create a website

State-of-charge estimation hybrid method for lithium-ion batteries using BiGRU and AM co-modified Seq2Seq network and H-infinity filter. (2024). Xu, Xiaobin ; Kuang, Pan ; Li, Kangqun ; Zhou, Fei.
In: Energy.
RePEc:eee:energy:v:300:y:2024:i:c:s0360544224013756.

Full description at Econpapers || Download paper

Cited: 4

Citations received by this document

Cites: 35

References cited by this document

Cocites: 39

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. Deep learning framework designed for high-performance lithium-ion batteries state monitoring. (2025). Liu, Guangchen ; Fernandez, Carlos ; Kang, Wenbin ; Song, Yingze ; Takyi-Aninakwa, Paul ; Wang, Shunli.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:218:y:2025:i:c:s1364032125004769.

    Full description at Econpapers || Download paper

  2. Joint estimation of state of charge and health utilizing fractional-order square-root cubature Kalman filtering with order scheduling strategy. (2025). Zeng, YI ; Li, Yan ; Zhou, Zhongkai ; Zhao, Daduan ; Yang, Tong ; Ren, PU ; Zhang, Chenghui.
    In: Energy.
    RePEc:eee:energy:v:320:y:2025:i:c:s0360544225006644.

    Full description at Econpapers || Download paper

  3. Multi-output fusion SOC and SOE estimation algorithm based on deep network migration. (2024). Wang, Shunli ; Huang, Xiaohe ; Duan, Wenxian ; Chen, Yuan.
    In: Energy.
    RePEc:eee:energy:v:308:y:2024:i:c:s0360544224028068.

    Full description at Econpapers || Download paper

  4. Target decomposition-led light-weighted offline training strategy-aided data-driven state-of-charge online estimation during constant current charging conditions over battery entire lifespan. (2024). Zhang, Shuzhi ; Chen, Shouxuan ; Feng, Rong ; Wang, Ning ; Lu, Haibin ; Cao, Ganglin ; Geng, Yuanfei ; Jia, Yao.
    In: Energy.
    RePEc:eee:energy:v:307:y:2024:i:c:s0360544224024320.

    Full description at Econpapers || Download paper

References

References cited by this document

  1. Ayoub, S. ; Gulzar, Y. ; Reegu, F.A. ; Turaev, S. Generating image captions using Bahdanau attention mechanism and transfer learning. 2022 Symmetry. 14 2681-
    Paper not yet in RePEc: Add citation now
  2. Bian, C. ; He, H. ; Yang, S. Stacked bidirectional long short-term memory networks for state-of-charge estimation of lithium-ion batteries. 2020 Energy. 191 -

  3. Bian, C. ; He, H. ; Yang, S. ; Huang, T. State-of-charge sequence estimation of lithium-ion battery based on bidirectional long short-term memory encoder-decoder architecture. 2020 J Power Sources. 449 -
    Paper not yet in RePEc: Add citation now
  4. Campestrini, C. ; Kosch, S. ; Jossen, A. Influence of change in open circuit voltage on the state of charge estimation with an extended Kalman filter. 2017 J Energy Storage. 12 149-156
    Paper not yet in RePEc: Add citation now
  5. Chen, L. ; Shunli, W. ; Jiang, H. ; Fernandez, C. An adaptive fractional-order unscented Kalman filter for Li-ion batteries in the energy storage system. 2022 Indian J Phys. 96 3933-3939
    Paper not yet in RePEc: Add citation now
  6. Chen, Z. ; Zhao, H. ; Shu, X. ; Zhang, Y. ; Shen, J. ; Liu, Y. Synthetic state of charge estimation for lithium-ion batteries based on long short-term memory network modeling and adaptive H-infinity filter. 2021 Energy. 228 -

  7. Chen, Z. ; Zhou, J. ; Zhou, F. ; Xu, S. State-of-charge estimation of lithium-ion batteries based on improved H infinity filter algorithm and its novel equalization method. 2021 J Clean Prod. 290 -
    Paper not yet in RePEc: Add citation now
  8. Fangfang, Y. ; Shaohui, Z. ; Weihua, L. State-of-charge estimation of lithium-ion batteries using LSTM and UKF. 2020 Energy. 201 -
    Paper not yet in RePEc: Add citation now
  9. Feihuang, H. ; Chihua, C. The state of charge estimation based on GRU for lithium-ion batteries. 2022 En : IEEE 11th global conference on consumer electronics. :
    Paper not yet in RePEc: Add citation now
  10. Ge, M. ; Liu, Y. ; Jiang, X. ; Liu, J. A review on state of health estimations and remaining useful life prognostics of lithium-ion batteries. 2021 Measurement. 174 -
    Paper not yet in RePEc: Add citation now
  11. Gong, Q. ; Wang, P. ; Cheng, Z. An encoder-decoder model based on deep learning for state of health estimation of lithium-ion battery. 2022 J Energy Storage. 46 -
    Paper not yet in RePEc: Add citation now
  12. Hannan, M.A. ; How, D.N.T. ; Lipu, M.S.H. ; Ker, P.J. SOC estimation of Li-ion batteries with learning rate-optimized deep fully convolutional network. 2021 IEEE Trans Power Electron. 36 7349-7353
    Paper not yet in RePEc: Add citation now
  13. Hu, X. ; Feng, F. ; Liu, K. ; Zhang, L. ; Xie, J. ; Liu, B. State estimation for advanced battery management: key challenges and future trends. 2019 Renew Sustain Energy Rev. 114 -

  14. Hu, X. ; Xu, L. ; Lin, X. ; Pecht, M. Battery lifetime prognostics. 2020 Joule. 4 310-346
    Paper not yet in RePEc: Add citation now
  15. Hu, X. ; Zheng, Y. ; Howey, D.A. Battery warm-up methodologies at subzero temperatures for automotive applications: recent advances and perspectives. 2020 Prog Energy Combust Sci. 77 -
    Paper not yet in RePEc: Add citation now
  16. Jing, W. ; Guangxu, Z. ; Changqing, S. SOC predict for lithium battery based on LM-BP neural network with momentum term. 2022 IEEE Access. 37 15666-16566
    Paper not yet in RePEc: Add citation now
  17. Naseri, F. ; Schaltz, E. ; Stroe, D. ; Gismero, A. ; Farjah, E. An enhanced equivalent circuit model with real-time parameter identification for battery state-of-charge estimation. 2022 IEEE Trans Ind Electron. 69 3743-3751
    Paper not yet in RePEc: Add citation now
  18. Ng, K.S. ; Moo, C. ; Chen, Y. ; Hsieh, Y. Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries. 2009 Appl Energy. 86 1506-1511

  19. Pillai, P. ; Sundaresan, S. ; Kumar, P. ; Pattipati, K.R. ; Balasingam, B. Open-circuit voltage models for battery management systems. 2022 Energy. 15 6803-
    Paper not yet in RePEc: Add citation now
  20. Qichuan, Y. ; Zhiqiang, H. ; Fujiang, G. Sequence-to-sequence prediction of personal computer software by recurrent neural network. 2017 International Joint Conference On Neural Networks. 56 2161-4393
    Paper not yet in RePEc: Add citation now
  21. Shi, N. ; Chen, Z. ; Niu, M. ; He, Z. ; Wang, Y. ; Cui, J. State-of-charge estimation for the lithium-ion battery based on adaptive extended Kalman filter using improved parameter identification. 2022 J Energy Storage. 45 -
    Paper not yet in RePEc: Add citation now
  22. Takyi-Aninakwa, P. ; Wang, S. ; Zhang, H. An optimized relevant long short-term memory-squared gain extended Kalman filter for the state of charge estimation of lithium-ion batteries. 2022 Energy. 260 -

  23. Tian, Y. ; Lai, R. ; Li, X. ; Xiang, L. ; Tian, J. A combined method for state-of-charge estimation for lithium-ion batteries using a long short-term memory network and an adaptive cubature Kalman filter. 2020 Appl Energy. 265 -

  24. Wang, Y. ; Meng, D. ; Chang, Y. ; Zhou, Y. ; Li, R. ; Zhang, X. Research on online parameter identification and SOC estimation methods of lithium-ion battery model based on a robustness analysis. 2021 Int J Energy Res. 45 21234-21253
    Paper not yet in RePEc: Add citation now
  25. Wang, Y. ; Tian, J. ; Sun, Z. A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems. 2020 Renew Sustain Energy Rev. 131 -

  26. Wei, Z. ; Ruan, H. ; Li, Y. ; Li, J. ; Zhang, C. ; He, H. Multistage state of health estimation of lithium-ion battery with high tolerance to heavily partial charging. 2022 IEEE Trans Power Electron. 37 7432-7442
    Paper not yet in RePEc: Add citation now
  27. Wu, L. ; Zhang, Y. Attention-based encoder-decoder networks for state of charge estimation of lithium-ion battery. 2023 Energy. 268 -

  28. Xia, B. ; Sun, Z. ; Zhang, R. ; Lao, Z. A cubature particle filter algorithm to estimate the state of the charge of Lithium-Ion batteries based on a second-order equivalent circuit model. 2017 Energy. 10 457-

  29. Xu, S. ; Zhou, J. ; Zhou, F. ; Liu, Y. State-of-charge estimation for LiNi0.6Co0.2Mn0.2O2/graphite batteries using the compound method with improved extended Kalman filter and long short-term memory network. 2021 Int J Energy Res. 45 6115-6138
    Paper not yet in RePEc: Add citation now
  30. Yang, F. ; Feng, Y. ; Pan, B. ; Wan, R. ; Wang, J. State of charge estimation of lithium ion battery based on extended Kalman filtering algorithm. 2017 IOP Conf Ser Earth Environ Sci. 81 -
    Paper not yet in RePEc: Add citation now
  31. Yang, K. ; Tang, Y. ; Zhang, S. ; Zhang, Z. A deep learning approach to state of charge estimation of lithium-ion batteries based on dual-stage attention mechanism. 2022 Energy. 244 -

  32. You, M. ; Liu, Y. ; Chen, Z. ; Zhou, X. Capacity estimation of lithium battery based on charging data and long short-term memory recurrent neural network. 2022 IEEE Intelligent Vehicles Symposium. 16 230-234
    Paper not yet in RePEc: Add citation now
  33. Yu, Q. ; Xiong, R. ; Lin, C. ; Shen, W. ; Deng, J. Lithium-ion battery parameters and state-of-charge joint estimation based on H-infinity and unscented Kalman filter. 2017 IEEE Trans Veh Technol. 66 8693-8701
    Paper not yet in RePEc: Add citation now
  34. Zhang, X. ; Huang, Y. ; Zhang, Z. A hybrid method for state-of-charge estimation for Lithium-Ion batteries using a long short-term memory network combined with attention and a Kalman filter. 2022 Energy. 15 6745-

  35. Zheng, L. ; Zhang, L. ; Zhu, J. ; Wang, G. ; Jiang, J. Co-estimation of state-of-charge, capacity and resistance for lithium-ion batteries based on a high-fidelity electrochemical model. 2016 Appl Energy. 180 424-434

Cocites

Documents in RePEc which have cited the same bibliography

  1. SOC prediction for electric buses based on interpretable transformer model: Impact of traffic conditions and feature importance. (2025). Tang, Jinjun ; Hu, Lipeng ; Liang, Xiao ; Xu, Fuqiao.
    In: Energy.
    RePEc:eee:energy:v:324:y:2025:i:c:s0360544225015774.

    Full description at Econpapers || Download paper

  2. Generating comprehensive lithium battery charging data with generative AI. (2025). Jiang, Lidang ; Hu, Changyan ; Zhao, Hang ; Chen, Junxiong.
    In: Applied Energy.
    RePEc:eee:appene:v:377:y:2025:i:pc:s0306261924019871.

    Full description at Econpapers || Download paper

  3. An embedding layer-based quantum long short-term memory model with transfer learning for proton exchange membrane fuel stack remaining useful life prediction. (2024). Woldegiorgis, Bereket Haile ; Lo, Shih-Che ; Kebede, Getnet Awoke ; Wang, Fu-Kwun.
    In: Energy.
    RePEc:eee:energy:v:308:y:2024:i:c:s0360544224028299.

    Full description at Econpapers || Download paper

  4. A novel battery SOC estimation method based on random search optimized LSTM neural network. (2024). Chai, Xuqing ; Li, Shihao ; Liang, Fengwei.
    In: Energy.
    RePEc:eee:energy:v:306:y:2024:i:c:s0360544224023570.

    Full description at Econpapers || Download paper

  5. Exploring large language model for generic and robust state-of-charge estimation of Li-ion batteries: A mixed prompt learning method. (2024). Duan, Zhiyu ; Hao, Yaqian ; Yang, Shunkun ; Feng, Junlan ; Bian, Chong.
    In: Energy.
    RePEc:eee:energy:v:302:y:2024:i:c:s0360544224016293.

    Full description at Econpapers || Download paper

  6. State-of-charge estimation hybrid method for lithium-ion batteries using BiGRU and AM co-modified Seq2Seq network and H-infinity filter. (2024). Xu, Xiaobin ; Kuang, Pan ; Li, Kangqun ; Zhou, Fei.
    In: Energy.
    RePEc:eee:energy:v:300:y:2024:i:c:s0360544224013756.

    Full description at Econpapers || Download paper

  7. Battery state of health estimation across electrochemistry and working conditions based on domain adaptation. (2024). Deng, Zhongwei ; Zhang, Xiaohong ; Bao, Huanhuan ; Cheng, Duanqian ; Liu, Chenghao.
    In: Energy.
    RePEc:eee:energy:v:297:y:2024:i:c:s0360544224010673.

    Full description at Econpapers || Download paper

  8. State of charge estimation for Li-ion battery during dynamic driving process based on dual-channel deep learning methods and conditional judgement. (2024). Liu, Xiaori ; Zhang, Qiang ; Wan, Guangwei.
    In: Energy.
    RePEc:eee:energy:v:294:y:2024:i:c:s0360544224007205.

    Full description at Econpapers || Download paper

  9. A hybrid deep learning model for lithium-ion batteries state of charge estimation based on quantile regression and attention. (2024). Zeng, Ziqing ; Long, Xinlin ; Fu, Lijun ; Liu, Lang.
    In: Energy.
    RePEc:eee:energy:v:294:y:2024:i:c:s0360544224006066.

    Full description at Econpapers || Download paper

  10. A novel integrated SOC–SOH estimation framework for whole-life-cycle lithium-ion batteries. (2024). Yang, Shunkun ; Wu, Mengdan ; Huang, Haichi ; Bian, Chong.
    In: Energy.
    RePEc:eee:energy:v:288:y:2024:i:c:s036054422303195x.

    Full description at Econpapers || Download paper

  11. FedCBE: A federated-learning-based collaborative battery estimation system with non-IID data. (2024). Tian, Yong ; Lai, Rucong ; Wang, Jie.
    In: Applied Energy.
    RePEc:eee:appene:v:368:y:2024:i:c:s0306261924009176.

    Full description at Econpapers || Download paper

  12. Data-Driven Methods for the State of Charge Estimation of Lithium-Ion Batteries: An Overview. (2023). Giazitzis, Spyridon ; Leva, Sonia ; Eleftheriadis, Panagiotis ; Ogliari, Emanuele.
    In: Forecasting.
    RePEc:gam:jforec:v:5:y:2023:i:3:p:32-599:d:1239485.

    Full description at Econpapers || Download paper

  13. Temperature-Based State-of-Charge Estimation Using Neural Networks, Gradient Boosting Machine and a Jetson Nano Device for Batteries. (2023). Kim, Min Chan ; Lee, Jonghyun ; Hwang, Jihwan.
    In: Energies.
    RePEc:gam:jeners:v:16:y:2023:i:6:p:2639-:d:1094121.

    Full description at Econpapers || Download paper

  14. A Systematic and Comparative Study of Distinct Recurrent Neural Networks for Lithium-Ion Battery State-of-Charge Estimation in Electric Vehicles. (2023). Wei, Xuezhe ; Tao, Siyi ; Dai, Haifeng ; Jiang, BO.
    In: Energies.
    RePEc:gam:jeners:v:16:y:2023:i:4:p:2008-:d:1072216.

    Full description at Econpapers || Download paper

  15. Cloud-Based Artificial Intelligence Framework for Battery Management System. (2023). Wang, Zhenghong ; Lian, Yubo ; Zhao, Jingyuan ; Shi, Dapai ; Eze, Chika ; Burke, Andrew F.
    In: Energies.
    RePEc:gam:jeners:v:16:y:2023:i:11:p:4403-:d:1159268.

    Full description at Econpapers || Download paper

  16. Bioinspired spiking spatiotemporal attention framework for lithium-ion batteries state-of-health estimation. (2023). Zhang, Ying ; Li, Yan-Fu ; Wang, Huan.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:188:y:2023:i:c:s1364032123005853.

    Full description at Econpapers || Download paper

  17. Deep feature extraction in lifetime prognostics of lithium-ion batteries: Advances, challenges and perspectives. (2023). Bai, Yun ; Yang, Shuai ; Ding, Ping ; Zhang, Huahua ; Li, Chuan.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:184:y:2023:i:c:s1364032123004331.

    Full description at Econpapers || Download paper

  18. Robust state-of-charge estimation method for lithium-ion batteries based on the fusion of time series relevance vector machine and filter algorithm. (2023). Zhang, Xin ; Fan, Xingming ; Yun, Xiang ; Meng, Xiangfei ; Wang, Chao.
    In: Energy.
    RePEc:eee:energy:v:285:y:2023:i:c:s0360544223028608.

    Full description at Econpapers || Download paper

  19. Attention-based encoder-decoder networks for state of charge estimation of lithium-ion battery. (2023). Zhang, YU ; Wu, Lifeng.
    In: Energy.
    RePEc:eee:energy:v:268:y:2023:i:c:s0360544223000592.

    Full description at Econpapers || Download paper

  20. Multi-step ahead voltage prediction and voltage fault diagnosis based on gated recurrent unit neural network and incremental training. (2023). Chen, Zheng ; Zhang, Yuanjian ; Liu, Yonggang ; Shu, Xing ; Shen, Jiangwei ; Zhao, Hongqian.
    In: Energy.
    RePEc:eee:energy:v:266:y:2023:i:c:s0360544222033825.

    Full description at Econpapers || Download paper

  21. State of Charge Estimation for Electric Vehicle Battery Management Systems Using the Hybrid Recurrent Learning Approach with Explainable Artificial Intelligence. (2022). Shahriar, Saleh Mohammed ; Ahsan, Mominul ; Nahiduzzaman, MD ; Haider, Julfikar ; Bhuiyan, Erphan A.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:21:p:8003-:d:955612.

    Full description at Econpapers || Download paper

  22. Lithium Battery State-of-Charge Estimation Based on a Bayesian Optimization Bidirectional Long Short-Term Memory Neural Network. (2022). Zhan, Yuedong ; Wang, Yinshuang ; Yang, Biao.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:13:p:4670-:d:847988.

    Full description at Econpapers || Download paper

  23. Prognostics and health management of Lithium-ion battery using deep learning methods: A review. (2022). Zhang, Ying ; Li, Yan-Fu.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:161:y:2022:i:c:s1364032122002015.

    Full description at Econpapers || Download paper

  24. An optimized relevant long short-term memory-squared gain extended Kalman filter for the state of charge estimation of lithium-ion batteries. (2022). Xu, Wenhua ; Wang, Shunli ; Takyi-Aninakwa, Paul ; Li, Huan ; Zhang, Hongying ; Fernandez, Carlos.
    In: Energy.
    RePEc:eee:energy:v:260:y:2022:i:c:s0360544222019880.

    Full description at Econpapers || Download paper

  25. Towards efficient state of charge estimation of lithium-ion batteries using canonical correlation analysis. (2022). Ni, Zichuan ; Yang, Ying ; Xiu, Xianchao.
    In: Energy.
    RePEc:eee:energy:v:254:y:2022:i:pc:s0360544222013184.

    Full description at Econpapers || Download paper

  26. A deep learning approach to state of charge estimation of lithium-ion batteries based on dual-stage attention mechanism. (2022). Zhang, Zhen ; Tang, Yugui ; Yang, Kuo.
    In: Energy.
    RePEc:eee:energy:v:244:y:2022:i:pb:s0360544222001360.

    Full description at Econpapers || Download paper

  27. Lithium-ion battery state-of-charge estimation for small target sample sets using the improved GRU-based transfer learning. (2022). Chen, Zhenhang ; Wang, Ya-Xiong ; Zhang, Wei.
    In: Energy.
    RePEc:eee:energy:v:244:y:2022:i:pb:s0360544222000810.

    Full description at Econpapers || Download paper

  28. Effect analysis on SOC values of the power lithium manganate battery during discharging process and its intelligent estimation. (2022). Huang, Zhonghua ; Wei, Kexiang ; Tan, Jiqiu ; Zhu, Hong ; Zuo, Hongyan ; Zhang, Bin.
    In: Energy.
    RePEc:eee:energy:v:238:y:2022:i:pb:s0360544221021022.

    Full description at Econpapers || Download paper

  29. Effects analysis on active equalization control of lithium-ion batteries based on intelligent estimation of the state-of-charge. (2022). Wen, Ming ; Wei, Kexiang ; Chen, Jingwei ; Zhu, Hao ; Zhang, Bin ; Huang, Zhonghua ; Deng, Yuanwang ; Zeng, Yan.
    In: Energy.
    RePEc:eee:energy:v:238:y:2022:i:pb:s0360544221020703.

    Full description at Econpapers || Download paper

  30. An optimized long short-term memory-weighted fading extended Kalman filtering model with wide temperature adaptation for the state of charge estimation of lithium-ion batteries. (2022). Yang, Xiaoyong ; Wang, Shunli ; Takyi-Aninakwa, Paul ; Zhang, Hongying ; Fernandez, Carlos.
    In: Applied Energy.
    RePEc:eee:appene:v:326:y:2022:i:c:s0306261922013009.

    Full description at Econpapers || Download paper

  31. A controllable deep transfer learning network with multiple domain adaptation for battery state-of-charge estimation. (2022). Kim, Youngki ; Oyewole, Isaiah ; Chehade, Abdallah.
    In: Applied Energy.
    RePEc:eee:appene:v:312:y:2022:i:c:s0306261922001842.

    Full description at Econpapers || Download paper

  32. State-of-charge estimation of lithium-ion battery based on clockwork recurrent neural network. (2021). Zhang, Zhongwei ; Feng, Xiong ; Miao, Shuwen ; Zhu, Qiao ; Chen, Junxiong.
    In: Energy.
    RePEc:eee:energy:v:236:y:2021:i:c:s036054422101608x.

    Full description at Econpapers || Download paper

  33. A method for state-of-charge estimation of lithium-ion batteries based on PSO-LSTM. (2021). Ren, Xiaoqing ; Yu, Xiaodong ; Dong, Xia ; Liu, Shulin.
    In: Energy.
    RePEc:eee:energy:v:234:y:2021:i:c:s0360544221014845.

    Full description at Econpapers || Download paper

  34. Remaining useful life prediction of lithium battery based on capacity regeneration point detection. (2021). Zhang, Yong ; Zheng, Ying ; Yang, Weidong ; Ma, Qiuhui.
    In: Energy.
    RePEc:eee:energy:v:234:y:2021:i:c:s036054422101481x.

    Full description at Econpapers || Download paper

  35. Synthetic state of charge estimation for lithium-ion batteries based on long short-term memory network modeling and adaptive H-Infinity filter. (2021). Chen, Zheng ; Zhang, Yuanjian ; Liu, Yonggang ; Shu, Xing ; Shen, Jiangwei ; Zhao, Hongqian.
    In: Energy.
    RePEc:eee:energy:v:228:y:2021:i:c:s0360544221008793.

    Full description at Econpapers || Download paper

  36. State of charge estimation of lithium-ion battery using denoising autoencoder and gated recurrent unit recurrent neural network. (2021). Feng, Xiong ; Zhu, Qiao ; Jiang, Lin ; Chen, Junxiong.
    In: Energy.
    RePEc:eee:energy:v:227:y:2021:i:c:s0360544221007003.

    Full description at Econpapers || Download paper

  37. Prognostics of battery cycle life in the early-cycle stage based on hybrid model. (2021). Peng, Zhen ; Zhang, YU ; Guan, Yong ; Wu, Lifeng.
    In: Energy.
    RePEc:eee:energy:v:221:y:2021:i:c:s036054422100150x.

    Full description at Econpapers || Download paper

  38. State of charge estimation for lithium-ion battery based on an Intelligent Adaptive Extended Kalman Filter with improved noise estimator. (2021). Huang, Rui ; Bhagat, Rohit ; Zhou, Quan ; Sun, Daoming ; Wang, Chongming ; Zhang, Cheng ; Yu, Xiaoli ; Amietszajew, Taz.
    In: Energy.
    RePEc:eee:energy:v:214:y:2021:i:c:s0360544220321320.

    Full description at Econpapers || Download paper

  39. An Improved Gated Recurrent Unit Network Model for State-of-Charge Estimation of Lithium-Ion Battery. (2020). Shao, Yulong ; Duan, Wenxian ; Peng, Silun ; Song, Shixin ; Xiao, Feng.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:23:p:6366-:d:455329.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-10-05 05:15:12 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.