create a website

Battery state of health estimation across electrochemistry and working conditions based on domain adaptation. (2024). Deng, Zhongwei ; Zhang, Xiaohong ; Bao, Huanhuan ; Cheng, Duanqian ; Liu, Chenghao.
In: Energy.
RePEc:eee:energy:v:297:y:2024:i:c:s0360544224010673.

Full description at Econpapers || Download paper

Cited: 1

Citations received by this document

Cites: 41

References cited by this document

Cocites: 39

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. Multi-state joint prediction algorithm for lithium battery packs based on data-driven and physical models. (2025). Zhang, Xiaoxiang ; Ye, Wen ; Du, Feilong ; Yang, Kai ; He, Ling ; Liu, Dan ; Chen, Jiadui.
    In: Energy.
    RePEc:eee:energy:v:322:y:2025:i:c:s0360544225012836.

    Full description at Econpapers || Download paper

References

References cited by this document

  1. Barré, A. ; Deguilhem, B. ; Grolleau, S. ; Gérard, M. ; Suard, F. ; Riu, D. A review on lithium-ion battery ageing mechanisms and estimations for automotive applications. 2013 J Power Sources. 241 680-689
    Paper not yet in RePEc: Add citation now
  2. Bian, C. ; He, H. ; Yang, S. Stacked bidirectional long short-term memory networks for state-of-charge estimation of lithium-ion batteries. 2020 Energy. 191 -

  3. Cannarella, J. ; Arnold, C.B. State of health and charge measurements in lithium-ion batteries using mechanical stress. 2014 J Power Sources. 269 7-14
    Paper not yet in RePEc: Add citation now
  4. Chen, M. ; Ma, G. ; Liu, W. ; Zeng, N. ; Luo, X. An overview of data-driven battery health estimation technology for battery management system. 2023 Neurocomputing. 532 152-169
    Paper not yet in RePEc: Add citation now
  5. de Mathelin, A. ; Deheeger, F. ; Richard, G. ; Mougeot, M. ; Vayatis, N. Adapt: awesome domain adaptation python toolbox. 2021 arXiv preprint arXiv:2107.03049. -
    Paper not yet in RePEc: Add citation now
  6. Deng, Z. ; Hu, X. ; Li, P. ; Lin, X. ; Bian, X. Data-driven battery state of health estimation based on random partial charging data. 2022 IEEE Trans Power Electron. 37 5021-5031
    Paper not yet in RePEc: Add citation now
  7. Deng, Z. ; Hu, X. ; Lin, X. ; Xu, L. ; Che, Y. ; Hu, L. General discharge voltage information enabled health evaluation for lithium-ion batteries. 2021 IEEE ASME Trans Mechatron. 26 1295-1306
    Paper not yet in RePEc: Add citation now
  8. Deng, Z. ; Lin, X. ; Cai, J. ; Hu, X. Battery health estimation with degradation pattern recognition and transfer learning. 2022 J Power Sources. 525 -
    Paper not yet in RePEc: Add citation now
  9. dos Reis, G. ; Strange, C. ; Yadav, M. ; Li, S. Lithium-ion battery data and where to find it. 2021 Energy and AI. 5 -
    Paper not yet in RePEc: Add citation now
  10. Guo, J. ; Che, Y. ; Pedersen, K. ; Stroe, D.-I. Battery impedance spectrum prediction from partial charging voltage curve by machine learning. 2023 J Energy Chem. 79 211-221
    Paper not yet in RePEc: Add citation now
  11. Han, X. ; Lu, L. ; Zheng, Y. ; Feng, X. ; Li, Z. ; Li, J. A review on the key issues of the lithium ion battery degradation among the whole life cycle. 2019 ETransportation. 1 -
    Paper not yet in RePEc: Add citation now
  12. Jiang, B. ; Dai, H. ; Wei, X. ; Jiang, Z. Multi-kernel relevance vector machine with parameter optimization for cycling aging prediction of lithium-ion batteries. 2021 Ieee Journal of Emerging and Selected Topics in Power Electronics. -
    Paper not yet in RePEc: Add citation now
  13. Li, W. ; Demir, I. ; Cao, D. ; Jöst, D. ; Ringbeck, F. ; Junker, M. Data-driven systematic parameter identification of an electrochemical model for lithium-ion batteries with artificial intelligence. 2022 Energy Storage Mater. 44 557-570
    Paper not yet in RePEc: Add citation now
  14. Li, Y. ; Liu, K. ; Foley, A.M. ; Zülke, A. ; Berecibar, M. ; Nanini-Maury, E. Data-driven health estimation and lifetime prediction of lithium-ion batteries: a review. 2019 Renew Sustain Energy Rev. 113 -

  15. Li, Y. ; Zou, C. ; Berecibar, M. ; Nanini-Maury, E. ; Chan, J.C.W. ; van den Bossche, P. Random forest regression for online capacity estimation of lithium-ion batteries. 2018 Appl Energy. 232 197-210

  16. Lin, M. ; Wu, J. ; Meng, J. ; Wang, W. ; Wu, J. State of health estimation with attentional long short-term memory network for lithium-ion batteries. 2023 Energy. 268 -

  17. Liu, K. ; Gao, Y. ; Zhu, C. ; Li, K. ; Fei, M. ; Peng, C. Electrochemical modeling and parameterization towards control-oriented management of lithium-ion batteries. 2022 Control Eng Pract. 124 -
    Paper not yet in RePEc: Add citation now
  18. Lu, J. ; Xiong, R. ; Tian, J. ; Wang, C. ; Sun, F. Deep learning to estimate lithium-ion battery state of health without additional degradation experiments. 2023 Nat Commun. 14 2760-

  19. Perkins, R.D. ; Randall, A.V. ; Zhang, X. ; Plett, G.L. Controls oriented reduced order modeling of lithium deposition on overcharge. 2012 J Power Sources. 209 318-325
    Paper not yet in RePEc: Add citation now
  20. Piao, N. ; Gao, X. ; Yang, H. ; Guo, Z. ; Hu, G. ; Cheng, H.-M. Challenges and development of lithium-ion batteries for low temperature environments. 2022 ETransportation. 11 -
    Paper not yet in RePEc: Add citation now
  21. Preger, Y. ; Barkholtz, H.M. ; Fresquez, A. ; Campbell, D.L. ; Juba, B.W. ; Romàn-Kustas, J. Degradation of commercial lithium-ion cells as a function of chemistry and cycling conditions. 2020 J Electrochem Soc. 167 -
    Paper not yet in RePEc: Add citation now
  22. Randall, A.V. ; Perkins, R.D. ; Zhang, X. ; Plett, G.L. Controls oriented reduced order modeling of solid-electrolyte interphase layer growth. 2012 J Power Sources. 209 282-288
    Paper not yet in RePEc: Add citation now
  23. Rashid, K.M. ; Louis, J. Times-series data augmentation and deep learning for construction equipment activity recognition. 2019 Adv Eng Inf. 42 -
    Paper not yet in RePEc: Add citation now
  24. Severson, K.A. ; Attia, P.M. ; Jin, N. ; Perkins, N. ; Jiang, B. ; Yang, Z. Data-driven prediction of battery cycle life before capacity degradation. 2019 Nat Energy. 4 383-391

  25. Sun, B. ; Zhang, C. ; Xu, Z. ; Liu, S. ; Yang, Q. Ultrasonic diagnosis of the nonlinear aging characteristics of lithium-ion battery under high-rate discharge conditions. 2023 J Power Sources. 567 -
    Paper not yet in RePEc: Add citation now
  26. Sun, T. ; Chen, J. ; Wang, S. ; Chen, Q. ; Han, X. ; Zheng, Y. Aging mechanism analysis and capacity estimation of lithium - ion battery pack based on electric vehicle charging data. 2023 Energy. 283 -

  27. Tang, X. ; Wang, Y. ; Liu, Q. ; Gao, F. Reconstruction of the incremental capacity trajectories from current-varying profiles for lithium-ion batteries. 2021 iScience. 24 -
    Paper not yet in RePEc: Add citation now
  28. Teliz, E. ; Zinola, C.F. ; Díaz, V. Identification and quantification of ageing mechanisms in Li-ion batteries by Electrochemical impedance spectroscopy. 2022 Electrochim Acta. 426 -
    Paper not yet in RePEc: Add citation now
  29. Thelen, A. ; Lui, Y.H. ; Shen, S. ; Laflamme, S. ; Hu, S. ; Ye, H. Integrating physics-based modeling and machine learning for degradation diagnostics of lithium-ion batteries. 2022 Energy Storage Mater. 50 668-695
    Paper not yet in RePEc: Add citation now
  30. Tian, J. ; Xiong, R. ; Shen, W. ; Lu, J. ; Yang, X.-G. Deep neural network battery charging curve prediction using 30 points collected in 10 min. 2021 Joule. 5 1521-1534
    Paper not yet in RePEc: Add citation now
  31. Wang, L. ; Menakath, A. ; Han, F. ; Wang, Y. ; Zavalij, P.Y. ; Gaskell, K.J. Identifying the components of the solid–electrolyte interphase in Li-ion batteries. 2019 Nat Chem. 11 789-796
    Paper not yet in RePEc: Add citation now
  32. Xiao, J. How lithium dendrites form in liquid batteries. 2019 Science. 366 426-427
    Paper not yet in RePEc: Add citation now
  33. Xie, J. ; Lu, Y.-C. A retrospective on lithium-ion batteries. 2020 Nat Commun. 11 2499-

  34. Xu, C. ; Behrens, P. ; Gasper, P. ; Smith, K. ; Hu, M. ; Tukker, A. Electric vehicle batteries alone could satisfy short-term grid storage demand by as early as 2030. 2023 Nat Commun. 14 119-

  35. Xu, L. ; Deng, Z. ; Xie, Y. ; Lin, X. ; Hu, X. A novel hybrid physics-based and data-driven approach for degradation trajectory prediction in Li-ion batteries. 2022 IEEE Transactions on Transportation Electrification. -
    Paper not yet in RePEc: Add citation now
  36. Yan, P. ; Zheng, J. ; Gu, M. ; Xiao, J. ; Zhang, J.-G. ; Wang, C.-M. Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries. 2017 Nat Commun. 8 -

  37. You, H. ; Jiang, B. ; Zhu, J. ; Wang, X. ; Shi, G. ; Han, G. In-situ quantitative detection of irreversible lithium plating within full-lifespan of lithium-ion batteries. 2023 J Power Sources. 564 -
    Paper not yet in RePEc: Add citation now
  38. Zhao, Q. ; Qin, X. ; Zhao, H. ; Feng, W. A novel prediction method based on the support vector regression for the remaining useful life of lithium-ion batteries. 2018 Microelectron Reliab. 85 99-108
    Paper not yet in RePEc: Add citation now
  39. Zheng, L. ; Zhu, J. ; Lu, D.D.-C. ; Wang, G. ; He, T. Incremental capacity analysis and differential voltage analysis based state of charge and capacity estimation for lithium-ion batteries. 2018 Energy. 150 759-769

  40. Zhou, R. ; Zhu, R. ; Huang, C.-G. ; Peng, W. State of health estimation for fast-charging lithium-ion battery based on incremental capacity analysis. 2022 J Energy Storage. 51 -
    Paper not yet in RePEc: Add citation now
  41. Zhu, J. ; Wang, Y. ; Huang, Y. ; Bhushan Gopaluni, R. ; Cao, Y. ; Heere, M. Data-driven capacity estimation of commercial lithium-ion batteries from voltage relaxation. 2022 Nat Commun. 13 2261-

Cocites

Documents in RePEc which have cited the same bibliography

  1. SOC prediction for electric buses based on interpretable transformer model: Impact of traffic conditions and feature importance. (2025). Tang, Jinjun ; Hu, Lipeng ; Liang, Xiao ; Xu, Fuqiao.
    In: Energy.
    RePEc:eee:energy:v:324:y:2025:i:c:s0360544225015774.

    Full description at Econpapers || Download paper

  2. Generating comprehensive lithium battery charging data with generative AI. (2025). Jiang, Lidang ; Hu, Changyan ; Zhao, Hang ; Chen, Junxiong.
    In: Applied Energy.
    RePEc:eee:appene:v:377:y:2025:i:pc:s0306261924019871.

    Full description at Econpapers || Download paper

  3. An embedding layer-based quantum long short-term memory model with transfer learning for proton exchange membrane fuel stack remaining useful life prediction. (2024). Woldegiorgis, Bereket Haile ; Lo, Shih-Che ; Kebede, Getnet Awoke ; Wang, Fu-Kwun.
    In: Energy.
    RePEc:eee:energy:v:308:y:2024:i:c:s0360544224028299.

    Full description at Econpapers || Download paper

  4. A novel battery SOC estimation method based on random search optimized LSTM neural network. (2024). Chai, Xuqing ; Li, Shihao ; Liang, Fengwei.
    In: Energy.
    RePEc:eee:energy:v:306:y:2024:i:c:s0360544224023570.

    Full description at Econpapers || Download paper

  5. Exploring large language model for generic and robust state-of-charge estimation of Li-ion batteries: A mixed prompt learning method. (2024). Duan, Zhiyu ; Hao, Yaqian ; Yang, Shunkun ; Feng, Junlan ; Bian, Chong.
    In: Energy.
    RePEc:eee:energy:v:302:y:2024:i:c:s0360544224016293.

    Full description at Econpapers || Download paper

  6. State-of-charge estimation hybrid method for lithium-ion batteries using BiGRU and AM co-modified Seq2Seq network and H-infinity filter. (2024). Xu, Xiaobin ; Kuang, Pan ; Li, Kangqun ; Zhou, Fei.
    In: Energy.
    RePEc:eee:energy:v:300:y:2024:i:c:s0360544224013756.

    Full description at Econpapers || Download paper

  7. Battery state of health estimation across electrochemistry and working conditions based on domain adaptation. (2024). Deng, Zhongwei ; Zhang, Xiaohong ; Bao, Huanhuan ; Cheng, Duanqian ; Liu, Chenghao.
    In: Energy.
    RePEc:eee:energy:v:297:y:2024:i:c:s0360544224010673.

    Full description at Econpapers || Download paper

  8. State of charge estimation for Li-ion battery during dynamic driving process based on dual-channel deep learning methods and conditional judgement. (2024). Liu, Xiaori ; Zhang, Qiang ; Wan, Guangwei.
    In: Energy.
    RePEc:eee:energy:v:294:y:2024:i:c:s0360544224007205.

    Full description at Econpapers || Download paper

  9. A hybrid deep learning model for lithium-ion batteries state of charge estimation based on quantile regression and attention. (2024). Zeng, Ziqing ; Long, Xinlin ; Fu, Lijun ; Liu, Lang.
    In: Energy.
    RePEc:eee:energy:v:294:y:2024:i:c:s0360544224006066.

    Full description at Econpapers || Download paper

  10. A novel integrated SOC–SOH estimation framework for whole-life-cycle lithium-ion batteries. (2024). Yang, Shunkun ; Wu, Mengdan ; Huang, Haichi ; Bian, Chong.
    In: Energy.
    RePEc:eee:energy:v:288:y:2024:i:c:s036054422303195x.

    Full description at Econpapers || Download paper

  11. FedCBE: A federated-learning-based collaborative battery estimation system with non-IID data. (2024). Tian, Yong ; Lai, Rucong ; Wang, Jie.
    In: Applied Energy.
    RePEc:eee:appene:v:368:y:2024:i:c:s0306261924009176.

    Full description at Econpapers || Download paper

  12. Data-Driven Methods for the State of Charge Estimation of Lithium-Ion Batteries: An Overview. (2023). Giazitzis, Spyridon ; Leva, Sonia ; Eleftheriadis, Panagiotis ; Ogliari, Emanuele.
    In: Forecasting.
    RePEc:gam:jforec:v:5:y:2023:i:3:p:32-599:d:1239485.

    Full description at Econpapers || Download paper

  13. Temperature-Based State-of-Charge Estimation Using Neural Networks, Gradient Boosting Machine and a Jetson Nano Device for Batteries. (2023). Kim, Min Chan ; Lee, Jonghyun ; Hwang, Jihwan.
    In: Energies.
    RePEc:gam:jeners:v:16:y:2023:i:6:p:2639-:d:1094121.

    Full description at Econpapers || Download paper

  14. A Systematic and Comparative Study of Distinct Recurrent Neural Networks for Lithium-Ion Battery State-of-Charge Estimation in Electric Vehicles. (2023). Wei, Xuezhe ; Tao, Siyi ; Dai, Haifeng ; Jiang, BO.
    In: Energies.
    RePEc:gam:jeners:v:16:y:2023:i:4:p:2008-:d:1072216.

    Full description at Econpapers || Download paper

  15. Cloud-Based Artificial Intelligence Framework for Battery Management System. (2023). Wang, Zhenghong ; Lian, Yubo ; Zhao, Jingyuan ; Shi, Dapai ; Eze, Chika ; Burke, Andrew F.
    In: Energies.
    RePEc:gam:jeners:v:16:y:2023:i:11:p:4403-:d:1159268.

    Full description at Econpapers || Download paper

  16. Bioinspired spiking spatiotemporal attention framework for lithium-ion batteries state-of-health estimation. (2023). Zhang, Ying ; Li, Yan-Fu ; Wang, Huan.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:188:y:2023:i:c:s1364032123005853.

    Full description at Econpapers || Download paper

  17. Deep feature extraction in lifetime prognostics of lithium-ion batteries: Advances, challenges and perspectives. (2023). Bai, Yun ; Yang, Shuai ; Ding, Ping ; Zhang, Huahua ; Li, Chuan.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:184:y:2023:i:c:s1364032123004331.

    Full description at Econpapers || Download paper

  18. Robust state-of-charge estimation method for lithium-ion batteries based on the fusion of time series relevance vector machine and filter algorithm. (2023). Zhang, Xin ; Fan, Xingming ; Yun, Xiang ; Meng, Xiangfei ; Wang, Chao.
    In: Energy.
    RePEc:eee:energy:v:285:y:2023:i:c:s0360544223028608.

    Full description at Econpapers || Download paper

  19. Attention-based encoder-decoder networks for state of charge estimation of lithium-ion battery. (2023). Zhang, YU ; Wu, Lifeng.
    In: Energy.
    RePEc:eee:energy:v:268:y:2023:i:c:s0360544223000592.

    Full description at Econpapers || Download paper

  20. Multi-step ahead voltage prediction and voltage fault diagnosis based on gated recurrent unit neural network and incremental training. (2023). Chen, Zheng ; Zhang, Yuanjian ; Liu, Yonggang ; Shu, Xing ; Shen, Jiangwei ; Zhao, Hongqian.
    In: Energy.
    RePEc:eee:energy:v:266:y:2023:i:c:s0360544222033825.

    Full description at Econpapers || Download paper

  21. State of Charge Estimation for Electric Vehicle Battery Management Systems Using the Hybrid Recurrent Learning Approach with Explainable Artificial Intelligence. (2022). Shahriar, Saleh Mohammed ; Ahsan, Mominul ; Nahiduzzaman, MD ; Haider, Julfikar ; Bhuiyan, Erphan A.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:21:p:8003-:d:955612.

    Full description at Econpapers || Download paper

  22. Lithium Battery State-of-Charge Estimation Based on a Bayesian Optimization Bidirectional Long Short-Term Memory Neural Network. (2022). Zhan, Yuedong ; Wang, Yinshuang ; Yang, Biao.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:13:p:4670-:d:847988.

    Full description at Econpapers || Download paper

  23. Prognostics and health management of Lithium-ion battery using deep learning methods: A review. (2022). Zhang, Ying ; Li, Yan-Fu.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:161:y:2022:i:c:s1364032122002015.

    Full description at Econpapers || Download paper

  24. An optimized relevant long short-term memory-squared gain extended Kalman filter for the state of charge estimation of lithium-ion batteries. (2022). Xu, Wenhua ; Wang, Shunli ; Takyi-Aninakwa, Paul ; Li, Huan ; Zhang, Hongying ; Fernandez, Carlos.
    In: Energy.
    RePEc:eee:energy:v:260:y:2022:i:c:s0360544222019880.

    Full description at Econpapers || Download paper

  25. Towards efficient state of charge estimation of lithium-ion batteries using canonical correlation analysis. (2022). Ni, Zichuan ; Yang, Ying ; Xiu, Xianchao.
    In: Energy.
    RePEc:eee:energy:v:254:y:2022:i:pc:s0360544222013184.

    Full description at Econpapers || Download paper

  26. A deep learning approach to state of charge estimation of lithium-ion batteries based on dual-stage attention mechanism. (2022). Zhang, Zhen ; Tang, Yugui ; Yang, Kuo.
    In: Energy.
    RePEc:eee:energy:v:244:y:2022:i:pb:s0360544222001360.

    Full description at Econpapers || Download paper

  27. Lithium-ion battery state-of-charge estimation for small target sample sets using the improved GRU-based transfer learning. (2022). Chen, Zhenhang ; Wang, Ya-Xiong ; Zhang, Wei.
    In: Energy.
    RePEc:eee:energy:v:244:y:2022:i:pb:s0360544222000810.

    Full description at Econpapers || Download paper

  28. Effect analysis on SOC values of the power lithium manganate battery during discharging process and its intelligent estimation. (2022). Huang, Zhonghua ; Wei, Kexiang ; Tan, Jiqiu ; Zhu, Hong ; Zuo, Hongyan ; Zhang, Bin.
    In: Energy.
    RePEc:eee:energy:v:238:y:2022:i:pb:s0360544221021022.

    Full description at Econpapers || Download paper

  29. Effects analysis on active equalization control of lithium-ion batteries based on intelligent estimation of the state-of-charge. (2022). Wen, Ming ; Wei, Kexiang ; Chen, Jingwei ; Zhu, Hao ; Zhang, Bin ; Huang, Zhonghua ; Deng, Yuanwang ; Zeng, Yan.
    In: Energy.
    RePEc:eee:energy:v:238:y:2022:i:pb:s0360544221020703.

    Full description at Econpapers || Download paper

  30. An optimized long short-term memory-weighted fading extended Kalman filtering model with wide temperature adaptation for the state of charge estimation of lithium-ion batteries. (2022). Yang, Xiaoyong ; Wang, Shunli ; Takyi-Aninakwa, Paul ; Zhang, Hongying ; Fernandez, Carlos.
    In: Applied Energy.
    RePEc:eee:appene:v:326:y:2022:i:c:s0306261922013009.

    Full description at Econpapers || Download paper

  31. A controllable deep transfer learning network with multiple domain adaptation for battery state-of-charge estimation. (2022). Kim, Youngki ; Oyewole, Isaiah ; Chehade, Abdallah.
    In: Applied Energy.
    RePEc:eee:appene:v:312:y:2022:i:c:s0306261922001842.

    Full description at Econpapers || Download paper

  32. State-of-charge estimation of lithium-ion battery based on clockwork recurrent neural network. (2021). Zhang, Zhongwei ; Feng, Xiong ; Miao, Shuwen ; Zhu, Qiao ; Chen, Junxiong.
    In: Energy.
    RePEc:eee:energy:v:236:y:2021:i:c:s036054422101608x.

    Full description at Econpapers || Download paper

  33. A method for state-of-charge estimation of lithium-ion batteries based on PSO-LSTM. (2021). Ren, Xiaoqing ; Yu, Xiaodong ; Dong, Xia ; Liu, Shulin.
    In: Energy.
    RePEc:eee:energy:v:234:y:2021:i:c:s0360544221014845.

    Full description at Econpapers || Download paper

  34. Remaining useful life prediction of lithium battery based on capacity regeneration point detection. (2021). Zhang, Yong ; Zheng, Ying ; Yang, Weidong ; Ma, Qiuhui.
    In: Energy.
    RePEc:eee:energy:v:234:y:2021:i:c:s036054422101481x.

    Full description at Econpapers || Download paper

  35. Synthetic state of charge estimation for lithium-ion batteries based on long short-term memory network modeling and adaptive H-Infinity filter. (2021). Chen, Zheng ; Zhang, Yuanjian ; Liu, Yonggang ; Shu, Xing ; Shen, Jiangwei ; Zhao, Hongqian.
    In: Energy.
    RePEc:eee:energy:v:228:y:2021:i:c:s0360544221008793.

    Full description at Econpapers || Download paper

  36. State of charge estimation of lithium-ion battery using denoising autoencoder and gated recurrent unit recurrent neural network. (2021). Feng, Xiong ; Zhu, Qiao ; Jiang, Lin ; Chen, Junxiong.
    In: Energy.
    RePEc:eee:energy:v:227:y:2021:i:c:s0360544221007003.

    Full description at Econpapers || Download paper

  37. Prognostics of battery cycle life in the early-cycle stage based on hybrid model. (2021). Peng, Zhen ; Zhang, YU ; Guan, Yong ; Wu, Lifeng.
    In: Energy.
    RePEc:eee:energy:v:221:y:2021:i:c:s036054422100150x.

    Full description at Econpapers || Download paper

  38. State of charge estimation for lithium-ion battery based on an Intelligent Adaptive Extended Kalman Filter with improved noise estimator. (2021). Huang, Rui ; Bhagat, Rohit ; Zhou, Quan ; Sun, Daoming ; Wang, Chongming ; Zhang, Cheng ; Yu, Xiaoli ; Amietszajew, Taz.
    In: Energy.
    RePEc:eee:energy:v:214:y:2021:i:c:s0360544220321320.

    Full description at Econpapers || Download paper

  39. An Improved Gated Recurrent Unit Network Model for State-of-Charge Estimation of Lithium-Ion Battery. (2020). Shao, Yulong ; Duan, Wenxian ; Peng, Silun ; Song, Shixin ; Xiao, Feng.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:23:p:6366-:d:455329.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-10-04 09:50:42 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.