create a website

A cross-sectional survey of deterministic PV power forecasting: Progress and limitations in current approaches. (2024). Mares, Oana ; Stefu, Nicoleta ; Paulescu, Marius ; Calinoiu, Delia ; Sabadus, Andreea ; Badescu, Viorel ; Hategan, Sergiu-Mihai ; Blaga, Robert ; Boata, Remus.
In: Renewable Energy.
RePEc:eee:renene:v:226:y:2024:i:c:s0960148124004506.

Full description at Econpapers || Download paper

Cited: 5

Citations received by this document

Cites: 302

References cited by this document

Cocites: 42

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. A graph attention network framework for generalized-horizon multi-plant solar power generation forecasting using heterogeneous data. (2025). Alemazkoor, Negin ; Asadi, Somayeh ; Hasnat, Md Abul.
    In: Renewable Energy.
    RePEc:eee:renene:v:243:y:2025:i:c:s096014812500182x.

    Full description at Econpapers || Download paper

  2. Short-term forecasting of PV power based on aggregated machine learning and sky imagery approaches. (2025). Szilagyi, Eniko ; Paulescu, Marius ; Patarau, Toma ; Hategan, Sergiu-Mihai ; Stefu, Nicoleta ; Petreus, Dorin.
    In: Energy.
    RePEc:eee:energy:v:316:y:2025:i:c:s0360544225002373.

    Full description at Econpapers || Download paper

  3. Enhancing Regional Wind Power Forecasting through Advanced Machine-Learning and Feature-Selection Techniques. (2024). Tucci, Mauro ; Taheri, Nabi.
    In: Energies.
    RePEc:gam:jeners:v:17:y:2024:i:21:p:5431-:d:1510663.

    Full description at Econpapers || Download paper

  4. Advancing global solar photovoltaic power forecasting with sub-seasonal climate outlooks. (2024). Lee, Seungjik ; Son, Seok-Woo ; Choi, Jung ; Park, Sangdae.
    In: Renewable Energy.
    RePEc:eee:renene:v:237:y:2024:i:pc:s0960148124018718.

    Full description at Econpapers || Download paper

  5. The role of utilizing artificial intelligence and renewable energy in reaching sustainable development goals. (2024). Talaat, Fatma M ; Kabeel, A E ; Shaban, Warda M.
    In: Renewable Energy.
    RePEc:eee:renene:v:235:y:2024:i:c:s096014812401379x.

    Full description at Econpapers || Download paper

References

References cited by this document

  1. Abdel-Basset, M. ; Hawash, H. ; Chakrabortty, R.K. ; Ryan, M. PV-Net: an innovative deep learning approach for efficient forecasting of short-term photovoltaic energy production. 2021 J. Clean. Prod.. 303 -
    Paper not yet in RePEc: Add citation now
  2. Acharya, S.K. ; Wi, Y.M. ; Lee, J. Day-ahead forecasting for small-scale photovoltaic power based on similar day detection with selective weather variables. 2020 Electronics. 9 1117-
    Paper not yet in RePEc: Add citation now
  3. Agga, A. ; Abbou, A. ; Labbadi, M. ; El Houm, Y. Short-term self consumption PV plant power production forecasts based on hybrid CNN-LSTM, ConvLSTM models. 2021 Renew. Energy. 177 101-112

  4. Agga, A. ; Abbou, A. ; Labbadi, M. ; Houm, Y.E. ; Ali, I.H.O. CNN-LSTM: an efficient hybrid deep learning architecture for predicting short-term photovoltaic power production. 2022 Elec. Power Syst. Res.. 208 -
    Paper not yet in RePEc: Add citation now
  5. Ahmad, M.W. ; Mourshed, M. ; Rezgui, Y. Tree-based ensemble methods for predicting PV power generation and their comparison with support vector regression. 2018 Energy. 164 465-474

  6. Ahmad, R. ; Pratyush, Kumar R. Very Short-Term Photovoltaic (PV) Power Forecasting Using Deep Learning (LSTMs). 2021 :
    Paper not yet in RePEc: Add citation now
  7. Ahmed, R. ; Sreeram, V. ; Mishra, Y. ; Arif, M.D. A review and evaluation of the state-of-the-art in PV solar power forecasting: techniques and optimization. 2020 Renewable Sustainable Energy Rev.. 124 -

  8. Akhter, M.N. ; Mekhilef, S. ; Mokhlis, H. ; Almohaimeed, Z.M. ; Muhammad, M.A. ; Khairuddin, A.S.M. ; Akram, R. ; Hussain, M.M. An hour-ahead PV power forecasting method based on an RNN-LSTM model for three different PV plants. 2022 Energies. 15 2243-

  9. Al-Dahidi, S. ; Ayadi, O. ; Adeeb, J. ; Alrbai, M. ; Qawasmeh, B.R. Extreme learning machines for solar photovoltaic power predictions. 2018 Energies. 11 2725-

  10. Al-Dahidi, S. ; Muhsen, H. ; Sari, M.S. ; Alrbai, M. ; Louzazni, M. ; Omran, N. An adaptive approach-based ensemble for I day-ahead production prediction of solar PV systems. 2022 Adv. Mech. Eng.. 14 1-19
    Paper not yet in RePEc: Add citation now
  11. Alaraj, M. ; Kumar, A. ; Alsaidan, I. ; Rizwan, M. ; Jamil, M. Energy Production Forecasting from Solar Photovoltaic Plants Based on Meteorological Parameters for Qassim Region. 2021 :
    Paper not yet in RePEc: Add citation now
  12. Alfadda, A. ; Adhikari, R. ; Kuzlu, M. ; Rahman, S. Hour-ahead solar PV power forecasting using SVR based approach. 2017 En : IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT). :
    Paper not yet in RePEc: Add citation now
  13. Almaghrabi, S. ; Rana, M. ; Hamilton, M. ; Rahaman, M.S. Spatially aggregated photovoltaic power prediction using wavelet and convolutional neural networks. 2021 International Joint Conference on Neural Networks (IJCNN). 1-8
    Paper not yet in RePEc: Add citation now
  14. Almeida, M.P. ; Munoz, M. ; de la Parra, I. ; Perpinan, O. Comparative study of PV power forecast using parametric and nonparametric PV models. 2017 Sol. Energy. 155 854-866
    Paper not yet in RePEc: Add citation now
  15. Almeida, M.P. ; Perpinan, O. ; Narvarte, L. PV power forecasting using a nonparametric PV model. 2015 Sol. Energy. 115 354-368
    Paper not yet in RePEc: Add citation now
  16. Almonacid, F. ; Perez-Higueras, P.J. ; Fernandez, E.F. ; Hontoria, L. A methodology based on dynamic artificial neural network for short-term forecasting of the power output of a PV generator. 2014 Energy Convers Manage. 85 389-398
    Paper not yet in RePEc: Add citation now
  17. Alomari, M.H. ; Adeeb, J. ; Younis, O. Solar photovoltaic power forecasting in Jordan using artificial neural networks. 2018 Int. J. Electr. Comput. Eng.. 8 497-504
    Paper not yet in RePEc: Add citation now
  18. Alomari, M.H. ; Younis, O. ; Hayajneh, S.M.A. A predictiv model for solar photovoltaic power using the Levenberg-Marquardt and bayesian regularization algorithms and real-time weather data. 2018 Int. J. Adv. Comput. Sci. Appl.. 9 347-353
    Paper not yet in RePEc: Add citation now
  19. AlShafeey, M. ; Csaki, C. Evaluating neural network and linear regression photovoltaic power forecasting models based on different input methods. 2021 Energy Rep.. 7 7601-7614
    Paper not yet in RePEc: Add citation now
  20. Amaro e Silva, R. ; Brito, M.C. Impact of network and time resolution on spatio-temporal solar forecasting. 2018 Sol. Energy. 163 329-337
    Paper not yet in RePEc: Add citation now
  21. Amaro e Silva, R. ; Brito, M.C. Spatio-temporal PV forecasting sensitivity to modules' tilt and orientation. 2019 Appl. Energy. 255 -

  22. An, Y. ; Dang, K. ; Shi, X. ; Jia, R. ; Zhang, K. ; Huang, Q. A probabilistic ensemble prediction method for PV power in the nonstationary period. 2021 Energies. 14 859-

  23. Anand, I. ; Senthilkumar, S. ; Biswas, D. ; Kaliamoorthy, M. Dynamic power management system employing a single-stage power converter for standalone solar PV applications. 2018 IEEE Trans. Power Electron.. 33 10352-10362
    Paper not yet in RePEc: Add citation now
  24. Antonanzas, J. ; Osorio, N. ; Escobar, R. ; Urraca, R. ; Martinez-de-Pison, F.J. ; Antonanzas-Torres, F. Review of photovoltaic power forecasting. 2016 Sol. Energy. 136 78-111
    Paper not yet in RePEc: Add citation now
  25. Aslam, M. ; Lee, S.J. ; Khang, S.H. ; Hong, S. Two-stage Attention over LSTM with Bayesian Optimization for Day-Ahead Solar Power Forecasting. 2021 :
    Paper not yet in RePEc: Add citation now
  26. Asrari, A. ; Wu, T.X. ; Ramos, B. A hybrid algorithm for short-term solar power prediction - sunshine state case study. 2017 IEEE Trans. Sustain. Energy. 8 582-591
    Paper not yet in RePEc: Add citation now
  27. Baharin, K.A. ; Rahman, H.A. ; Hassan, M.Y. ; Gan, C.K. Short-term forecasting of solar photovoltaic output power for tropical climate using ground-based measurement data. 2016 J. Renew. Sustain. Energy. 8 -
    Paper not yet in RePEc: Add citation now
  28. Barbieri, F. ; Rajakaruna, S. ; Ghosh, A. Very short-term photovoltaic power forecasting with cloud modeling: a review. 2017 Renewable Sustainable Energy Rev.. 75 242-263

  29. Barukcic, M. ; Hederic, Z. ; Hadziselimovic, M. ; Seme, S. A simple stochastic method for modeling the uncertainty of photovoltaic power production based on measured data. 2018 Energy. 165 246-256

  30. Bashir, Z.A. ; El-Hawary, M.E. Applying wavelets to short-term load forecasting using PSO-based neural networks. 2009 IEEE Trans. Power Syst.. 24 20-27
    Paper not yet in RePEc: Add citation now
  31. Behera, M.K. ; Nayak, N. A comparative study on short-term PV power forecasting using decomposition based optimized extreme learning machine algorithm. 2020 Eng Sci Technol an Int J. 23 156-167
    Paper not yet in RePEc: Add citation now
  32. Ben Ammar, R. ; Ben Ammar, M. ; Oualha, A. Comparative Study Among Physical Models and Artificial Intelligence Methods for PV Power Forecasting. 2021 :
    Paper not yet in RePEc: Add citation now
  33. Blaga, R. ; Sabadus, A. ; Stefu, N. ; Dughir, C. ; Paulescu, M. ; Badescu, V. A current perspective on the accuracy of incoming solar energy forecasting. 2019 Prog. Energy Combust. Sci.. 70 119-144
    Paper not yet in RePEc: Add citation now
  34. Bo, Y. ; Tang, J. ; Yu, M. ; Wei, W. Ultra-short-term PV power forecasting based on LSTM with PeepHoles connection. 2019 :
    Paper not yet in RePEc: Add citation now
  35. Book, H. ; Lindfors, A.V. Site-specific adjustment of a NWP-based photovoltaic production forecast. 2020 Sol. Energy. 211 779-788
    Paper not yet in RePEc: Add citation now
  36. Bouzerdoum, M. ; Mellit, A. ; Pavan, A.M. A hybrid model (SARIMA-SVM) for short-term power forecasting of a small-scale grid-connected photovoltaic plant. 2013 Sol. Energy. 98 226-235
    Paper not yet in RePEc: Add citation now
  37. Bozorg, M. ; Bracale, A. ; Carpita, M. ; De Falco, P. ; Mottola, F. ; Proto, D. Bayesian bootstrapping in real-time probabilistic photovoltaic power forecasting. 2021 Sol. Energy. 225 577-590
    Paper not yet in RePEc: Add citation now
  38. Bracale, A. ; Carpinelli, G. ; De Falco, P. Developing and comparing different strategies for combining probabilistic photovoltaic power forecasts in an ensemble method. 2019 Energies. 12 1011-

  39. Bracale, A. ; Carpinelli, G. ; De Falco, Pasquale ; Rizzo, R. ; Russo, A. New advanced method and cost-based indices applied to probabilistic forecasting of photovoltaic generation. 2016 J. Renew. Sustain. Energy. 8 -
    Paper not yet in RePEc: Add citation now
  40. Bright, J.M. ; Killinger, S. ; Lingfors, D. ; Engerer, N.A. Improved satellite-derived PV power nowcasting using real-time power data from reference PV systems. 2018 Sol. Energy. 168 118-139
    Paper not yet in RePEc: Add citation now
  41. Cervone, G. ; Clemente-Harding, L. ; Alessandrini, S. ; Monache, L.D. Short-term photovoltaic power forecasting using artificial neural networks and an analog ensemble. 2017 Renew. Energy. 108 274-286

  42. Cha, J.W. ; Joo, S.K. Probabilistic short-term load forecasting incorporating behind-the-meter (BTM) photovoltaic (PV) generation and battery energy storage systems (BESSs). 2021 Energies. 14 7067-

  43. Chen, B. ; Lin, P. ; Lin, Y. ; Lai, Y. ; Cheng, S. ; Chen, Z. ; Wu, L. Hour-ahead photovoltaic power forecast using a hybrid GRA-LSTM model based on multivariate meteorological factors and historical power datasets. 2020 IOP Conf. Ser. Earth Environ. Sci.. 431 -
    Paper not yet in RePEc: Add citation now
  44. Chen, C. ; Duan, S. ; Cai, T. ; Liu, B. Online 24-h solar power forecasting based on weather type classification using artificial neural network. 2011 Sol. Energy. 85 2856-2870
    Paper not yet in RePEc: Add citation now
  45. Chen, C.R. ; Ouedraogo, F.B. ; Chang, Y.M. ; Larasati, D.A. ; Tan, S.W. Hour-ahead photovoltaic output forecasting using wavelet-ANFIS. 2021 Mathematics. 9 2438-

  46. Chen, J. ; Zhang, N. ; Liu, G. ; Li, J. ; Qiao, Y. Short-term PV Power Forecasting Based on Time-Phased and Error Correction. 2021 :
    Paper not yet in RePEc: Add citation now
  47. Chen, Y. ; Xu, P. ; Chu, Y. ; Li, W. ; Wu, Y. ; Ni, L. ; Bao, Y. ; Wang, K. Short-term electrical load forecasting using the Support Vector Regression (SVR) model to calculate the demand response baseline for office buildings. 2017 Appl. Energy. 195 659-670

  48. Cho, D. ; Valenzuela, J. Scheduling energy consumption for residential stand-alone photovoltaic systems. 2019 Sol. Energy. 187 393-403
    Paper not yet in RePEc: Add citation now
  49. Chu, Y. ; Urquhart, B. ; Gohari, S.M.I. ; Pedro, H.T.C. ; Kleissl, J. ; Coimbra, C.F.M. Short-term reforecasting of power output from a 48 Mwe solar PV plant. 2015 Sol. Energy. 112 68-77
    Paper not yet in RePEc: Add citation now
  50. Chupong, C. ; Plangklang, B. Forecasting power output of PV grid connected system in Thailand without using solar radiation measurement. 2011 Energy Proc.. 9 230-237
    Paper not yet in RePEc: Add citation now
  51. Collino, E. ; Ronzio, D. Exploitation of new short-term multimodel photovoltaic power forecasting method in the very short-term horizon to derive a multi-time scale forecasting system. 2021 Energies. 14 789-

  52. Collino, E. ; Ronzio, D. ; Bonanno, R. ; Partasides, G. Evaluation of different PV power forecasting systems on grid-connected PV plants in the Mediterranean Area. 2019 1st International Conference on Energy Transition in the Mediterranean Area SyNERGY MED. 1-6
    Paper not yet in RePEc: Add citation now
  53. D.A.R. de Jesus, P. Mandal, M. Velez-Reyes, S. Chakraborty, T. Senjyu, Data fusion based hybrid deep neural network method for solar PV power forecasting, North American Power Symposium (NAPS), Wichita, KS, USA (2019) 1-6.
    Paper not yet in RePEc: Add citation now
  54. da Silva Fonesca, Jr JG. ; Oozeki, T. ; Takashima, T. ; Koshimizu, G. ; Uchida, Y. ; Ogimoto, K. Photovoltaic power production forecasts with support vector regression: a study on the forecast horizon. 2011 :
    Paper not yet in RePEc: Add citation now
  55. da Silva Fonseca, Jr JG. ; Oozeki, T. ; Takashima, T. ; Koshimizu, G. ; Uchida, Y. ; Ogimoto, K. Use of support vector regression and numerically predicted cloudiness to forecast power output of a photovoltaic power plant in Kitakyushu, Japan. 2012 Prog. Photovoltaics Res. Appl.. 20 874-882
    Paper not yet in RePEc: Add citation now
  56. Das, U.K. ; Tey, K.S. ; Seyedmahmoudian, M. ; Idris, M.Y.I. ; Mekhilef, S. ; Horan, B. ; Stojcevski, A. SVR-based model to forecast PV power generation under different weather conditions. 2017 Energies. 10 876-

  57. Dash, D.R. ; Dash, P.K. ; Bisoi, R. Short term solar power forecasting using hybrid minimum variance expanded RVFLN and Sine-Cosine Levy Flight PSO algorithm. 2021 Renew. Energy. 174 513-537

  58. David, M. ; Boland, J. ; Cirocco, L. ; Lauret, P. ; Voyant, C. Value of deterministic day-ahead forecasts of PV generation in PV + Storage operation for the Australian electricity market. 2021 Sol. Energy. 224 672-684
    Paper not yet in RePEc: Add citation now
  59. De Giorgi, M.G. ; Congedo, P.M. ; Malvoni, M. Photovoltaic power forecasting using statistical methods: impact of weather data. 2014 IET Sci. Meas. Technol.. 8 90-97
    Paper not yet in RePEc: Add citation now
  60. de Giorgi, M.G. ; Congedo, P.M. ; Malvoni, M. ; Laforgia, D. Error analysis of hybrid photovoltaic power forecasting models: a case study of Mediterranean climate. 2015 Energy Convers Manage. 100 117-130
    Paper not yet in RePEc: Add citation now
  61. De Giorgi, M.G. ; Malvoni, M. ; Congedo, P.M. Comparison of strategies for multi-step ahead photovoltaic power forecasting models based on hybrid group method of data handling networks and least square support vector machine. 2016 Energy. 107 360-373

  62. de Jesus, D.A.R. ; Mandal, P. ; Chakraborty, S. ; Senjyu, T. Solar PV Power Prediction Using a New Approach Based on Hybrid Deep Neural Network. 2019 IEEE Power & Energy Society General Meeting (PESGM):
    Paper not yet in RePEc: Add citation now
  63. de la Parra, I. ; Munoz, M. ; Lorenzo, E. ; Garcia, M. ; Marcos, J. ; Martinez-Moreno, F. PV performance modeling: a review in the light of quality assurance for large PV plants. 2017 Renewable Sustainable Energy Rev.. 78 780-797

  64. Dewangan, C.L. ; Singh, S.N. ; Chakrabarti, S. Combining forecasts of day-ahead solar power. 2020 Energy. 202 -

  65. Dimd, B.D. ; Voller, S. ; Cali, U. ; Midtgard, O.M. A review of machine learning-based photovoltaic output power forecasting: nordic context. 2022 IEEE Access. 10 26404-26425
    Paper not yet in RePEc: Add citation now
  66. Ding, M. ; Wang, L. ; Bi, R. An ANN-based approach for forecasting the power output of photovoltaic system. 2011 Procedia Environ Sci. 11 1308-1315
    Paper not yet in RePEc: Add citation now
  67. Dokur, E. Swarm decomposition technique based hybrid model for very short-term solar PV power generation forecast. 2020 Elektron ir Elektrotech. 26 79-83
    Paper not yet in RePEc: Add citation now
  68. Dolara, A. ; Leva, S. ; Manzolini, G. Comparison of different physical models for PV power output prediction. 2015 Sol. Energy. 119 83-99
    Paper not yet in RePEc: Add citation now
  69. Dong, J. ; Olama, M.M. ; Kuruganti, T. ; Melin, A.M. ; Djouadi, S.M. ; Zhang, Y. ; Xue, Y. Novel stochastic methods to predict short-term solar radiation and photovoltaic power. 2020 Renew. Energy. 145 333-346

  70. Dou, C. ; Qi, H. ; Luo, W. ; Zhang, Y. Elman neural network based short-term photovoltaic power forecasting using association rules and kernel principal component analysis. 2018 J. Renew. Sustain. Energy. 10 -
    Paper not yet in RePEc: Add citation now
  71. Douir, M.R. Particle swarm optimized neuro-fuzzy system for photovoltaic power forecasting model. 2019 Sol. Energy. 184 91-104
    Paper not yet in RePEc: Add citation now
  72. du Plessis, A.A. ; Strauss, J.M. ; Rix, A.J. Short-term solar power forecasting: investigating the ability of deep learning models to capture low-level utility-scale Photovoltaic system behaviour. 2021 Appl. Energy. 285 -

  73. Engerer, N.A. ; Mills, F.P. Kpv: a clear-sky index for photovoltaics. 2014 Sol. Energy. 105 679-693
    Paper not yet in RePEc: Add citation now
  74. Eseye, A.T. ; Zhang, J. ; Zheng, D. Short-term photovoltaic solar power forecasting using a hybrid Wavelet-PSO-SVM model based on SCADA and Meteorological information. 2018 Renew. Energy. 118 357-367

  75. Etxegarai, G. ; Lopez, A. ; Aginako, N. ; Rodriguez, F. An analysis of different deep learning neural networks for intra-hour solar irradiation forecasting to compute solar photovoltaic generators' energy production. 2022 Energy Sustain Dev. 68 1-17
    Paper not yet in RePEc: Add citation now
  76. Farah, S. ; Boland, J. Time series model for real-time forecasting of Australian photovoltaic solar farms power output. 2021 J. Renew. Sustain. Energy. 14 -
    Paper not yet in RePEc: Add citation now
  77. Fei, W. ; Zengqiang, M. ; Shi, S. ; Chengcheng, Z. A practical model for single-step power prediction of grid-connected PV plant using artificial neural network, IEEE PES Innovative Smart Grid Technologoes, Perth. 2011 WA. 1-4
    Paper not yet in RePEc: Add citation now
  78. Feng, C. ; Zhang, J. SolarNet: a sky image-based deep convolutional neural network for intra-hour solar forecasting. 2020 Sol. Energy. 204 71-78
    Paper not yet in RePEc: Add citation now
  79. Fentis, A. ; Bahatti, L. ; Mestari, M. ; Tabaa, M. ; Jarrou, A. ; Chouri, B. Short-term PV power forecasting using support vector regression and local monitoring data. 2016 International Renewable and Sustainable Energy Conference (IRSEC), Marrakech, Morocco. 1092-1097
    Paper not yet in RePEc: Add citation now
  80. Fjelkestam Frederiksen, C.A. ; Cai, Z. Novel machine learning approach for solar photovoltaic energy output forecast using extra-terrestrial solar irradiance. 2022 Appl. Energy. 306 -

  81. Gandoman, F.H. ; Abdel, Aleem SHE. ; Omar, N. ; Ahmadi, A. ; Alenezi, F.Q. Short-term solar power forecasting considering cloud coverage and ambient temperature variation effects. 2018 Renew. Energy. 123 793-805

  82. Gao, M. ; Li, J. ; Hong, F. ; Long, D. Day-ahead power forecasting in a large-scale photovoltaic plant based on weather classification using LSTM. 2019 Energy. 187 -

  83. Gao, R. ; Zhang, X. ; Zhen, Z. ; Mei, S. Ultra-short-term solar PV power forecasting based on cloud displacement vector using multi-channel satellite and NWP data. 2021 En : Proceedings of the 40th Chinese Control Conference. :
    Paper not yet in RePEc: Add citation now
  84. Gigoni, L. ; Betti, A. ; Crisostomi, E. ; Franco, A. ; Tucci, M. ; Bizzarri, F. ; Mucci, D. Day-ahead hourly forecasting of power generation from photovoltaic plants. 2018 IEEE Trans. Sustain. Energy. 9 831-842
    Paper not yet in RePEc: Add citation now
  85. Golestaneh, F. ; Gooi, H.B. Batch and Sequential Forecast Models for Photovoltaic Generation. 2015 :
    Paper not yet in RePEc: Add citation now
  86. Gu, B. ; Shen, H. ; Lei, X. ; Hu, H. ; Liu, X. Forecasting and uncertainty analysis of day-ahead photovoltaic power using a novel forecasting method. 2021 Appl. Energy. 299 -

  87. Gueymard, C.A. ; Ruiz-Arias, J.A. Extensive worldwide validation and climate sensitivity analysis of direct irradiance predictions from 1-min global irradiance. 2016 Sol. Energy. 128 1-30
    Paper not yet in RePEc: Add citation now
  88. Gulin, M. ; Pavlovic, T. ; Vasak, M. A one-day-ahead photovoltaic array power production prediction with combined static and dynamic on-line correction. 2017 Sol. Energy. 142 49-60
    Paper not yet in RePEc: Add citation now
  89. Guo, K. ; Cheng, X. ; Ge, H. ; Shi, J. Short-term photovoltaic power forecasting based on PSO-BP neural network. 2020 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia). 303-309
    Paper not yet in RePEc: Add citation now
  90. Gutierrez, L. ; Patino, J. ; Duque-Grisales, E. A comparison of the performance of supervised learning algorithms for solar power prediction. 2021 Energies. 14 4424-

  91. Han, Y. ; Wang, N. ; Ma, M. ; Zhou, H. ; Dai, S. ; Zhu, H. A PV power interval forecasting based on seasonal model and nonparametric estimation algorithm. 2019 Sol. Energy. 184 515-526
    Paper not yet in RePEc: Add citation now
  92. Han, Y. ; Wang, N. ; Ma, M. ; Zhou, H. ; Dai, S. ; Zhu, H. A PV power interval forecasting based on seasonal model and nonparametric estimation algorithm. 2019 Sol. Energy. 184 515-526
    Paper not yet in RePEc: Add citation now
  93. Haque, A.U. ; Nehrir, M.H. ; Mandal, P. ; Vancouver, BC Solar PV power generation forecast using a hybrid intelligent approach. 2013 Canada. 1-5
    Paper not yet in RePEc: Add citation now
  94. Hashemi, B. ; Taheri, S. ; Cretu, A.M. Systematic analysis and computational intelligence based modeling of photovoltaic power generation in snow conditions. 2022 IEEE J. Photovoltaics. 12 406-420
    Paper not yet in RePEc: Add citation now
  95. Hassan, M.A. ; Bailek, N. ; Bouchouicha, K. ; Chukwujindu Nwokolo, S. Ultra-short-term exogenous forecasting of photovoltaic power production using genetically optimized non-linear auto-regressive recurrent neural networks. 2021 Renew. Energy. 171 191-209

  96. Heo, J. ; Song, K. ; Han, S.U. ; Lee, D.E. Multi-channel convolutional neural network for integration of meteorological and geographical features in solar power forecasting. 2021 Appl. Energy. 295 -

  97. Hoff, T.E. ; Perez, R. ; Kleissl, J. ; Renne, D. ; Stein, J. Reporting of irradiance modeling relative prediction errors. 2013 Prog. Photovoltaics Res. Appl.. 191 747-762
    Paper not yet in RePEc: Add citation now
  98. Holland, N. ; Pang, X. ; Herzberg, W. ; Karalus, S. ; Bor, J. ; Lorenz, E. Solar and PV Forecasting for Large PV Power Plants Using Numerical Weather Models, Satellite Data and Ground Measurements. 2019 :
    Paper not yet in RePEc: Add citation now
  99. Hossain, M. ; Mekhilef, S. ; Danesh, M. ; Olatomiwa, L. ; Shamshirband, S. Application of extreme learning machine for short term output power forecasting of three grid-connected PV systems. 2017 J. Clean. Prod.. 167 395-405
    Paper not yet in RePEc: Add citation now
  100. Hossain, M.S. ; Mahmood, H. Short-term photovoltaic power forecasting using an LSTM neural network and synthetic weather forecast. 2020 IEEE Access. 8 172524-172533
    Paper not yet in RePEc: Add citation now
  101. Hu, L. ; Zhen, Z. ; Wang, F. ; Qiu, G. ; Li, Y. ; Shafie-khah, M. ; Catalao, J.P.S. Ultra-short-term solar PV power forecasting method based on frequency-domain decomposition and deep learning. 2020 IEEE Industry Applications Society Annual Meeting. -
    Paper not yet in RePEc: Add citation now
  102. Hu, Y. ; Lian, W. ; Han, Y. ; Dai, S. ; Zhu, H. A seasonal model using optimized multi-layer neural networks to forecast power output of PV plants. 2018 Energies. 11 326-

  103. Huang, C. ; Cao, L. ; Peng, N. ; Li, S. ; Zhang, J. ; Wang, L. ; Luo, X. ; Wang, J.H. Day-ahead forecasting of hourly photovoltaic power based on robust multilayer perception. 2018 Sustainability. 10 4863-

  104. Huang, J. ; Khan, M.M. ; Qin, Y. ; West, S. Hybrid Intra-hour Solar PV Power Forecasting Using Statistical and Skycam-Based Methods. 2019 :
    Paper not yet in RePEc: Add citation now
  105. Huang, Q. ; Wei, S. Improved quantile convolutional neural network with two-state training for daily-ahead probabilistic forecasting of photovoltaic power. 2020 Energy Convers Manage. 220 -
    Paper not yet in RePEc: Add citation now
  106. Huang, X. ; Li, Q. ; Tai, Y. ; Chen, Z. ; Liu, J. ; Shi, J. ; Liu, W. Time series forecasting for hourly photovoltaic power using conditional generative adversarial network and Bi-LSTM. 2022 Energy. 246 -

  107. Huang, Y. ; Zhou, M. ; Zhang, S. ; Yang, X. ; Zhang, S. ; Liu, H. Research on PV Power Forecasting Based on Wavelet Decomposition and Temporal Convolutional Networks. 2021 :
    Paper not yet in RePEc: Add citation now
  108. IEAPV2022 Renewable Energy Market Update 2022, International Energy Agency, https://www.iea.org/reports/renewable-energy-market-update-may-2022 [Accessed 13 July 2022].
    Paper not yet in RePEc: Add citation now
  109. J. Macaire, M. Salloum, J. Bechet, S. Zermani, L. Linguet, Feature selection using kernel conditional density estimator for day-ahead regional PV power forecasting in French Guiana, International Conference on Applied Energy, Vol. 29 (2021) Nov. 29 - Dec. 2, 2021, in Bangkok, Thailand: Paper ID: 596.
    Paper not yet in RePEc: Add citation now
  110. Jamal, T. ; Carter, C. ; Schmidt, T. ; Shafiullah, G.M. ; Calais, M. ; Urmee, T. An energy flow simulation tool for incorporating short-term PV forecasting in a diesel-PV-battery off-grid power supply system. 2019 Appl. Energy. 254 -

  111. Jiang, Y. ; Zheng, L. ; Ding, X. Ultra-short-term prediction of photovoltaic output based on an LSTM-ARMA combined model driven by EEMD. 2021 J. Renew. Sustain. Energy. 13 -
    Paper not yet in RePEc: Add citation now
  112. Jung, Y. ; Jung, J. ; Kin, B. ; Han, S. Long short-term memory recurrent neural network for modeling temporal patterns in long-term power forecasting for solar PV facilities: case study of South Korea. 2020 J. Clean. Prod.. 250 -
    Paper not yet in RePEc: Add citation now
  113. Kabilan, R. ; Chandran, V. ; Yogapriya, J. ; Karthick, A. ; Gandhi, P.P. ; Mohanavel, V. ; Rahim, R. ; Manoharan, S. Short-term power prediction of building integrated photovoltaic (BIPV) system based on machine learning algorithms. 2021 Int. J. Photoenergy. 2021 -
    Paper not yet in RePEc: Add citation now
  114. Kaloop, M.R. ; Bardhan, A. ; Kardani, N. ; Samui, P. ; Hu, J.W. ; Ramzy, A. Novel application of adaptive swarm intelligence techniques coupled with adaptive network-based fuzzy inference system in predicting photovoltaic power. 2021 Renewable Sustainable Energy Rev.. 148 -

  115. Kanchana, W. ; Sirisukprasert, S. PV power forecasting with Holt-Winters Method. 2020 8th International Electrical Engineering Congress (iEECON). -
    Paper not yet in RePEc: Add citation now
  116. Khan, W. ; Walker, S. ; Zeiler, W. Improved solar photovoltaic energy generation forecast using deep learning-based ensemble stacking approach. 2022 Energy. 240 -

  117. Kishore, D.J.K. ; Mohamed, M.R. ; Sudhakar, K. ; Jewaliddin, S.K. ; Peddakapu, K. ; Rao, P.S. Ultra-short-term PV power forecasting based on support vector machine with improved dragonfly algorithm. 2021 Emerging Trends in Industry. 4 1-5
    Paper not yet in RePEc: Add citation now
  118. Klingler, A.L. ; Teichtmann, L. Impacts of a forecast-based operation strategy for grid-connected PV storage systems on profitability and the energy system. 2017 Sol. Energy. 158 861-868
    Paper not yet in RePEc: Add citation now
  119. Kong, W. ; Jia, Y. ; Dong, Z.Y. ; Meng, K. ; Chai, S. Hybrid approaches based on deep whole-sky-image learning to photovoltaic generation forecasting. 2020 Appl. Energy. 280 -

  120. Konstantinou, M. ; Peratikou, S. ; Charalambides, A.G. Solar photovoltaic forecasting of power output using LSTM networks. 2021 Atmosphere. 12 124-
    Paper not yet in RePEc: Add citation now
  121. Korkmaz, D. SolarNet: a hybrid model based on convolutional neural network and variational mode decomposition for hourly photovoltaic power forecasting. 2021 Appl. Energy. 300 -

  122. Koster, D. ; Minette, F. ; Braun, C. ; O'Nagy, O. Short-term and regionalized power forecasting, enhanced by reference systems, on the example of Luxembourg. 2018 Renew. Energy. 132 455-470
    Paper not yet in RePEc: Add citation now
  123. Kostylev, V. ; Pavlovski, A. Solar power forecasting performance-towards industry standard. 2011 En : 1st International Workshop on the Integration of Solar Power into Power Systems. Langen, Germany: Energynautics GmbH Mühlstraße: Aarhus, Denmark
    Paper not yet in RePEc: Add citation now
  124. Kothona, D. ; Panapakidis, I.P. ; Christoforidis, G.C. A novel hybrid ensemble LSTM-FFNN forecasting model for very short-term and short-term PV generation forecasting. 2021 Renew Power Gener. 1-16
    Paper not yet in RePEc: Add citation now
  125. Kumar, A. ; Rizwan, M. ; Nangia, U. A hybrid intelligent approach for solar photovoltaic power forecasting: impact of aerosol data. 2020 Arabian J. Sci. Eng.. 45 1715-1732
    Paper not yet in RePEc: Add citation now
  126. Kumar, K.R. ; Kalavathi, M.S. Artificial intelligence based forecast models for predicting solar power generation. 2018 Mater. Today Proc.. 5 796-802
    Paper not yet in RePEc: Add citation now
  127. Kumar, R. ; Khandelwal, S. ; Upadhyay, P. ; Pulipaka, S. Global maximum power point tracking using variable sampling time and p-v curve region shifting technique along with incremental conductance for partially shaded photovoltaic systems. 2019 Sol. Energy. 189 151-178
    Paper not yet in RePEc: Add citation now
  128. Kushwaha, V. ; Pindoriya, N.M. A SARIMA-RVFL hybrid model assisted by wavelet decomposition for very short-term solar PV power generation forecast. 2019 Renew. Energy. 140 124-139

  129. Kushwaha, V. ; Pindoriya, N.M. Very short-term solar PV generation forecast using SARIMA model: a case study. 2017 En : 2017 7th International Conference on Power Systems (ICPS). :
    Paper not yet in RePEc: Add citation now
  130. Laevens, B.P.M. ; ten Bosch, O. ; Pijpers, F.P. ; van Sark, W.G.J.H.M. An observational method for determining daily and regional photovoltaic solar energy statistics. 2021 Sol. Energy. 228 12-26
    Paper not yet in RePEc: Add citation now
  131. Larson, D.P. ; Nonnenmacher, L. ; Coimbra, C.F.M. Day-ahead forecasting of solar power output from photovoltaic plants in the American Southwest. 2016 Renew. Energy. 91 11-20

  132. Lateko, A.A.H. ; Yang, H.T. ; Huang, C.M. ; Aprillia, H. ; Hsu, C.Y. ; Zhong, J.L. ; Phuong, N.H. Stacking ensemble method with the RNN meta-learner for short-term PV power forecasting. 2021 Energies. 14 4733-

  133. Lee, D. ; Kim, K. PV power prediction in a peak zone using recurrent neural networks in the absence of future meteorological information. 2020 Renew. Energy. 173 1098-1110
    Paper not yet in RePEc: Add citation now
  134. Lee, D. ; Kim, K. Recurrent neural network-based hourly prediction of photovoltaic power output using meteorological information. 2019 Energies. 12 215-

  135. Lenton, T.M. ; Rockström, J. ; Gaffney, O. ; Rahmstorf, S. ; Richardson, K. ; Steffen, W. ; Schellnhuber, H.J. Climate tipping points—too risky to bet against. 2019 Nature. 575 592-595

  136. Leva, S. ; Mussetta, M. ; Nespoli, A. ; Ogliari, E. PV power forecasting improvement by means of a selective ensemble approach. 2019 IEEE Milan PowerTech: Milan, Italy
    Paper not yet in RePEc: Add citation now
  137. Li, B. ; Zhang, J. A review on the integration of probabilistic solar forecasting in power systems. 2020 Sol. Energy. 210 68-86
    Paper not yet in RePEc: Add citation now
  138. Li, C. ; Zhou, C. ; Peng, W. ; Lv, Y. ; Luo, X. Accurate prediction of short-term photovoltaic power generation via a novel double-input-rule-modules stacked deep fuzzy method. 2020 Energy. 212 -

  139. Li, G. ; Xie, S. ; Wang, B. ; Xin, J. ; Li, Y. ; Du, S. Photovoltaic power forecasting with a hybrid deep learning approach. 2020 IEEE. -
    Paper not yet in RePEc: Add citation now
  140. Li, J. ; Liu, Q. Forecasting of short-term photovoltaic power generation using combined interval type-2 Takagi-Sugeno-Kang fuzzy systems. 2022 Int. J. Electr. Power Energy Syst.. 140 -
    Paper not yet in RePEc: Add citation now
  141. Li, L.L. ; Cheng, P. ; Lin, H.C. ; Dong, H. Short-term output power forecasting of photovoltaic systems based on the deep belief net. 2017 Adv. Mech. Eng.. 9 1-13
    Paper not yet in RePEc: Add citation now
  142. Li, Q. ; Xu, Y. ; Chew, B. ; Ding, H. ; Zhao, G. An integrated missing-data tolerant model for probabilistic PV power generation forecasting. 2022 IEEE Trans. Power Syst.. -
    Paper not yet in RePEc: Add citation now
  143. Li, Q. ; Zhang, X. ; Ma, T. ; Jiao, C. ; Wang, H. ; Hu, W. A multi-step ahead photovoltaic power prediction model based on similar day, enhanced colliding bodies optimization, variational mode decomposition, and deep extreme learning machine. 2021 Energy. 224 -

  144. Li, Y. ; He, Y. ; Su, Y. ; Shu, L. Forecasting the daily power output of a grid-connected photovoltaic system based on multivariate adaptive regression splines. 2016 Appl. Energy. 180 392-401

  145. Lima, M.A.F.B. ; Carvalho, P.C.M. ; Braga, A.P.S. ; Ramirez, L.M.F. ; Leite, J.R. MLP back propagation artificial neural network for solar resource forecasting in equatorial areas. 2018 Renew Energy Power Qual J. 16 175-180
    Paper not yet in RePEc: Add citation now
  146. Lima, M.A.F.B. ; Carvalho, P.C.M. ; Fernandez-Ramirez, L.M. ; Braga, A.P.S. Improving solar forecasting using deep learning and portfolio theory integration. 2020 Energy. 195 -

  147. Lin, J. ; Li, H. A short-term PV power forecasting method using a hybrid kmeans-GRA-SVR model under ideal weather condition. 2020 Comput. Commun.. 8 102-119
    Paper not yet in RePEc: Add citation now
  148. Lin, P. ; Peng, Z. ; Lai, Y. ; Cheng, S. ; Chen, Z. ; Wu, L. Short-term power prediction for photovoltaic power plants using a hybrid improved Kmeans-GRA-Elman model based on multivariate meteorological factors and historical power datasets. 2018 Energy Convers Manage. 177 704-717
    Paper not yet in RePEc: Add citation now
  149. Lindsay, N. ; Libois, Q. ; Badosa, J. ; Migan-Dubois, A. ; Bourdin, V. Errors in PV power modeling due to the lack of spectral and angular details of solar irradiance inputs. 2020 Sol. Energy. 197 266-278
    Paper not yet in RePEc: Add citation now
  150. Lipperheide, M. ; Bosch, J.L. ; Kleissl, J. Embedded nowcasting method using cloud speed persistence for a photovoltaic power plant. 2015 Sol. Energy. 112 232-238
    Paper not yet in RePEc: Add citation now
  151. Liu, D. ; Sun, K. Random forest solar power forecast based on classification optimization. 2019 Energy. 187 -
    Paper not yet in RePEc: Add citation now
  152. Liu, J. ; Fang, W. ; Zhang, X. ; Yang, C. An improved photovoltaic power forecasting model with the assistance of aerosol index data. 2015 IEEE Trans. Sustain. Energy. 6 434-442
    Paper not yet in RePEc: Add citation now
  153. Liu, L. ; Liu, F. ; Zheng, Y. A novel ultra-short-term PV power forecasting method based on DBN-based Takagi-Sugeno fuzzy model. 2021 Energies. 14 6447-

  154. Liu, L. ; Zhan, M. ; Bal, Y. A recursive ensemble model for forecasting the power output photovoltaic systems. 2019 Sol. Energy. 189 291-298
    Paper not yet in RePEc: Add citation now
  155. Liu, L. ; Zhao, Y. ; Chang, D. ; Xie, J. ; Ma, Z. ; Sun, Q. ; Yin, H. ; Wennersten, R. Prediction of short-term PV power output and uncertainty analysis. 2018 Appl. Energy. 228 700-711

  156. Liu, L. ; Zhao, Y. ; Wang, Y. ; Sun, Q. ; Wennersten, R. A weight-varying ensemble method for short-term forecasting PV power output. 2019 Energy Proc.. 158 661-668
    Paper not yet in RePEc: Add citation now
  157. Liu, Y. ; Zhao, J. ; Zhang, M. ; Liu, F. ; Ouyang, H. ; Fang, H. ; Hao, Q. ; Lu, Y. A novel photovoltaic power output forecasting method based on weather type clustering and wavelet support vector machines regression. 2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD). 29-34
    Paper not yet in RePEc: Add citation now
  158. Lonij, V.P.A. ; Brooks, A.E. ; Cronin, A.D. ; Leuthold, M. ; Koch, K. Intra-hour forecasts of solar power production using measurements from a network of irradiance sensors. 2013 Sol. Energy. 97 58-66
    Paper not yet in RePEc: Add citation now
  159. Lorenz, E. ; Scheidsteger, T. ; Hurka, J. ; Heinemann, D. ; Kurz, C. Regional PV power prediction for improved grid integration. 2011 Prog. Photovoltaics Res. Appl.. 19 757-771
    Paper not yet in RePEc: Add citation now
  160. Lu, H.J. ; Chang, G.W. A hybrid approach for day-ahead forecast of PV power generation. 2018 IFAC-PapersOnLine. 51–28 634-638
    Paper not yet in RePEc: Add citation now
  161. Luo, X. ; Zhang, D. ; Zhu, X. Deep learning based forecasting of photovoltaic power generation by incorporating domain knowledge. 2021 Energy. 225 -

  162. Luque, A. ; Hegedus, S. Handbook of Photovoltaic Science and Engineering. 2011 John Wiley & Sons:
    Paper not yet in RePEc: Add citation now
  163. Mahmud, K. ; Azam, S. ; Karim, A. ; Zobaed, S.M. ; Shanmugam, B. ; Mathur, D. Machine Learning Based PV Power Generation Forecasting in Alice Springs. 2021 :
    Paper not yet in RePEc: Add citation now
  164. Mahmud, K. ; Azam, S. ; Karim, A. ; Zobaed, S.M. ; Shanmugam, B. ; Mathur, D. Machine learning based PV power generation forecasting in Alice Springs. 2021 IEEE. -
    Paper not yet in RePEc: Add citation now
  165. Makarov, Y.V. ; Etingov, P.V. ; Ma, J. ; Huang, Z. ; Subbarao, K. Incorporating uncertainty of wind power generation forecast into power system operation, dispatch, and unit commitment procedures. 2011 IEEE Trans. Sustain. Energy. 2 433-442
    Paper not yet in RePEc: Add citation now
  166. Mandal, P. ; Madhira, S.T.S. ; Ul haque, A. ; Meng, J. ; Pineda, R.L. Forecasting power output of solar photovoltaic system using wavelet transform and artificial intelligence techniques. 2012 Procedia Comput. Sci.. 12 332-337
    Paper not yet in RePEc: Add citation now
  167. Markovics, D. ; Mayer, M.J. Comparison of machine learning methods for photovoltaic power forecasting based on numerical weather prediction. 2022 Renew. Sustain. Energy Rev.. 161 -

  168. Masa-Bote, D. ; Castillo-Cagigal, M. ; Matallanas, E. ; Caamano-Martin, E. ; Gutierrez, A. ; Monasterio-Huelin, F. ; Jimenez-Leube, J. Improving photovoltaics grid integration through short time forecasting and self-consumption. 2014 Appl. Energy. 125 103-113

  169. Massaoudi, M. ; Abu-Rub, H. ; Refaat, S.S. ; Trabelsi, M. ; Chihi, I. ; Oueslati, F.S. Enhanced deep belief network based on ensemble learning and tree-structured of parzen estimators. 2021 An optimal photovoltaic power forecasting method. -
    Paper not yet in RePEc: Add citation now
  170. Massaoudi, M. ; Chihi, I. ; Sidhom, L. ; Trabelsi, M. ; Refaat, S.S. ; Abu-Rub, H. ; Oueslati, F.S. An Effective Hybrid NARX-LSTM Model for Point and Interval PV Power Forecasting. 2021 :
    Paper not yet in RePEc: Add citation now
  171. Massaoudi, M. ; Chihi, I. ; Sidhom, L. ; Trabelsi, M. ; Refaat, S.S. ; Oueslati, F.S. Enhanced random forest model for robust short-term photovoltaic power forecasting using weather measurements. 2021 Energies. 14 3992-

  172. Massaoudi, M. ; Refaat, S.S. ; Abu-Rub, H. ; Chihi, I. ; Wesleti, F.S. A hybrid bayesian ridge regression-CWT-catboost model for PV power forecasting. 2020 IEEE Kansas Power and Energy Conference (KPEC). 1-5
    Paper not yet in RePEc: Add citation now
  173. Massidda, L. ; Marrocu, M. Quantile regression post-processing of weather forecast for short-term solar power probabilistic forecasting. 2018 Energies. 11 1763-

  174. Massidda, L. ; Marrocu, M. Use of Multilinear Adaptive Regression Splines and numerical weather prediction to forecast the power output of a PV plant in Borkum, Germany. 2017 Sol. Energy. 146 141-149
    Paper not yet in RePEc: Add citation now
  175. Massucco, S. ; Mosaico, G. ; Saviozii, M. ; Silvestro, F. A hybrid technique for day-ahead PV generation forecasting using clear-sky models or ensemble of artificial neural networks according to a decision tree approach. 2019 Energies. 12 1298-

  176. Matsumoto, T. ; Yamada, Y. Comprehensive and comparative analysis of GAM-based PV power forecasting models using multidimensional tensor product splines against machine learning techniques. 2021 Energies. 14 7146-

  177. Matteri, A. ; Ogliari, E. ; Nespoli, A. Enhanced day-ahead PV power forecast: dataset clustering for an effective artificial neural network training. 2021 Eng Proc. 5 16-
    Paper not yet in RePEc: Add citation now
  178. Mellit, A. ; Massi Pavan, A. ; Lughi, V. Deep learning neural networks for short-term photovoltaic power forecasting. 2021 Renew. Energy. 172 276-288

  179. Mellit, A. ; Pavan, A.M. A 24-h forecast of solar irradiance using artificial neural network: application for performance prediction of a grid-connected PV plant at Trieste, Italy. 2010 Sol. Energy. 84 807-821
    Paper not yet in RePEc: Add citation now
  180. Mishra, M. ; Dash, P.B. ; Nayak, J. ; Naik, B. ; Swain, S.K. Deep learning and wavelet transform integrated approach for short-term solar PV power prediction. 2020 Measurement. 166 -
    Paper not yet in RePEc: Add citation now
  181. Mitrentsis, G. ; Lens, H. An interpretable probabilistic model for short-term solar power forecasting using natural gradient boosting. 2022 Appl. Energy. 309 -

  182. Mojumder, J.C. ; Ong, H.C. ; Chong, W.T. ; Izadyar, N. ; Shamshirband, S. The intelligent forecasting of the performances in PV/T collectors based on soft computing method. 2017 Renewable Sustainable Energy Rev.. 72 1366-1378

  183. Monteiro, C. ; Fernandez-Jimenez, L.A. ; Ramirez-Rosado, I.J. ; Munoz-Jimenez, A. ; Lara-Santillan, P.M. Short-term forecasting models for photovoltaic plants: analytical versus Soft-Computing Techniques. 2013 Math. Probl Eng.. 2013 -

  184. Montgomery, D.C. ; Jennings, C.L. ; Murat, K. Introduction to Time Series Analysis and Forecasting. 2008 WILEY:
    Paper not yet in RePEc: Add citation now
  185. Moslehi, S. ; Agami Reddy, T. ; Katipamula, S. Evaluation of data-driven models for predicting solar photovoltaics power output. 2018 Energy. 142 1057-1065

  186. Nespoli, A. ; Mussetta, M. ; Ogliari, E. ; Leva, S. ; Fernandez-Ramirez, L. ; Garcia-Trivino, P. Robust 24 hours ahead forecast in a microgrid: a real case study. 2019 Electronics. 8 1434-
    Paper not yet in RePEc: Add citation now
  187. Netsanet, S. ; Dehua, Z. ; Wei, Z. ; Teshager, G. Short-term PV power forecasting using variational mode decomposition integrated with Ant colony optimization and neural network. 2022 Energy Rep.. 8 2022-2035
    Paper not yet in RePEc: Add citation now
  188. Nguyen, T.N. ; Musgens, F. What drives the accuracy of PV output forecast?. 2022 Appl. Energy. 323 -

  189. Ni, Q. ; Zhuang, S. ; Sheng, H. ; Kang, G. ; Xiao, J. An ensemble prediction intervals approach for short-term PV power forecasting. 2017 Sol. Energy. 155 1072-1083
    Paper not yet in RePEc: Add citation now
  190. Ni, Q. ; Zhuang, S. ; Sheng, H. ; Wang, S. ; Xiao, J. An optimized prediction intervals approach for short term PV power forecasting. 2017 Energies. 10 1669-

  191. Niccolai, A. ; Dolara, A. ; Ogliari, E. Hybrid PV power forecasting methods: a comparison of different approaches. 2021 Energies. 14 451-
    Paper not yet in RePEc: Add citation now
  192. Nikodinoska, D. ; Kaso, M. ; Musgens, F. Solar and wind power generation forecasts using elastic net in time-varying forecast combinations. 2022 Appl. Energy. 306 -

  193. Obiora, C.N. ; Ali, A. Hourly Photovoltaic Power Forecasting Using CNN-LSTM Hybrid Mode. 2021 :
    Paper not yet in RePEc: Add citation now
  194. Ogliari, E. ; Dolara, A. ; Manzolini, G. ; Leva, S. Physical and hybrid methods comparison for the day ahead PV output power forecast. 2017 Renew. Energy. 113 11-21

  195. Ogliari, E. ; Grimaccia, F. ; Leva, S. ; Mussetta, M. Hybrid predictive models for accurate forecasting in PV systems. 2013 Energies. 6 1918-1929

  196. Panamtash, H. ; Zhou, Q. ; Hong, T. ; Qu, Z. ; Davis, K.O. A couple-based Bayesian method for probabilistic solar power forecasting. 2020 Sol. Energy. 196 336-345
    Paper not yet in RePEc: Add citation now
  197. Panapakidis, I.P. ; Christoforidis, G.C. A Hybrid ANN/GA/ANFIS Model for Very Short-Term PV Power Forecasting. 2016 :
    Paper not yet in RePEc: Add citation now
  198. Parida, M. ; Behera, M.K. ; Nayak, N. Combined EMD-ELM and OS-ELM techniques based on feed-forward networks for PV power forecasting. 2018 En : IEEE International Conference on Technologies for Smart-City Energy Security and Power (ICSESP-2018). :
    Paper not yet in RePEc: Add citation now
  199. Pascual, J. ; Barricarte, J. ; Sanchis, P. ; Marroyo, L. Energy management strategy for a renewable-based residential microgrid with generation and demand forecasting. 2015 Appl. Energy. 158 12-25

  200. Paulescu, M. ; Brabec, M. ; Boata, R. ; Badescu, V. Structured, physically inspired (gray box) models versus black box modeling for forecasting the output power of photovoltaic plants. 2017 Energy. 121 792-802

  201. Pawar, P. ; Mithulananthan, N. ; Raza, M.Q. Solar PV power forecasting using modified SVR with Gauss-Newton method. 2nd global power. 2020 En : Energy and Communication Conference. IEEE GPECOM2020:
    Paper not yet in RePEc: Add citation now
  202. Pedro, H.T.C. ; Coimbra, C.F.M. Assessment of forecasting techniques for solar power production with no exogenous inputs. 2012 Sol. Energy. 86 2017-2028
    Paper not yet in RePEc: Add citation now
  203. Pelland, S. ; Galanis, G. ; Kallos, G. Solar and photovoltaic forecasting through post-processing of the Global Environmental Multiscale numerical weather prediction model. 2013 Prog Photovolt. 21 284-296
    Paper not yet in RePEc: Add citation now
  204. Persson, C. ; Bacher, P. ; Shiga, T. ; Madsen, H. Multi-site solar power forecasting using gradient boosted regression trees. 2017 Sol. Energy. 150 423-436
    Paper not yet in RePEc: Add citation now
  205. Perveen, G. ; Rizwan, M. ; Goel, N. Intelligent model for solar energy forecasting and its implementation for solar photovoltaic applications. 2018 J. Renew. Sustain. Energy. 10 -
    Paper not yet in RePEc: Add citation now
  206. Perveen, G. ; Rizwan, M. ; Goel, N. Short-term PV power forecasting based on sky-conditions using intelligent modelling techniques. 2019 Int J Eng Sci Res Technol. 11 49-57
    Paper not yet in RePEc: Add citation now
  207. Perveen, G. ; Rizwan, M. ; Goel, N. ; Anand, P. Artificial neural network models for global solar energy and photovoltaic power forecasting over India. 2020 Energy Sources: Recovery Util Environ Eff. -
    Paper not yet in RePEc: Add citation now
  208. Pierro, M. ; Bucci, F. ; De Felice, M. ; Maggioni, E. ; Moser, D. ; Perotto, A. ; Spada, F. ; Cornaro, C. Multi-Model Ensemble for day ahead prediction of photovoltaic power generation. 2016 Sol. Energy. 134 132-146
    Paper not yet in RePEc: Add citation now
  209. Pierro, M. ; De Felice, M. ; Maggioni, E. ; Moser, D. ; Perotto, A. ; Spada, F. ; Cornaro, C. Data-driven upscaling methods for regional photovoltaic power estimation and forecast using satellite and numerical weather prediction data. 2017 Sol. Energy. 158 1026-1038
    Paper not yet in RePEc: Add citation now
  210. Pierro, M. ; De Felice, M. ; Maggioni, E. ; Moser, D. ; Perotto, A. ; Spada, F. ; Cornaro, C. Photovoltaic generation forecast for power transmission scheduling: a real case study. 2018 Sol. Energy. 174 976-990
    Paper not yet in RePEc: Add citation now
  211. Pombo, D.V. ; Binder, H.W. ; Spataru, S.V. ; Sorensen, P.E. ; Bacher, P. Increasing the accuracy of hourly multi-output solar power forecast with physics-informed machine learning. 2022 Sensors. 22 749-
    Paper not yet in RePEc: Add citation now
  212. Qu, J. ; Qian, Z. ; Pei, Y. Day-ahead hourly photovoltaic power forecasting using attention-based CNN-LSTM neural network embedded with multiple relevant and target variables prediction pattern. 2021 Energy. 232 -

  213. Qu, Y. ; Xu, J. ; Sun, Y. ; Liu, D. A temporal distributed hybrid deep learning model for day-ahead distributed PV power forecasting. 2021 Appl. Energy. 304 -

  214. Rafati, A. ; Joorabian, M. ; Mashhour, E. ; Shaker, H.R. High dimensional very short-term solar power forecasting based on a data-driven heuristic method. 2021 Energy. 219 -

  215. Ramsami, P. ; Oree, V. A hybrid method for forecasting the energy output of photovoltaic systems. 2015 Energy Convers Manage. 95 406-413
    Paper not yet in RePEc: Add citation now
  216. Rana, M. ; Koprinska, I. ; Agelidis, V.G. Univariate and multivariate methods for very short-term solar photovoltaic power forecasting. 2016 Energy Convers Manage. 121 380-390
    Paper not yet in RePEc: Add citation now
  217. Rana, M. ; Rahman, A. Multiple steps ahead solar photovoltaic power forecasting based on univariate machine learning models and data re-sampling. 2020 Sustain Energy, Grids Netw. 21 -
    Paper not yet in RePEc: Add citation now
  218. Raza, M.Q. ; Mithulananthan, N. ; Li, J. ; Lee, K.Y. ; Gooi, H.B. An ensemble framework for day-ahead forecast of PV output power in smart grids. 2019 IEEE Trans. Ind. Inf.. 15 8-
    Paper not yet in RePEc: Add citation now
  219. Raza, M.Q. ; Mithulananthan, N. ; Summerfield, A. Solar output power forecast using an ensemble framework with neural predictors and Bayesian adaptive combination. 2018 Sol. Energy. 166 226-241
    Paper not yet in RePEc: Add citation now
  220. Reikard, G. Predicting solar radiation at high resolutions: a comparison of time series forecasts. 2009 Sol. Energy. 83 342-349
    Paper not yet in RePEc: Add citation now
  221. Ren, Q. ; Zhang, N. ; Song, Q. ; Li, J. Short-term PV Power Forecasting Based on BP Network Optimized by Logistic Improved ASO. 2021 :
    Paper not yet in RePEc: Add citation now
  222. Saint-Drenan, Y.M. ; Bofinger, S. ; Fritz, R. ; Vogt, S. ; Good, G.H. ; Dobschinski, J. An empirical approach to parameterizing photovoltaic plants for power forecasting and simulation. 2015 Sol. Energy. 120 479-493
    Paper not yet in RePEc: Add citation now
  223. Saint-Drenan, Y.M. ; Good, G.H. ; Braun, M. A probabilistic approach to the estimation of regional photovoltaic power production. 2017 Sol. Energy. 147 257-276
    Paper not yet in RePEc: Add citation now
  224. Saint-Drenan, Y.M. ; Good, G.H. ; Braun, M. ; Freisinger, T. Analysis of the uncertainty in the estimates of regional PV power generation evaluated with the upscaling method. 2016 Sol. Energy. 135 536-550
    Paper not yet in RePEc: Add citation now
  225. Sangrody, H. ; Zhou, N. ; Zhang, Z. Similarity-based models for day-ahead solar PV generation forecasting. 2020 IEEE. -
    Paper not yet in RePEc: Add citation now
  226. Sansa, I. ; Missaoui, S. ; Boussada, Z. ; Bellaaj, N.M. ; Ahmed, E.M. ; Orabi, M. PV power forecasting using different artificial neural networks strategies. 2014 En : First International Conference on Greem Energy ICGE. :
    Paper not yet in RePEc: Add citation now
  227. Semero, Y.K. ; Zhang, J. ; Zheng, D. PV power forecasting using an integrated GA-PSO-ANFIS approach and Gaussian process regression based feature selection strategy. 2018 CSEE J Power Energy Syst. 4 210-218
    Paper not yet in RePEc: Add citation now
  228. Semero, Y.K. ; Zheng, D. ; Zhang, J. A PSO-ANFIS based hybrid approach for short term PV power prediction in microgrids. 2018 Elec. Power Compon. Syst.. 46 95-103
    Paper not yet in RePEc: Add citation now
  229. Serrano, Ardila VM. ; Maciel, J.N. ; Ledesma, J.J.G. ; Ando Junior, O.H. Fuzzy time series methods applied to (in)direct short-term photovoltaic power forecasting. 2022 Energies. 15 845-

  230. Sharadga, H. ; Hajimirza, S. ; Balog, R.S. Time series forecasting of solar power generation for long-scale photovoltaic plants. 2020 Renew. Energy. 150 797-807
    Paper not yet in RePEc: Add citation now
  231. Sheng, H. ; Xiao, J. ; Cheng, Y. ; Ni, Q. ; Wang, S. Short-term solar power forecasting based on weighted Gaussian process regression. 2018 IEEE Trans. Ind. Electron.. 65 300-308
    Paper not yet in RePEc: Add citation now
  232. Shi, J. ; Lee, W.J. ; Liu, Y. ; Yang, Y. ; Wang, P. Forecasting power output of photovoltaic systems based on weather classification and support vector machines. 2012 IEEE Trans. Ind. Appl.. 48 1064-1069
    Paper not yet in RePEc: Add citation now
  233. Si, Z. ; Yang, M. ; Yu, Y. ; Ding, T. Photovoltaic power forecast based on satellite images considering effects of solar position. 2021 Appl. Energy. 302 -

  234. Simeunovic, J. ; Schubnel, B. ; Alet, P.J. ; Carrillo, R.E. Spatio-temporal graph neural networks for multi-site PV power forecasting. 2022 IEEE Trans. Sustain. Energy. 13 1210-1220
    Paper not yet in RePEc: Add citation now
  235. Sixth Assessment Report, IPCC. https://www.ipcc.ch/assessment-report/ar6/; [accessed 7 July 2022].
    Paper not yet in RePEc: Add citation now
  236. Sobri, S. ; Koohi-Kamali, S. ; Rahim, N.A. Solar photovoltaic generation forecasting methods: a review. 2018 Energy Convers. Manag.. 156 459-497
    Paper not yet in RePEc: Add citation now
  237. Son, J. ; Park, Y. ; Lee, J. ; Kim, H. Sensorless PV power forecasting in grid-connected buildings through deep learning. 2018 Sensors. 18 2529-
    Paper not yet in RePEc: Add citation now
  238. Soubdhan, T. ; Ndong, J. ; Ould-Baba, H. ; Do, M.T. A robust forecasting framework based on the Kalman filtering approach with a twofold parameter tuning procedure: application to solar and photovoltaic prediction. 2016 Sol. Energy. 131 246-259
    Paper not yet in RePEc: Add citation now
  239. Stoyanov, L. ; Draganovska, I. Application of ANN for Forecasting of PV Plant Output Power - Case Study Oryahovo. 2021 :
    Paper not yet in RePEc: Add citation now
  240. Sun, X. ; Bright, J.M. ; Gueymard, C.A. ; Acord, B. ; Wang, P. ; Engerer, N.A. Worldwide performance assessment of 75 global clear-sky irradiance models using principal component analysis. 2019 Renew. Sustain. Energy Rev.. 111 550-570

  241. Sun, X. ; Bright, J.M. ; Gueymard, C.A. ; Bai, X. ; Acord, B. ; Wang, P. Worldwide performance assessment of 95 direct and diffuse clear-sky irradiance models using principal component analysis. 2021 Renew. Sustain. Energy Rev.. 135 -

  242. Sun, X. ; Wan, Y. Forecasting Method of Photovoltaic Output Power Based on k-means/KPCA/PSO-BP. 2018 :
    Paper not yet in RePEc: Add citation now
  243. Sun, Y. ; Venugopal, V. ; Brandt, A.R. Short-term solar power forecast with deep learning: exploring optimal input and output configuration. 2019 Sol. Energy. 188 730-741
    Paper not yet in RePEc: Add citation now
  244. Tao, C. ; Lu, J. ; Lang, J. ; Peng, X. ; Cheng, K. ; Duan, S. Short-term forecasting of photovoltaic power generation based on feature selection and bias compensation-LSTM network. 2021 Energies. 14 3086-

  245. Tao, C. ; Shanxu, D. ; Changsong, C. Forecasting power output for grid-connected photovoltaic power system without using solar radiation measurement. 2010 En : 2nd IEEE International Symposium on Power Electronics for Distributed Generation Systems. :
    Paper not yet in RePEc: Add citation now
  246. Tayab, U.B. ; Lu, J. ; Yang, F. ; AlGarni, T.S. ; Kashif, M. Energy management system for microgrids using weighted salp swarm algorithm and hybrid forecasting approach. 2021 Renew. Energy. 180 467-481

  247. Theocharides, S. ; Makrides, G. ; Livera, A. ; Theristis, M. ; Kaimakis, P. ; Georghiou, G.E. Day-ahead photovoltaic power production forecasting methodology based on machine learning and statistical post-processing. 2020 Appl. Energy. 268 -

  248. Vagropoulos, S.I. ; Chouliaras, G.I. ; Kardakos, E.G. ; Simoglou, C.K. ; Bakirtzis, A.G. Comparison of SARIMAX, SARIMA, modified SARIMA and ANN-based models for short-term PV generation forecasting. 2016 IEEE International Energy Conference, Leuven, Belgium. 1-6
    Paper not yet in RePEc: Add citation now
  249. van der Meer, D.W. ; Shepero, M. ; Svensson, A. ; Widen, J. ; Munkhammar, J. Probabilistic forecasting of electricity consumption, photovoltaic power generation and net demand of an individual building using Gaussian Processes. 2018 Appl. Energy. 213 195-207

  250. VanDeveter, W. ; Jamei, E. ; Thirunavukkarasu, G.S. ; Seyedmahmoudian, M. ; Soon, T.K. ; Horan, B. ; Mekhiled, S. ; Stojcevski, A. Short-term PV power forecasting using hybrid GASVM technique. 2019 Renew. Energy. 140 367-379

  251. Varanasi, J. ; Tripathi, M.M. K-means clustering based photovoltaic power forecasting using artificial neural network, particle swarm optimization and support vector regression. 2019 J. Inf. Optim. Sci.. 40 309-328
    Paper not yet in RePEc: Add citation now
  252. Varga, N. ; Mayer, M.J. Model-based analysis of shading losses in ground-mounted photovoltaic power plants. 2021 Sol. Energy. 216 428-438
    Paper not yet in RePEc: Add citation now
  253. Visser, L. ; AlSkaif, T. ; van Sark, W. Operational day-ahead solar power forecasting for aggregated PV systems with varying spatial distribution. 2022 Renew. Energy. 183 267-282

  254. VOSviewer software tool. https://www.vosviewer.com/. (Accessed 6 June 2022).
    Paper not yet in RePEc: Add citation now
  255. Voyant, C. ; Notton, G. ; Duchaud, J.L. ; Gutierrez, L.A.G. ; Bright, J.M. ; Yang, D. Benchmarks for solar radiation time series forecasting. 2022 Renew. Energy. 191 747-762

  256. Vrettos, E. ; Gehbauer, C. A hybrid approach for short-term PV power forecasting in predictive control applications. 2019 IEEE Milan PowerTech: Milan, Italy
    Paper not yet in RePEc: Add citation now
  257. Wan, C. ; Zhao, J. ; Song, Y. ; Xu, Z. ; Lin, J. ; Hu, Z. Photovoltaic and solar power forecasting for smart grid energy management. 2015 CSEE J Power Energy Syst. 1 38-46
    Paper not yet in RePEc: Add citation now
  258. Wang, F. ; Lu, X. ; Mei, S. ; Su, Y. ; Zhen, Z. ; Zou, Z. ; Zhang, X. ; Yin, R. ; Duic, N. ; Shafie-khah, M. ; Catalao, J.P.S. A satellite image data based ultra-short-term solar PV power forecasting method considering cloud information from neighboring plant. 2022 Energy. 238 -

  259. Wang, F. ; Xuan, Z. ; Zhen, Z. ; Li, K. ; Wang, T. ; Shi, M. A day-ahead PV power forecasting method based on LSTM-RNN model and time correlation modification under partial daily pattern prediction framework. 2020 Energy Convers Manage. 212 -
    Paper not yet in RePEc: Add citation now
  260. Wang, F. ; Zhang, Z. ; Liu, C. ; Yu, Y. ; Pang, S. ; Duic, N. ; Shafie-khah, M. ; Catalao, J.P.S. Generative adversarial networks and convolutional neural networks based weather classification model for day ahead short-term photovoltaic power forecasting. 2019 Energy Convers Manage. 181 443-462
    Paper not yet in RePEc: Add citation now
  261. Wang, F. ; Zhen, Z. ; Liu, C. ; Mi, Z. ; Hodge, B.M. ; Shafie-khah, M. ; Catalao, J.P.S. Image phase shift invariance based cloud motion displacement vector calculation method for ultra-short-term solar PV power forecasting. 2018 Energy Convers Manage. 157 123-135
    Paper not yet in RePEc: Add citation now
  262. Wang, G. ; Su, Y. ; Shu, L. One day-ahead daily forecasting of photovoltaic systems based on partial functional linear regression models. 2016 Renew. Energy. 96 469-478

  263. Wang, H. ; Sun, J. ; Wang, W. Photovoltaic power forecasting based on EEMD and a variable-weight combination forecasting model. 2018 Sustainability. 10 2627-

  264. Wang, J. ; Qian, Z. ; Wang, J. ; Pei, Y. Hour-ahead photovoltaic power forecasting using an analog plus neural network ensemble method. 2020 Energies. 13 3259-

  265. Wang, J. ; Zhou, Y. ; Li, Z. Hour-ahead photovoltaic generation forecasting method based on machine learning and multi objective optimization algorithm. 2022 Appl. Energy. 312 -

  266. Wang, K. ; Qi, X. ; Liu, H. A comparison of day-ahead photovoltaic power forecasting models based on deep learning neural network. 2019 Appl. Energy. 251 -

  267. Wang, K. ; Qi, X. ; Liu, H. Photovoltaic power forecasting based LSTM-Convolutional Network. 2019 Energy. 189 -

  268. Wang, S. ; Sun, Y. ; Zhou, Y. ; Mahfoud, R.J. ; Hou, D. A new hybrid short-term interval forecasting of PV output power based on EEMD-SE-RVM. 2020 Energies. 13 87-
    Paper not yet in RePEc: Add citation now
  269. Wang, X. ; Sun, Y. ; Luo, D. ; Peng, J. Comparative study of machine learning approaches for predicting short-term photovoltaic power output based on weather type classification. 2022 Energy. 240 -

  270. Wen, Y. ; AlHakeem, D. ; Mandal, P. ; Chakraborty, S. ; Wu, Y.K. ; Senjyu, T. ; Paudyal, S. ; Tseng, T.L. Performance evaluation of probabilistic methods based on bootstrap and quantile regression to quantify PV power point forecast uncertainty. 2020 IEEE Transact. Neural Networks Learn. Syst.. 31 1134-1144
    Paper not yet in RePEc: Add citation now
  271. Wessam, El-Baz ; Tzscheutschler, P. ; Wagner, U. Day-ahead probabilistic PV generation forecast for buildings energy management systems. 2018 Sol. Energy. 171 478-490
    Paper not yet in RePEc: Add citation now
  272. Wolff, Bjorn ; Kuhnert, J. ; Lorenz, E. ; Kramer, O. ; Heinemann, D. Comparing support vector regression for PV power forecasting to a physical modeling approach using measurement, numerical weather prediction, and cloud motion data. 2016 Sol. Energy. 135 197-208
    Paper not yet in RePEc: Add citation now
  273. Wu, Y.K. ; Chen, C.R. ; Rahman, H.A. A novel hybrid model for short-term forecasting in PV power generation. 2014 Int. J. Photoenergy. 2014 -
    Paper not yet in RePEc: Add citation now
  274. Xie, T. ; Zhang, G. ; Liu, H. ; Liu, F. ; Du, P. A hybrid forecasting method for solar output power based on variational mode decomposition, deep belief networks and auto-regressive moving average. 2018 Appl. Sci.. 8 1901-
    Paper not yet in RePEc: Add citation now
  275. Yadav, H.K. ; Pal, Y. ; Tripathi, M.M. 24-hour ahead PV power forecasting based on the univariate hybrid machine learning model. 2022 Int. J. Ambient Energy. 1-11
    Paper not yet in RePEc: Add citation now
  276. Yadav, H.K. ; Pal, Y. ; Tripathi, M.M. A novel GA-ANFIS hybrid model for short-term solar PV power forecasting in India electricity market. 2019 J. Inf. Optim. Sci.. 40 377-395
    Paper not yet in RePEc: Add citation now
  277. Yadav, H.K. ; Pal, Y. ; Tripathi, M.M. PSO tuned ANFIS model for short term photovoltaic power forecasting. 2019 Int. J. Recent Technol. Eng.. 7 937-942
    Paper not yet in RePEc: Add citation now
  278. Yadav, H.K. ; Pal, Y. ; Tripathi, M.M. Short-term PV power forecasting using empirical mode decomposition in integration with back-propagation neural network. 2020 J. Inf. Optim. Sci.. 41 25-37
    Paper not yet in RePEc: Add citation now
  279. Yadav, K.A. ; Chandel, S.S. Identification of relevant input variables for prediction of 1-minute time-step photovoltaic module power using Artificial Neural Network and Multiple Linear Regression Models. 2017 Renewable Sustainable Energy Rev.. 77 955-969

  280. Yan, J. ; Hu, L. ; Zhen, Z. ; Wang, F. ; Qiu, G. ; Li, Y. ; Yao, L. ; Shafie-khah, M. ; Catalao, J.P.S. Frequency-domain decomposition and deep learning based solar PV power ultra-short-term forecasting model. 2021 IEEE Trans. Ind. Appl.. 57 3282-3295
    Paper not yet in RePEc: Add citation now
  281. Yang, D. A guideline to solar forecasting research practice: Reproducible, operational, probabilistic or physically-based, ensemble, and skill (ROPES). 2019 J. Renew. Sustain. Energy. 11 -
    Paper not yet in RePEc: Add citation now
  282. Yang, D. Making reference solar forecasts with climatology, persistence, and their optimal convex combination. 2019 Sol. Energy. 193 981-985
    Paper not yet in RePEc: Add citation now
  283. Yang, D. Standard of reference in operational day-ahead deterministic solar forecasting. 2019 J. Renew. Sustain. Energy. 11 -
    Paper not yet in RePEc: Add citation now
  284. Yang, D. ; Dong, Z. Operational photovoltaics power forecasting using seasonal time series ensemble. 2018 Sol. Energy. 166 529-541
    Paper not yet in RePEc: Add citation now
  285. Yang, D. ; Quan, H. ; Disfani, V.R. ; Liu, L. Reconciling solar forecast: geographical hierarchy. 2017 Sol. Energy. 146 276-286
    Paper not yet in RePEc: Add citation now
  286. Yang, D. ; Wang, W. ; Gueymard, C.A. ; Hong, T. ; Kleissl, J. ; Huang, J. ; Perez, M.J. ; Perez, R. ; Bright, J.M. ; Xia, X.A. ; van der Meer, D. A review of solar forecasting, its dependence on atmospheric sciences and implications for grid integration: towards carbon neutrality. 2022 Renew. Sustain. Energy Rev.. 161 -

  287. Yang, D. ; Wu, E. ; Kleissl, J. Operational solar forecasting for the real-time market. 2019 Int. J. Forecast.. 35 1499-1519

  288. Yang, H.T. ; Huang, C.M. ; Huang, Y.C. ; Pai, Y.S. A weather-based hybrid method for 1-day ahead hourly forecasting of PV power output. 2014 IEEE Trans. Sustain. Energy. 5 917-926
    Paper not yet in RePEc: Add citation now
  289. Yu, D. ; Choi, W. ; Kim, M. ; Liu, L. Forecasting day-ahead hourly photovoltaic power generation using convolutional self-attention based long short-term memory. 2020 Energies. 13 4017-

  290. Zamo, M. ; Mestre, O. ; Arbogast, P. ; Pannekoucke, O. A benchmark of statistical regression methods for short-term forecasting of photovoltaic electricity production, part I: deterministic forecast of hourly production. 2014 Sol. Energy. 105 792-803
    Paper not yet in RePEc: Add citation now
  291. Zamo, M. ; Mestre, O. ; Arbogast, P. ; Pannekoucke, O. A benchmark of statistical regression methods for short-term forecasting of photovoltaic electricity production, part II: probabilistic forecast of daily production. 2014 Sol. Energy. 105 804-816
    Paper not yet in RePEc: Add citation now
  292. Zang, H. ; Cheng, L. ; Ding, T. ; Cheung, K.W. ; Wei, Z. ; Sun, G. Day-ahead photovoltaic power forecasting approach based on deep convolutional neural networks and meta learning. 2020 Int J Electr Power Syst. 118 -
    Paper not yet in RePEc: Add citation now
  293. Zhang, J. ; Hodge, B.M. ; Lu, S. ; Hamamm, H.F. ; Lehman, B. ; Simmons, J. ; Campos, E. ; Banunarayanan, V. ; Black, J. ; Tedesco, J. Baseline and target values for regional and point PV power forecasts: toward improved solar forecasting. 2015 Sol. Energy. 122 804-819
    Paper not yet in RePEc: Add citation now
  294. Zhang, J. ; Verschae, R. ; Nobuhara, S. ; Lalonde, J.F. Deep photovoltaic nowcasting. 2018 Sol. Energy. 176 267-276
    Paper not yet in RePEc: Add citation now
  295. Zhang, N. ; Ren, Q. ; Liu, G. ; Guo, L. ; Li, J. Short-term PV output power forecasting based on CEEMDAN-AE-GRU. 2022 J Electr Eng Technol. 17 1183-1194
    Paper not yet in RePEc: Add citation now
  296. Zhao, W. ; Zhang, H. ; Zheng, J. ; Dai, Y. ; Huang, L. ; Shang, W. ; Liang, Y. A point prediction method based automatic machine learning for day-ahead power output of multi-region photovoltaic plants. 2021 Energy. 223 -

  297. Zhen, H. ; Niu, D. ; Wang, K. ; Shi, Y. ; Ji, Z. ; Xu, X. Photovoltaic power forecasting based on GA improved Bi-LTSM in microgrid without meteorological information. 2021 Energy. 231 -
    Paper not yet in RePEc: Add citation now
  298. Zheng, S. ; Shahzad, M. ; Asif, H.M. ; Gao, J. ; Muqeet, H.A. Advanced optimizer for maximum power point tracking of photovoltaic systems in smart grid: a roadmap towards clean energy technologies. 2023 Renew. Energy. 206 1326-1335

  299. Zhou, H. ; Zhang, Y. ; Yang, L. ; Liu, Q. ; Yan, K. ; Du, Y. Short-term photovoltaic power forecasting based on long short term memory neural network and attention mechanism. 2019 IEEE. -
    Paper not yet in RePEc: Add citation now
  300. Zhou, Y. ; Zhou, N. ; Gong, L. ; Jiang, M. Prediction of photovoltaic power output based on similar day analysis, genetic algorithm and extreme learning machine. 2020 Energy. 204 -

  301. Ziane, A. ; Necaibia, A. ; Sahouane, N. ; Dabou, R. ; Mostefaoui, M. ; Bouraiou, A. ; Khelifi, S. ; Rouabhia, A. ; Blal, M. Photovoltaic output power performance assessment and forecasting: impact of meteorological variables. 2021 Sol. Energy. 220 745-757
    Paper not yet in RePEc: Add citation now
  302. Zjavka, L. Photovoltaic energy all-day and intra-day forecasting using node by node developed polynomial networks forming PDE models based on the L-transformation. 2021 Energies. 14 7581-

Cocites

Documents in RePEc which have cited the same bibliography

  1. A Hybrid Framework for Photovoltaic Power Forecasting Using Shifted Windows Transformer-Based Spatiotemporal Feature Extraction. (2025). Zhao, Weisheng ; Tang, Ping ; Su, Ying ; Song, Jifeng ; Zou, Lianglin ; Wang, Qian.
    In: Energies.
    RePEc:gam:jeners:v:18:y:2025:i:12:p:3193-:d:1681594.

    Full description at Econpapers || Download paper

  2. Electricity demand uncertainty modeling with Temporal Convolution Neural Network models. (2025). Acharya, Rajendra ; Dinh, Toan ; Deo, Ravinesh C ; Ghimire, Sujan ; Salcedo-Sanz, Sancho ; Casillas-Prez, David.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:209:y:2025:i:c:s1364032124008232.

    Full description at Econpapers || Download paper

  3. WNPS-LSTM-Informer: A Hybrid Stacking model for medium-term photovoltaic power forecasting with ranked feature selection. (2025). Liu, Gang ; Cao, Yisheng ; Chen, Jiawei ; Gang, Xiao ; Tang, Jianchao.
    In: Renewable Energy.
    RePEc:eee:renene:v:244:y:2025:i:c:s0960148125003490.

    Full description at Econpapers || Download paper

  4. CRAformer: A cross-residual attention transformer for solar irradiation multistep forecasting. (2025). Tai, Yonghang ; Cheng, Feiyan ; Li, Chengli ; Huang, Xiaoqiao ; Zhang, Zongbin.
    In: Energy.
    RePEc:eee:energy:v:320:y:2025:i:c:s0360544225008564.

    Full description at Econpapers || Download paper

  5. An efficient approach for regional photovoltaic power forecasting optimization based on texture features from satellite images and transfer learning. (2025). Mei, Fei ; Taylor, Gareth ; Gao, Ang ; Zheng, Jianyong ; Xie, Yang.
    In: Applied Energy.
    RePEc:eee:appene:v:385:y:2025:i:c:s0306261925002351.

    Full description at Econpapers || Download paper

  6. Embedding the weather prediction errors (WPE) into the photovoltaic (PV) forecasting method using deep learning. (2024). Oprea, Simonavasilica ; Bara, Adela.
    In: Journal of Forecasting.
    RePEc:wly:jforec:v:43:y:2024:i:5:p:1173-1198.

    Full description at Econpapers || Download paper

  7. Gold price prediction by a CNN-Bi-LSTM model along with automatic parameter tuning. (2024). Kalantari, Robab ; Amini, Amirhossein.
    In: PLOS ONE.
    RePEc:plo:pone00:0298426.

    Full description at Econpapers || Download paper

  8. Research on Factors Influencing Global Carbon Emissions and Forecasting Models. (2024). Ji, Ruizhi.
    In: Sustainability.
    RePEc:gam:jsusta:v:16:y:2024:i:23:p:10782-:d:1539749.

    Full description at Econpapers || Download paper

  9. A model for energy predictions and diagnostics of large-scale photovoltaic systems based on electric data and thermal imaging of the PV fields. (2024). Delucchi, Lorenzo ; Fossa, Marco ; Parenti, Mattia.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:206:y:2024:i:c:s1364032124005847.

    Full description at Econpapers || Download paper

  10. Hybrid solar irradiance nowcasting and forecasting with the SCOPE method and convolutional neural networks. (2024). Liao, Zhouyi.
    In: Renewable Energy.
    RePEc:eee:renene:v:232:y:2024:i:c:s0960148124011236.

    Full description at Econpapers || Download paper

  11. A cross-sectional survey of deterministic PV power forecasting: Progress and limitations in current approaches. (2024). Mares, Oana ; Stefu, Nicoleta ; Paulescu, Marius ; Calinoiu, Delia ; Sabadus, Andreea ; Badescu, Viorel ; Hategan, Sergiu-Mihai ; Blaga, Robert ; Boata, Remus.
    In: Renewable Energy.
    RePEc:eee:renene:v:226:y:2024:i:c:s0960148124004506.

    Full description at Econpapers || Download paper

  12. Minutely multi-step irradiance forecasting based on all-sky images using LSTM-InformerStack hybrid model with dual feature enhancement. (2024). Chen, Zaiqing ; Tai, Yonghang ; Huang, Xiaoqiao ; Xu, Shaozhen ; Liu, Jun.
    In: Renewable Energy.
    RePEc:eee:renene:v:224:y:2024:i:c:s0960148124002003.

    Full description at Econpapers || Download paper

  13. A novel bimodal feature fusion network-based deep learning model with intelligent fusion gate mechanism for short-term photovoltaic power point-interval forecasting. (2024). Luo, Xing-Fu ; Qiang, Xiao-Yong ; Chen, Xiao-Rui ; Zhang, Shu-Rui ; Kang, Qing ; You, Guo-Dong ; Liu, Zhi-Feng ; Huang, Ya-He.
    In: Energy.
    RePEc:eee:energy:v:303:y:2024:i:c:s0360544224017201.

    Full description at Econpapers || Download paper

  14. Multi-step power forecasting for regional photovoltaic plants based on ITDE-GAT model. (2024). Li, Teng ; Liu, Jincheng.
    In: Energy.
    RePEc:eee:energy:v:293:y:2024:i:c:s0360544224002391.

    Full description at Econpapers || Download paper

  15. Multistage spatio-temporal attention network based on NODE for short-term PV power forecasting. (2024). Huang, Songtao ; Zhou, Qingguo ; Shen, Jun ; Yong, Binbin.
    In: Energy.
    RePEc:eee:energy:v:290:y:2024:i:c:s0360544224000793.

    Full description at Econpapers || Download paper

  16. Hybrid ultra-short-term PV power forecasting system for deterministic forecasting and uncertainty analysis. (2024). Yu, Yue ; Wang, Jianzhou ; Lu, Haiyan ; Zeng, BO.
    In: Energy.
    RePEc:eee:energy:v:288:y:2024:i:c:s0360544223032929.

    Full description at Econpapers || Download paper

  17. Short-term photovoltaic power forecasting based on multiple mode decomposition and parallel bidirectional long short term combined with convolutional neural networks. (2024). Li, Yulin ; Chen, Yilin ; Liu, Qian ; Zhang, Jiang ; Jiang, Hang.
    In: Energy.
    RePEc:eee:energy:v:286:y:2024:i:c:s0360544223029742.

    Full description at Econpapers || Download paper

  18. From irregular to continuous: The deep Koopman model for time series forecasting of energy equipment. (2024). Wang, Xiaofang ; Xie, Rong ; Zhao, PU ; Ding, Jiaqi ; Liu, Haitao.
    In: Applied Energy.
    RePEc:eee:appene:v:364:y:2024:i:c:s030626192400521x.

    Full description at Econpapers || Download paper

  19. De-Trend First, Attend Next: A Mid-Term PV forecasting system with attention mechanism and encoder–decoder structure. (2024). Zhang, Ziyuan ; Niu, Yunbo ; Luo, Tianrui ; Liu, Jingjiang ; Wang, Jianzhou.
    In: Applied Energy.
    RePEc:eee:appene:v:353:y:2024:i:pb:s0306261923015337.

    Full description at Econpapers || Download paper

  20. Assessing ARIMA-Based Forecasts for the Percentage of Renewables in Germany: Insights and Lessons for the Future. (2023). Basmadjian, Robert ; Shaafieyoun, Amirhossein.
    In: Energies.
    RePEc:gam:jeners:v:16:y:2023:i:16:p:6005-:d:1218534.

    Full description at Econpapers || Download paper

  21. Energy consumption and carbon emissions forecasting for industrial processes: Status, challenges and perspectives. (2023). Hu, Yusha ; Man, YI.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:182:y:2023:i:c:s1364032123002629.

    Full description at Econpapers || Download paper

  22. A unified multi-step wind speed forecasting framework based on numerical weather prediction grids and wind farm monitoring data. (2023). Zhou, Yue ; Liu, Xingdou ; Gan, Wei ; Zhang, LI ; Wang, Jiangong.
    In: Renewable Energy.
    RePEc:eee:renene:v:211:y:2023:i:c:p:948-963.

    Full description at Econpapers || Download paper

  23. A novel cyber-Resilient solar power forecasting model based on secure federated deep learning and data visualization. (2023). Vale, Zita ; Ghorbani, Reza ; Moayyed, Hamed ; Ramos, Carlos ; Mohammadi-Ivatloo, Behnam ; Moradzadeh, Arash.
    In: Renewable Energy.
    RePEc:eee:renene:v:211:y:2023:i:c:p:697-705.

    Full description at Econpapers || Download paper

  24. A comprehensive approach for PV wind forecasting by using a hyperparameter tuned GCVCNN-MRNN deep learning model. (2023). Ling, Qiang ; Usman, Muhammad ; Mansoor, Majad ; Mirza, Adeel Feroz.
    In: Energy.
    RePEc:eee:energy:v:283:y:2023:i:c:s0360544223025835.

    Full description at Econpapers || Download paper

  25. Memory long and short term time series network for ultra-short-term photovoltaic power forecasting. (2023). Yang, Mengyuan ; Huang, Congzhi.
    In: Energy.
    RePEc:eee:energy:v:279:y:2023:i:c:s0360544223013555.

    Full description at Econpapers || Download paper

  26. Historical PV-output characteristic extraction based weather-type classification strategy and its forecasting method for the day-ahead prediction of PV output. (2023). Sun, Xinyu ; Guo, Siqi ; Zheng, Lingwei.
    In: Energy.
    RePEc:eee:energy:v:271:y:2023:i:c:s0360544223004036.

    Full description at Econpapers || Download paper

  27. A cascaded deep learning framework for photovoltaic power forecasting with multi-fidelity inputs. (2023). Luo, Xing ; Zhang, Dongxiao.
    In: Energy.
    RePEc:eee:energy:v:268:y:2023:i:c:s0360544223000300.

    Full description at Econpapers || Download paper

  28. Outlet water temperature prediction of energy pile based on spatial-temporal feature extraction through CNN–LSTM hybrid model. (2023). Bao, Xiaohua ; Zhang, Weiyi ; Cui, Hongzhi ; Zhou, Haiyang.
    In: Energy.
    RePEc:eee:energy:v:264:y:2023:i:c:s0360544222030766.

    Full description at Econpapers || Download paper

  29. Machine Learning and Deep Learning in Energy Systems: A Review. (2022). Zahedi, Rahim ; Forootan, Mohammad Mahdi ; Larki, Iman ; Ahmadi, Abolfazl.
    In: Sustainability.
    RePEc:gam:jsusta:v:14:y:2022:i:8:p:4832-:d:796121.

    Full description at Econpapers || Download paper

  30. PFVAE: A Planar Flow-Based Variational Auto-Encoder Prediction Model for Time Series Data. (2022). Bai, Yu-Ting ; Jin, Xue-Bo ; Gong, Wen-Tao ; Su, Ting-Li ; Kong, Jian-Lei.
    In: Mathematics.
    RePEc:gam:jmathe:v:10:y:2022:i:4:p:610-:d:751227.

    Full description at Econpapers || Download paper

  31. Deep Learning Model for Global Spatio-Temporal Image Prediction. (2022). Ramadani, Uzahir R ; Mirkov, Nikola S ; Lazovi, Ivan M ; Radivojevi, Duan S ; Nikezi, Duan P.
    In: Mathematics.
    RePEc:gam:jmathe:v:10:y:2022:i:18:p:3392-:d:918568.

    Full description at Econpapers || Download paper

  32. Short-Term Solar Power Predicting Model Based on Multi-Step CNN Stacked LSTM Technique. (2022). Hasan, Shazia ; Michael, Neethu Elizabeth ; Mishra, Manohar ; Al-Durra, Ahmed.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:6:p:2150-:d:771767.

    Full description at Econpapers || Download paper

  33. Automatic Monitoring System for Online Module-Level Fault Detection in Grid-Tied Photovoltaic Plants. (2022). Thanikanti, Sudhakar Babu ; Krishna, Siva Rama ; Satpathy, Priya Ranjan ; Aljafari, Belqasem ; Ayodele, Bamidele Victor.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:20:p:7789-:d:948939.

    Full description at Econpapers || Download paper

  34. Wind Power Generation Forecast Based on Multi-Step Informer Network. (2022). Huang, Xiaohan ; Jiang, Aihua.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:18:p:6642-:d:912223.

    Full description at Econpapers || Download paper

  35. The Economic Viability of PV Power Plant Based on a Neural Network Model of Electricity Prices Forecast: A Case of a Developing Market. (2022). Urii, Vladimir ; Rogi, Sunica ; Mini, Nikola ; Jovovi, Jelena ; Pejovi, Bojan.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:17:p:6219-:d:898525.

    Full description at Econpapers || Download paper

  36. Photovoltaic power forecasting: A hybrid deep learning model incorporating transfer learning strategy. (2022). Zhang, Zhen ; Tang, Yugui ; Yang, Kuo.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:162:y:2022:i:c:s1364032122003781.

    Full description at Econpapers || Download paper

  37. Combined model predictive control and ANN-based forecasters for jointly acting renewable self-consumers: An environmental and economical evaluation. (2022). Negri, Simone ; Blasuttigh, Nicola ; Giani, Federico ; Tironi, Enrico ; Pavan, Alessandro Massi ; Mellit, Adel.
    In: Renewable Energy.
    RePEc:eee:renene:v:198:y:2022:i:c:p:440-454.

    Full description at Econpapers || Download paper

  38. Evolutionary quantile regression gated recurrent unit network based on variational mode decomposition, improved whale optimization algorithm for probabilistic short-term wind speed prediction. (2022). Peng, Tian ; Nazir, Muhammad Shahzad ; Hua, Lei ; Ma, Huixin ; Zhang, Chu ; Ji, Chunlei.
    In: Renewable Energy.
    RePEc:eee:renene:v:197:y:2022:i:c:p:668-682.

    Full description at Econpapers || Download paper

  39. Physics-informed deep learning model in wind turbine response prediction. (2022). Li, Xuan ; Zhang, Wei.
    In: Renewable Energy.
    RePEc:eee:renene:v:185:y:2022:i:c:p:932-944.

    Full description at Econpapers || Download paper

  40. Techno-economic analysis and energy forecasting study of domestic and commercial photovoltaic system installations in Estonia. (2022). Husev, Oleksandr ; Shabbir, Noman ; Jawad, Muhammad ; Kutt, Lauri ; Raja, Hadi A ; Allik, Alo.
    In: Energy.
    RePEc:eee:energy:v:253:y:2022:i:c:s0360544222010593.

    Full description at Econpapers || Download paper

  41. A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. (2022). Han, Yan ; Mi, Lihua ; Shen, Lian ; Li, Kai ; Xu, Guoji ; Cai, C S ; Liu, Yuchen.
    In: Applied Energy.
    RePEc:eee:appene:v:312:y:2022:i:c:s0306261922002264.

    Full description at Econpapers || Download paper

  42. Demand Forecasting of E-Commerce Enterprises Based on Horizontal Federated Learning from the Perspective of Sustainable Development. (2021). Cui, Tianxu ; Yuan, Ruiping ; Li, Mengtao ; He, Liyan ; Yang, Kaiwen.
    In: Sustainability.
    RePEc:gam:jsusta:v:13:y:2021:i:23:p:13050-:d:687716.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-09-29 23:33:05 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.