. 227 -

  8. Chen, J. ; Zhang, Y. ; Wu, J. SOC estimation for lithium-ion battery using the LSTM-RNN with extended input and constrained output. 2023 Energy. 262 -

  9. Chen, Z. ; Zhao, H. ; Shu, X. Synthetic state of charge estimation for lithium-ion batteries based on long short-term memory network modeling and adaptive H-Infinity filter. 2021 Energy. 228 -

  10. Fan, X. ; Feng, H. ; Yun, X. SOC estimation for lithium-ion battery based on AGA-optimized AUKF. 2024 J Energy Storage. 75 -
    Paper not yet in RePEc: Add citation now
  11. Fasahat, M. ; Manthouri, M. State of charge estimation of lithium-ion batteries using hybrid autoencoder and Long Short Term Memory neural networks. 2020 J Power Sources. 469 -
    Paper not yet in RePEc: Add citation now
  12. He, Y. ; Liu, X.T. ; Zhang, C.B. A new model for State-of-Charge (SOC) estimation for high-power Li-ion batteries. 2013 Applied energy. 101 808-814

  13. Herle, A. ; Channegowda, J. ; Prabhu, D. A temporal convolution network approach to state-of-charge estimation in li-ion batteries. 2020 En : 2020 IEEE 17th India council international conference (INDICON). IEEE:
    Paper not yet in RePEc: Add citation now
  14. Hochreiter, S. ; Schmidhuber, J. Long short-term memory. 1997 Neural Comput. 9 1735-1780
    Paper not yet in RePEc: Add citation now
  15. Hong, J. ; Liang, F. ; Yang, H. Multi-forword-step state of charge prediction for real-world electric vehicles battery systems using a novel LSTM-GRU hybrid neural network. 2024 eTransportation. -
    Paper not yet in RePEc: Add citation now
  16. Hong, J. ; Wang, Z. ; Chen, W. Online joint-prediction of multi-forward-step battery SOC using LSTM neural networks and multiple linear regression for real-world electric vehicles. 2020 J Energy Storage. 30 -
    Paper not yet in RePEc: Add citation now
  17. How, D.N.T. ; Hannan, M.A. ; Lipu, M.S.H. State of charge estimation for lithium-ion batteries using model-based and data-driven methods: a review. 2019 IEEE Access. 7 136116-136136
    Paper not yet in RePEc: Add citation now
  18. Hu, J.N. ; Hu, J.J. ; Lin, H.B. State-of-charge estimation for battery management system using optimized support vector machine for regression. 2014 J Power Sources. 269 682-693
    Paper not yet in RePEc: Add citation now
  19. Huang, N. ; Lu, G. ; Xu, D. A permutation importance-based feature selection method for short-term electricity load forecasting using random forest. 2016 Energies. 9 767-

  20. Huang, N. ; Lu, G. ; Xu, D. A permutation importance-based feature selection method for short-term electricity load forecasting using random forest. 2016 Energies. 9 767-
    Paper not yet in RePEc: Add citation now
  21. Jiang, B. ; Tao, S. ; Wang, X. Mechanics-based state of charge estimation for lithium-ion pouch battery using deep learning technique. 2023 Energy. 278 -

  22. Li, R. ; Wang, H. ; Dai, H. Accurate state of charge prediction for real-world battery systems using a novel dual-dropout-based neural network. 2022 Energy. 250 -

  23. Lin, C. ; Tang, A. ; Xing, J. Evaluation of electrochemical models based battery state-of-charge estimation approaches for electric vehicles. 2017 Appl Energy. 207 394-404

  24. Liu, Z. ; Zhao, Z. ; Qiu, Y. Enhanced state of charge estimation for Li-ion batteries through adaptive maximum correntropy Kalman filter with open circuit voltage correction. 2023 Energy. 283 -

  25. Manoharan, A. ; Sooriamoorthy, D. ; Begam, K.M. Electric vehicle battery pack state of charge estimation using parallel artificial neural networks. 2023 J Energy Storage. 72 -
    Paper not yet in RePEc: Add citation now
  26. Masri, S F ; Bekey, G A ; Safford, F B A global optimization algorithm using adaptive random search[J]. 1980 Applied mathematics and computation. 7 353-375
    Paper not yet in RePEc: Add citation now
  27. Ni, Z. ; Xiu, X. ; Yang, Y. Towards efficient state of charge estimation of lithium-ion batteries using canonical correlation analysis. 2022 Energy. 254 -

  28. Niu, D. ; Wang, K. ; Sun, L. Short-term photovoltaic power generation forecasting based on random forest feature selection and CEEMD: a case study. 2020 Appl Soft Comput. 93 -
    Paper not yet in RePEc: Add citation now
  29. Pang, H. ; Chen, K. ; Geng, Y. Accurate capacity and remaining useful life prediction of lithium-ion batteries based on improved particle swarm optimization and particle filter. 2024 Energy. -

  30. Pecht, M.G. Randomized battery usage data set; center for advanced life cycle engineering. 2014 :
    Paper not yet in RePEc: Add citation now
  31. Ren, X. ; Liu, S. ; Yu, X. A method for state-of-charge estimation of lithium-ion batteries based on PSO-LSTM. 2021 Energy. 234 -

  32. Shen, S. ; Sadoughi, M. ; Chen, X. A deep learning method for online capacity estimation of lithium-ion batteries. 2019 J Energy Storage. 25 -
    Paper not yet in RePEc: Add citation now
  33. Wang, Y. ; Zhang, C. ; Chen, Z. On-line battery state-of-charge estimation based on an integrated estimator. 2017 Appl Energy. 185 2026-2032

  34. Wu, L. ; Zhang, Y. Attention-based encoder-decoder networks for state of charge estimation of lithium-ion battery. 2023 Energy. 268 -

  35. Yang, F. ; Li, W. ; Li, C. State-of-charge estimation of lithium-ion batteries based on gated recurrent neural network. 2019 Energy. 175 66-75

  36. Yang, F. ; Zhang, S. ; Li, W. State-of-charge estimation of lithium-ion batteries using LSTM and UKF. 2020 Energy. 201 -

  37. Zhang, X. ; Li, Z. ; Luo, L. A review on thermal management of lithium-ion batteries for electric vehicles. 2022 Energy. 238 -
    Paper not yet in RePEc: Add citation now

Cocites

Documents in RePEc which have cited the same bibliography

  1. SOC prediction for electric buses based on interpretable transformer model: Impact of traffic conditions and feature importance. (2025). Tang, Jinjun ; Hu, Lipeng ; Liang, Xiao ; Xu, Fuqiao.
    In: Energy.
    RePEc:eee:energy:v:324:y:2025:i:c:s0360544225015774.

    Full description at Econpapers || Download paper

  2. Generating comprehensive lithium battery charging data with generative AI. (2025). Jiang, Lidang ; Hu, Changyan ; Zhao, Hang ; Chen, Junxiong.
    In: Applied Energy.
    RePEc:eee:appene:v:377:y:2025:i:pc:s0306261924019871.

    Full description at Econpapers || Download paper

  3. An embedding layer-based quantum long short-term memory model with transfer learning for proton exchange membrane fuel stack remaining useful life prediction. (2024). Woldegiorgis, Bereket Haile ; Lo, Shih-Che ; Kebede, Getnet Awoke ; Wang, Fu-Kwun.
    In: Energy.
    RePEc:eee:energy:v:308:y:2024:i:c:s0360544224028299.

    Full description at Econpapers || Download paper

  4. A novel battery SOC estimation method based on random search optimized LSTM neural network. (2024). Chai, Xuqing ; Li, Shihao ; Liang, Fengwei.
    In: Energy.
    RePEc:eee:energy:v:306:y:2024:i:c:s0360544224023570.

    Full description at Econpapers || Download paper

  5. Exploring large language model for generic and robust state-of-charge estimation of Li-ion batteries: A mixed prompt learning method. (2024). Duan, Zhiyu ; Hao, Yaqian ; Yang, Shunkun ; Feng, Junlan ; Bian, Chong.
    In: Energy.
    RePEc:eee:energy:v:302:y:2024:i:c:s0360544224016293.

    Full description at Econpapers || Download paper

  6. State-of-charge estimation hybrid method for lithium-ion batteries using BiGRU and AM co-modified Seq2Seq network and H-infinity filter. (2024). Xu, Xiaobin ; Kuang, Pan ; Li, Kangqun ; Zhou, Fei.
    In: Energy.
    RePEc:eee:energy:v:300:y:2024:i:c:s0360544224013756.

    Full description at Econpapers || Download paper

  7. Battery state of health estimation across electrochemistry and working conditions based on domain adaptation. (2024). Deng, Zhongwei ; Zhang, Xiaohong ; Bao, Huanhuan ; Cheng, Duanqian ; Liu, Chenghao.
    In: Energy.
    RePEc:eee:energy:v:297:y:2024:i:c:s0360544224010673.

    Full description at Econpapers || Download paper

  8. State of charge estimation for Li-ion battery during dynamic driving process based on dual-channel deep learning methods and conditional judgement. (2024). Liu, Xiaori ; Zhang, Qiang ; Wan, Guangwei.
    In: Energy.
    RePEc:eee:energy:v:294:y:2024:i:c:s0360544224007205.

    Full description at Econpapers || Download paper

  9. A hybrid deep learning model for lithium-ion batteries state of charge estimation based on quantile regression and attention. (2024). Zeng, Ziqing ; Long, Xinlin ; Fu, Lijun ; Liu, Lang.
    In: Energy.
    RePEc:eee:energy:v:294:y:2024:i:c:s0360544224006066.

    Full description at Econpapers || Download paper

  10. A novel integrated SOC–SOH estimation framework for whole-life-cycle lithium-ion batteries. (2024). Yang, Shunkun ; Wu, Mengdan ; Huang, Haichi ; Bian, Chong.
    In: Energy.
    RePEc:eee:energy:v:288:y:2024:i:c:s036054422303195x.

    Full description at Econpapers || Download paper

  11. FedCBE: A federated-learning-based collaborative battery estimation system with non-IID data. (2024). Tian, Yong ; Lai, Rucong ; Wang, Jie.
    In: Applied Energy.
    RePEc:eee:appene:v:368:y:2024:i:c:s0306261924009176.

    Full description at Econpapers || Download paper

  12. Data-Driven Methods for the State of Charge Estimation of Lithium-Ion Batteries: An Overview. (2023). Giazitzis, Spyridon ; Leva, Sonia ; Eleftheriadis, Panagiotis ; Ogliari, Emanuele.
    In: Forecasting.
    RePEc:gam:jforec:v:5:y:2023:i:3:p:32-599:d:1239485.

    Full description at Econpapers || Download paper

  13. Temperature-Based State-of-Charge Estimation Using Neural Networks, Gradient Boosting Machine and a Jetson Nano Device for Batteries. (2023). Kim, Min Chan ; Lee, Jonghyun ; Hwang, Jihwan.
    In: Energies.
    RePEc:gam:jeners:v:16:y:2023:i:6:p:2639-:d:1094121.

    Full description at Econpapers || Download paper

  14. A Systematic and Comparative Study of Distinct Recurrent Neural Networks for Lithium-Ion Battery State-of-Charge Estimation in Electric Vehicles. (2023). Wei, Xuezhe ; Tao, Siyi ; Dai, Haifeng ; Jiang, BO.
    In: Energies.
    RePEc:gam:jeners:v:16:y:2023:i:4:p:2008-:d:1072216.

    Full description at Econpapers || Download paper

  15. Cloud-Based Artificial Intelligence Framework for Battery Management System. (2023). Wang, Zhenghong ; Lian, Yubo ; Zhao, Jingyuan ; Shi, Dapai ; Eze, Chika ; Burke, Andrew F.
    In: Energies.
    RePEc:gam:jeners:v:16:y:2023:i:11:p:4403-:d:1159268.

    Full description at Econpapers || Download paper

  16. Bioinspired spiking spatiotemporal attention framework for lithium-ion batteries state-of-health estimation. (2023). Zhang, Ying ; Li, Yan-Fu ; Wang, Huan.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:188:y:2023:i:c:s1364032123005853.

    Full description at Econpapers || Download paper

  17. Deep feature extraction in lifetime prognostics of lithium-ion batteries: Advances, challenges and perspectives. (2023). Bai, Yun ; Yang, Shuai ; Ding, Ping ; Zhang, Huahua ; Li, Chuan.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:184:y:2023:i:c:s1364032123004331.

    Full description at Econpapers || Download paper

  18. Robust state-of-charge estimation method for lithium-ion batteries based on the fusion of time series relevance vector machine and filter algorithm. (2023). Zhang, Xin ; Fan, Xingming ; Yun, Xiang ; Meng, Xiangfei ; Wang, Chao.
    In: Energy.
    RePEc:eee:energy:v:285:y:2023:i:c:s0360544223028608.

    Full description at Econpapers || Download paper

  19. Attention-based encoder-decoder networks for state of charge estimation of lithium-ion battery. (2023). Zhang, YU ; Wu, Lifeng.
    In: Energy.
    RePEc:eee:energy:v:268:y:2023:i:c:s0360544223000592.

    Full description at Econpapers || Download paper

  20. Multi-step ahead voltage prediction and voltage fault diagnosis based on gated recurrent unit neural network and incremental training. (2023). Chen, Zheng ; Zhang, Yuanjian ; Liu, Yonggang ; Shu, Xing ; Shen, Jiangwei ; Zhao, Hongqian.
    In: Energy.
    RePEc:eee:energy:v:266:y:2023:i:c:s0360544222033825.

    Full description at Econpapers || Download paper

  21. State of Charge Estimation for Electric Vehicle Battery Management Systems Using the Hybrid Recurrent Learning Approach with Explainable Artificial Intelligence. (2022). Shahriar, Saleh Mohammed ; Ahsan, Mominul ; Nahiduzzaman, MD ; Haider, Julfikar ; Bhuiyan, Erphan A.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:21:p:8003-:d:955612.

    Full description at Econpapers || Download paper

  22. Lithium Battery State-of-Charge Estimation Based on a Bayesian Optimization Bidirectional Long Short-Term Memory Neural Network. (2022). Zhan, Yuedong ; Wang, Yinshuang ; Yang, Biao.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:13:p:4670-:d:847988.

    Full description at Econpapers || Download paper

  23. Prognostics and health management of Lithium-ion battery using deep learning methods: A review. (2022). Zhang, Ying ; Li, Yan-Fu.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:161:y:2022:i:c:s1364032122002015.

    Full description at Econpapers || Download paper

  24. An optimized relevant long short-term memory-squared gain extended Kalman filter for the state of charge estimation of lithium-ion batteries. (2022). Xu, Wenhua ; Wang, Shunli ; Takyi-Aninakwa, Paul ; Li, Huan ; Zhang, Hongying ; Fernandez, Carlos.
    In: Energy.
    RePEc:eee:energy:v:260:y:2022:i:c:s0360544222019880.

    Full description at Econpapers || Download paper

  25. Towards efficient state of charge estimation of lithium-ion batteries using canonical correlation analysis. (2022). Ni, Zichuan ; Yang, Ying ; Xiu, Xianchao.
    In: Energy.
    RePEc:eee:energy:v:254:y:2022:i:pc:s0360544222013184.

    Full description at Econpapers || Download paper

  26. A deep learning approach to state of charge estimation of lithium-ion batteries based on dual-stage attention mechanism. (2022). Zhang, Zhen ; Tang, Yugui ; Yang, Kuo.
    In: Energy.
    RePEc:eee:energy:v:244:y:2022:i:pb:s0360544222001360.

    Full description at Econpapers || Download paper

  27. Lithium-ion battery state-of-charge estimation for small target sample sets using the improved GRU-based transfer learning. (2022). Chen, Zhenhang ; Wang, Ya-Xiong ; Zhang, Wei.
    In: Energy.
    RePEc:eee:energy:v:244:y:2022:i:pb:s0360544222000810.

    Full description at Econpapers || Download paper

  28. Effect analysis on SOC values of the power lithium manganate battery during discharging process and its intelligent estimation. (2022). Huang, Zhonghua ; Wei, Kexiang ; Tan, Jiqiu ; Zhu, Hong ; Zuo, Hongyan ; Zhang, Bin.
    In: Energy.
    RePEc:eee:energy:v:238:y:2022:i:pb:s0360544221021022.

    Full description at Econpapers || Download paper

  29. Effects analysis on active equalization control of lithium-ion batteries based on intelligent estimation of the state-of-charge. (2022). Wen, Ming ; Wei, Kexiang ; Chen, Jingwei ; Zhu, Hao ; Zhang, Bin ; Huang, Zhonghua ; Deng, Yuanwang ; Zeng, Yan.
    In: Energy.
    RePEc:eee:energy:v:238:y:2022:i:pb:s0360544221020703.

    Full description at Econpapers || Download paper

  30. An optimized long short-term memory-weighted fading extended Kalman filtering model with wide temperature adaptation for the state of charge estimation of lithium-ion batteries. (2022). Yang, Xiaoyong ; Wang, Shunli ; Takyi-Aninakwa, Paul ; Zhang, Hongying ; Fernandez, Carlos.
    In: Applied Energy.
    RePEc:eee:appene:v:326:y:2022:i:c:s0306261922013009.

    Full description at Econpapers || Download paper

  31. A controllable deep transfer learning network with multiple domain adaptation for battery state-of-charge estimation. (2022). Kim, Youngki ; Oyewole, Isaiah ; Chehade, Abdallah.
    In: Applied Energy.
    RePEc:eee:appene:v:312:y:2022:i:c:s0306261922001842.

    Full description at Econpapers || Download paper

  32. State-of-charge estimation of lithium-ion battery based on clockwork recurrent neural network. (2021). Zhang, Zhongwei ; Feng, Xiong ; Miao, Shuwen ; Zhu, Qiao ; Chen, Junxiong.
    In: Energy.
    RePEc:eee:energy:v:236:y:2021:i:c:s036054422101608x.

    Full description at Econpapers || Download paper

  33. A method for state-of-charge estimation of lithium-ion batteries based on PSO-LSTM. (2021). Ren, Xiaoqing ; Yu, Xiaodong ; Dong, Xia ; Liu, Shulin.
    In: Energy.
    RePEc:eee:energy:v:234:y:2021:i:c:s0360544221014845.

    Full description at Econpapers || Download paper

  34. Remaining useful life prediction of lithium battery based on capacity regeneration point detection. (2021). Zhang, Yong ; Zheng, Ying ; Yang, Weidong ; Ma, Qiuhui.
    In: Energy.
    RePEc:eee:energy:v:234:y:2021:i:c:s036054422101481x.

    Full description at Econpapers || Download paper

  35. Synthetic state of charge estimation for lithium-ion batteries based on long short-term memory network modeling and adaptive H-Infinity filter. (2021). Chen, Zheng ; Zhang, Yuanjian ; Liu, Yonggang ; Shu, Xing ; Shen, Jiangwei ; Zhao, Hongqian.
    In: Energy.
    RePEc:eee:energy:v:228:y:2021:i:c:s0360544221008793.

    Full description at Econpapers || Download paper

  36. State of charge estimation of lithium-ion battery using denoising autoencoder and gated recurrent unit recurrent neural network. (2021). Feng, Xiong ; Zhu, Qiao ; Jiang, Lin ; Chen, Junxiong.
    In: Energy.
    RePEc:eee:energy:v:227:y:2021:i:c:s0360544221007003.

    Full description at Econpapers || Download paper

  37. Prognostics of battery cycle life in the early-cycle stage based on hybrid model. (2021). Peng, Zhen ; Zhang, YU ; Guan, Yong ; Wu, Lifeng.
    In: Energy.
    RePEc:eee:energy:v:221:y:2021:i:c:s036054422100150x.

    Full description at Econpapers || Download paper

  38. State of charge estimation for lithium-ion battery based on an Intelligent Adaptive Extended Kalman Filter with improved noise estimator. (2021). Huang, Rui ; Bhagat, Rohit ; Zhou, Quan ; Sun, Daoming ; Wang, Chongming ; Zhang, Cheng ; Yu, Xiaoli ; Amietszajew, Taz.
    In: Energy.
    RePEc:eee:energy:v:214:y:2021:i:c:s0360544220321320.

    Full description at Econpapers || Download paper

  39. An Improved Gated Recurrent Unit Network Model for State-of-Charge Estimation of Lithium-Ion Battery. (2020). Shao, Yulong ; Duan, Wenxian ; Peng, Silun ; Song, Shixin ; Xiao, Feng.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:23:p:6366-:d:455329.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-10-04 15:33:06 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.