create a website

Advancing global solar photovoltaic power forecasting with sub-seasonal climate outlooks. (2024). Lee, Seungjik ; Son, Seok-Woo ; Choi, Jung ; Park, Sangdae.
In: Renewable Energy.
RePEc:eee:renene:v:237:y:2024:i:pc:s0960148124018718.

Full description at Econpapers || Download paper

Cited: 0

Citations received by this document

Cites: 56

References cited by this document

Cocites: 50

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

    This document has not been cited yet.

References

References cited by this document

  1. Ahmed, R. ; Sreeram, V. ; Mishra, Y. ; Arif, M.D. A review and evaluation of the state-of-the-art in PV solar power forecasting: techniques and optimization. 2020 Renew. Sustain. Energy Rev.. 124 -

  2. Alanazi, M. ; Alanazi, A. ; Khodaei, A. Long-term solar generation forecasting. 2016 En : 2016 IEEE/PES Transmission and Distribution Conference and Exposition (T&D). :
    Paper not yet in RePEc: Add citation now
  3. Alcañiz, A. ; Grzebyk, D. ; Ziar, H. ; Isabella, O. Trends and gaps in photovoltaic power forecasting with machine learning. 2023 Energy Rep.. 9 447-471
    Paper not yet in RePEc: Add citation now
  4. AlKandari, M. ; Ahmad, I. I. Solar power generation forecasting using ensemble approach based on deep learning and statistical methods. 2024 Appl. Comput. Inform.. 20 231-250
    Paper not yet in RePEc: Add citation now
  5. Antonanzas, J. ; Osorio, N. ; Escobar, R. ; Urraca, R. ; Martinez-de-Pison, F.J. ; Antonanzas-Torres, F. Review of photovoltaic power forecasting. 2016 Sol. Energy. 136 78-111
    Paper not yet in RePEc: Add citation now
  6. Belmahdi, B. ; Louzazni, M. ; El Bouardi, A. One month-ahead forecasting of mean daily global solar radiation using time series models. 2020 Optik. 219 -
    Paper not yet in RePEc: Add citation now
  7. Bett, P.E. A simplified seasonal forecasting strategy, applied to wind and solar power in Europe. 2022 Climate Services. 27 -
    Paper not yet in RePEc: Add citation now
  8. Bett, P.E. ; Thornton, H.E. The climatological relationships between wind and solar energy supply in Britain. 2016 Renew. Energy. 87 96-110

  9. Bloomfield, H.C. ; Brayshaw, D.J. ; Gonzalez, P.L.M. ; Charlton-Perez, A. Sub-seasonal forecasts of demand and wind power and solar power generation for 28 European countries. 2021 Earth Syst. Sci. Data. 13 2259-2274
    Paper not yet in RePEc: Add citation now
  10. Chinta, V. ; Song, G. ; Zhang, W. Validation of the medium-range and sub-seasonal forecast of solar irradiance and wind speed using ECMWF. 2023 Energy Rep.. 10 3908-3913
    Paper not yet in RePEc: Add citation now
  11. Choi, J. ; Son, S.-W. Seasonal-to-decadal prediction of el nino-southern oscillation and pacific decadal oscillation. 2022 npj Climate and Atmospheric Science. 5 29-
    Paper not yet in RePEc: Add citation now
  12. Craig, M.T. ; Wohland, J. ; Stoop, L.P. ; Kies, A. ; Pickering, B. ; Bloomfield, H.C. Overcoming the disconnect between energy system and climate modeling. 2022 Joule. 6 1405-1417
    Paper not yet in RePEc: Add citation now
  13. Das, A. ; Roy, S.B. Evaluation of subseasonal to seasonal forecasts over India for renewable energy applications. 2021 Adv. Geosci.. 56 89-96
    Paper not yet in RePEc: Add citation now
  14. Das, A. ; Roy, S.B. Evaluation of subseasonal to seasonal forecasts over India for renewable energy applications. 2021 Adv. Geosci.. 56 89-96
    Paper not yet in RePEc: Add citation now
  15. De Felice, M. ; Soares, M.B. ; Alessandri, A. ; Troccoli, A. Scoping the potential usefulness of seasonal climate forecasts for solar power management. 2015 Renew. Energy. 142 215-233
    Paper not yet in RePEc: Add citation now
  16. Gaboitaolelwe, J. ; Zungeru, A.M. ; Yahya, A. ; Lebekwe, C.K. ; Vinod, D.N. ; Salau, A.O. Machine learning based solar photovoltaic power forecasting: a review and comparison. 2023 IEEE Access. 11 40820-40845
    Paper not yet in RePEc: Add citation now
  17. Gandoman, F.H. ; Raeisi, F. ; Ahmadi, A. A literature review on estimating of PV-array hourly power under cloudy weather conditions. 2016 Renew. Sustain. Energy Rev.. 63 579-592

  18. Goddard, L. A verification framework for interannual-to-decadal predictions experiments. 2013 Clim. Dynam.. 40 245-272
    Paper not yet in RePEc: Add citation now
  19. Gupta, A.S. ; Jourdain, N.C. ; Brown, J.N. ; Monselesan, D. Climate drift in the CMIP5 models. 2023 J. Clim.. 26 8597-8615
    Paper not yet in RePEc: Add citation now
  20. Han, J.-Y. ; Kim, S.-W. ; Park, C.-H. ; Son, S.-W. Ensemble size versus bias correction effects in subseasonal-to-seasonal (S2S) forecasts. 2023 Geoscience Letters. 10 37-
    Paper not yet in RePEc: Add citation now
  21. Hersbach, H. The ERA5 global reanalysis. 2020 Q. J. R. Meteorol. Soc.. 146 1999-2049
    Paper not yet in RePEc: Add citation now
  22. Hu, Z. ; Gao, Y. ; Ji, S. ; Mae, M. ; Imaizumi, T. Improved multistep ahead photovoltaic power prediction model based on LSTM and self-attention with weather forecast data. 2024 Appl. Energy. 359 -

  23. IEA Renewables 2023: Analysis and Forecast to 2028. 2024 International Energy Agency:
    Paper not yet in RePEc: Add citation now
  24. IEA, Renewable Energy Progress Tracker Explore Electricity, Heat and Transport Data from Renewables 2023 and Renewables Ambitions by 2030. 2024 International Energy Agency:
    Paper not yet in RePEc: Add citation now
  25. Jerez, S. The impact of climate change on photovoltaic power generation in Europe. 2015 Nat. Commun.. 6 -

  26. Jimenez, P. WRF-SOLAR: description and clear-sky assessment of an augmented NWP model for solar power prediction. 2018 Bull. Am. Meteorol. Soc.. 97 1249-1264
    Paper not yet in RePEc: Add citation now
  27. Li, H. ; Ren, Z. ; Xu, Y. ; Li, W. ; Hu, B. A multi-data driven hybrid learning method for weekly photovoltaic power scenario forecast. 2022 IEEE Trans. Sustain. Energy. 13 91-100
    Paper not yet in RePEc: Add citation now
  28. Li, J. ; Huang, J. The expansion of China's solar energy: challenges and policy options. 2020 Renew. Sustain. Energy Rev.. 132 -

  29. Lin, K.-P. ; Pai, P.-F. Solar power output forecasting using evolutionary seasonal decomposition least-square support vector regression. 2016 J. Clean. Prod.. 134 456-462
    Paper not yet in RePEc: Add citation now
  30. Lin, K.-P. ; Pai, P.-F. Solar power output forecasting using evolutionary seasonal decomposition least-square support vector regression. 2016 J. Clean. Prod.. 134 456-462
    Paper not yet in RePEc: Add citation now
  31. Liu, B. ; Yang, D. ; Mayer, M.J. ; Coimbra, C.F.M. ; Kleissl, J. ; Kay, M. Predictability and forecast skill of solar irradiance over the contiguous United States. 2023 Renew. Sustain. Energy Rev.. 182 -

  32. Magana-Gonzalez, R.C. ; Rodriguez-Hernandez, O. ; Canul-Reyes, D.A. Analysis of seasonal variability and complementarity of wind and solar resources in Mexico. 2023 Sustain. Energy Technol. Assessments. 60 -
    Paper not yet in RePEc: Add citation now
  33. Manzanas, R. Assessment of model drifts in seasonal forecasting: sensitivity to ensemble size and implications for bias correction. 2020 J. Adv. Model. Earth Syst.. 12 -
    Paper not yet in RePEc: Add citation now
  34. Markovics, D. ; Mayer, M.J. Comparison of machine learning methods for photovoltaic power forecasting based on numerical weather prediction. 2022 Renew. Sustain. Energy Rev.. 161 -
    Paper not yet in RePEc: Add citation now
  35. Mayer, M.J. Benefits of physical and machine learning hybridization for photovoltaic power forecasting. 2022 Renew. Sustain. Energy Rev.. 168 -

  36. Mayer, M.J. ; Gróf, G. Extensive comparison of physical models for photovoltaic power forecasting. 2021 Appl. Energy. 283 -

  37. Mayer, M.J. ; Yang, D. Calibration of deterministic NWP forecasts and its impact on verification. 2023 Int. J. Forecast.. 39 981-991

  38. Mayer, M.J. ; Yang, D. ; Szintai, B. Comparing global and regional downscaled NWP models for irradiance and photovoltaic power forecasting: ECMWF versus AROME. 2023 Appl. Energy. 352 -

  39. MOTIE 11th basic electricity supply and demand plan working plan released. 2024 En : Ministry of Trade, Industry, and Energy, Republic of Korea. :
    Paper not yet in RePEc: Add citation now
  40. MOTIE, The 10th basic plan for electricity supply and demand, Ministry of Trade, Industry, and Energy, Republic of Korea (2023) (in Korean) https://www.motie.go.kr/kor/article/ATCLc01b2801b/68162/view.
    Paper not yet in RePEc: Add citation now
  41. Nie, Y. ; Li, X. ; Paletta, Q. ; Aragon, M. ; Scott, A. ; Brandt, A. Open-source sky image datasets for solar forecasting with deep learning: a comprehensive survey. 2024 Renew. Sustain. Energy Rev.. 189 -

  42. Prasad, R. ; Ali, M. ; Xiang, Y. ; Khan, H. A double decomposition-based modelling approach to forecast weekly solar radiation. 2020 Renew. Energy. 152 9-22

  43. Prema, V. ; Rao, K.U. Development of statistical time series models for solar power prediction. 2015 Renew. Energy. 83 100-109

  44. Rahimi, N. ; Park, S. ; Choi, W. ; Oh, B. ; Kim, S. ; Choi, Y.-H. A comprehensive review on ensemble solar power forecasting algorithms. 2023 J. Electr. Eng. Technol.. 18 719-733
    Paper not yet in RePEc: Add citation now
  45. Sabadus, A. A cross-sectional survey of deterministic PV power forecasting: progress and limitations in current approaches. 2024 Renew. Energy. 226 -

  46. Sheoran, S. ; Singh, R.S. ; Pasari, S. ; Kulshrestha, R. Forecasting of solar irradiances using time series and machine learning models: a case study from India. 2022 Appl. Sol. Energy. 58 137-151
    Paper not yet in RePEc: Add citation now
  47. Sobri, S. ; Koohi-Kamali, S. ; Rahim, N. Abd Solar photovoltaic generation forecasting methods: a review. 2018 Energy Convers. Manag.. 156 459-497
    Paper not yet in RePEc: Add citation now
  48. Tapiador, F.J. Assessment of renewable energy potential through satellite data and numerical models. 2009 Energy Environ. Sci.. 2 1142-1161
    Paper not yet in RePEc: Add citation now
  49. UNFCCC Project 2684: Gimcheon PV Power Plant Site 2 CDM Project. 2009 Samsung C&T Corporation Gimcheon Solar Power Plant:
    Paper not yet in RePEc: Add citation now
  50. Vitart, F. ; Ardilouze, C. ; Bonet, A. ; Brookshaw, A. ; Chen, M. ; Codorean, C. The sub-seasonal to seasonal (S2S) prediction project database. 2017 Bull. Am. Meteorol. Soc.. 98 163-176
    Paper not yet in RePEc: Add citation now
  51. Voyant, C. Machine learning methods for solar radiation forecasting: a review. 2017 Renew. Energy. 105 569-582

  52. Wilks, D.S. Statistical Methods in the Atmospheric Sciences. 2020 Elsevier:
    Paper not yet in RePEc: Add citation now
  53. Williams, K.D. The Met Office global coupled model 3.0 and 3.1 (GC3.0 and GC3.1) configurations. 2018 J. Adv. Model. Earth Syst.. 10 357-380
    Paper not yet in RePEc: Add citation now
  54. Yang, D. A guideline to solar forecasting research practice: reproducible, operational, probabilistic or physically-based, ensemble, and skill (ROPES). 2019 J. Renew. Sustain. Energy. 11 -
    Paper not yet in RePEc: Add citation now
  55. Zamo, M. ; Mestre, O. ; Arbogast, P. ; Pannekoucke, O. A benchmark of statistical regression methods for short-term forecasting of photovoltaic electricity production, part I: deterministic forecast of hourly production. 2014 Sol. Energy. 105 792-803
    Paper not yet in RePEc: Add citation now
  56. Zhang, J. ; Verschae, R. ; Nobuhara, S. ; Lalonde, J.-F. Deep photovoltaic nowcasting. 2018 Sol. Energy. 176 267-276
    Paper not yet in RePEc: Add citation now

Cocites

Documents in RePEc which have cited the same bibliography

  1. Cloud Cover Forecast Based on Correlation Analysis on Satellite Images for Short-Term Photovoltaic Power Forecasting. (2022). Son, Yongju ; Yoon, Yeunggurl ; Choi, Sungyun.
    In: Sustainability.
    RePEc:gam:jsusta:v:14:y:2022:i:8:p:4427-:d:789392.

    Full description at Econpapers || Download paper

  2. Parameter Evaluation in Motion Estimation for Forecasting Multiple Photovoltaic Power Generation. (2022). Kameda, Yusuke ; Kure, Taiki ; Kondoh, Junji ; Yamamoto, Hiroki ; Tsuchiya, Haruka Danil ; Kodaira, Daisuke.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:8:p:2855-:d:793339.

    Full description at Econpapers || Download paper

  3. Advanced Forecasting Methods of 5-Minute Power Generation in a PV System for Microgrid Operation Control. (2022). Kapler, Piotr ; Piotrowski, Pawe ; Parol, Mirosaw ; Fetliski, Bartosz.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:7:p:2645-:d:786857.

    Full description at Econpapers || Download paper

  4. Robust Scheduling of Networked Microgrids for Economics and Resilience Improvement. (2022). Ollis, Thomas B ; Ferrari, Maximiliano F ; Tomsovic, Kevin ; Liu, Guodong ; Sundararajan, Aditya.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:6:p:2249-:d:774811.

    Full description at Econpapers || Download paper

  5. Comparison of machine learning methods for photovoltaic power forecasting based on numerical weather prediction. (2022). Mayer, Martin Janos ; Markovics, David.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:161:y:2022:i:c:s136403212200274x.

    Full description at Econpapers || Download paper

  6. A review of behind-the-meter solar forecasting. (2022). Doubleday, Kate ; Feng, Cong ; Erdener, Burcin Cakir ; Hodge, Bri-Mathias ; Florita, Anthony.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:160:y:2022:i:c:s1364032122001472.

    Full description at Econpapers || Download paper

  7. Analysis of data errors in the solar photovoltaic monitoring system database: An overview of nationwide power plants in Korea. (2022). Cha, Suk-Won ; Choi, Jongwoo ; Lee, Il-Woo.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:156:y:2022:i:c:s1364032121012703.

    Full description at Econpapers || Download paper

  8. The uncertainties involved in measuring national solar photovoltaic electricity generation. (2022). Tilley, K ; Taylor, J ; Harwood, J ; Briggs, J ; Everard, A ; Buckley, A ; Huxley, O T.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:156:y:2022:i:c:s1364032121012636.

    Full description at Econpapers || Download paper

  9. A review of very short-term wind and solar power forecasting. (2022). Tawn, R ; Browell, J.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:153:y:2022:i:c:s1364032121010285.

    Full description at Econpapers || Download paper

  10. Time series forecasting for hourly photovoltaic power using conditional generative adversarial network and Bi-LSTM. (2022). Tai, Yonghang ; Huang, Xiaoqiao ; Liu, Wuming ; Shi, Junsheng ; Chen, Zaiqing.
    In: Energy.
    RePEc:eee:energy:v:246:y:2022:i:c:s0360544222003061.

    Full description at Econpapers || Download paper

  11. Improved solar photovoltaic energy generation forecast using deep learning-based ensemble stacking approach. (2022). Zeiler, Wim ; Khan, Waqas ; Walker, Shalika.
    In: Energy.
    RePEc:eee:energy:v:240:y:2022:i:c:s0360544221030619.

    Full description at Econpapers || Download paper

  12. Comparative study of machine learning approaches for predicting short-term photovoltaic power output based on weather type classification. (2022). Sun, Yunlin ; Wang, Xiaoyang ; Peng, Jinqing ; Luo, Duo.
    In: Energy.
    RePEc:eee:energy:v:240:y:2022:i:c:s0360544221029820.

    Full description at Econpapers || Download paper

  13. Using deep learning and meteorological parameters to forecast the photovoltaic generators intra-hour output power interval for smart grid control. (2022). Vasquez, Juan C ; Guerrero, Josep M ; Rodriguez, Fermin ; Galarza, Ainhoa.
    In: Energy.
    RePEc:eee:energy:v:239:y:2022:i:pb:s0360544221023641.

    Full description at Econpapers || Download paper

  14. Probability density forecasts for natural gas demand in China: Do mixed-frequency dynamic factors matter?. (2022). Zhao, Zhongchao ; Ding, Lili ; Wang, Lei.
    In: Applied Energy.
    RePEc:eee:appene:v:312:y:2022:i:c:s0306261922002100.

    Full description at Econpapers || Download paper

  15. Hour-ahead photovoltaic generation forecasting method based on machine learning and multi objective optimization algorithm. (2022). Li, Zhiwu ; Zhou, Yilin ; Wang, Jianzhou.
    In: Applied Energy.
    RePEc:eee:appene:v:312:y:2022:i:c:s0306261922001830.

    Full description at Econpapers || Download paper

  16. An interpretable probabilistic model for short-term solar power forecasting using natural gradient boosting. (2022). Lens, Hendrik ; Mitrentsis, Georgios.
    In: Applied Energy.
    RePEc:eee:appene:v:309:y:2022:i:c:s0306261921016950.

    Full description at Econpapers || Download paper

  17. Novel machine learning approach for solar photovoltaic energy output forecast using extra-terrestrial solar irradiance. (2022). Cai, Zuansi ; Fjelkestam, Cornelia A.
    In: Applied Energy.
    RePEc:eee:appene:v:306:y:2022:i:pb:s0306261921014276.

    Full description at Econpapers || Download paper

  18. Hybrid Forecasting Methodology for Wind Power-Photovoltaic-Concentrating Solar Power Generation Clustered Renewable Energy Systems. (2021). Zheng, Zixuan ; Xiao, Xianyong ; Pang, Simian ; Xu, Lanlan ; Luo, Fan.
    In: Sustainability.
    RePEc:gam:jsusta:v:13:y:2021:i:12:p:6681-:d:573715.

    Full description at Econpapers || Download paper

  19. Comparison and Explanation of Forecasting Algorithms for Energy Time Series. (2021). Zhang, Yuyi ; Liu, Xiuxiu ; Ma, Ruimin ; Petrosian, Ovanes ; Krinkin, Kirill.
    In: Mathematics.
    RePEc:gam:jmathe:v:9:y:2021:i:21:p:2794-:d:671887.

    Full description at Econpapers || Download paper

  20. Hour-Ahead Photovoltaic Output Forecasting Using Wavelet-ANFIS. (2021). Chang, Yu-Ming ; Tan, Shih-Wei ; Ouedraogo, Faouzi Brice ; Larasati, Devita Ayu ; Chen, Chao-Rong.
    In: Mathematics.
    RePEc:gam:jmathe:v:9:y:2021:i:19:p:2438-:d:648136.

    Full description at Econpapers || Download paper

  21. A Probabilistic Ensemble Prediction Method for PV Power in the Nonstationary Period. (2021). An, Yuan ; Shi, Xiaoyu ; Jia, Rong ; Huang, Qiang ; Zhang, Kai ; Dang, Kaikai.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:4:p:859-:d:495015.

    Full description at Econpapers || Download paper

  22. Exploitation of a New Short-Term Multimodel Photovoltaic Power Forecasting Method in the Very Short-Term Horizon to Derive a Multi-Time Scale Forecasting System. (2021). Collino, Elena ; Ronzio, Dario.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:3:p:789-:d:491908.

    Full description at Econpapers || Download paper

  23. Improving Forecast Reliability for Geographically Distributed Photovoltaic Generations. (2021). Kure, Taiki ; Tsukazaki, Kazuki ; Kondoh, Junji ; Kodaira, Daisuke.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:21:p:7340-:d:672260.

    Full description at Econpapers || Download paper

  24. Short-Term Deterministic Solar Irradiance Forecasting Considering a Heuristics-Based, Operational Approach. (2021). Escobar, Rodrigo ; Boland, John ; Castillejo-Cuberos, Armando.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:18:p:6005-:d:640192.

    Full description at Econpapers || Download paper

  25. Prediction of Solar Power Using Near-Real Time Satellite Data. (2021). Kay, Merlinde ; Prasad, Abhnil Amtesh.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:18:p:5865-:d:636858.

    Full description at Econpapers || Download paper

  26. Probabilistic Forecasting of Wind and Solar Farm Output. (2021). Farah, Sleiman ; Boland, John.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:16:p:5154-:d:618439.

    Full description at Econpapers || Download paper

  27. A Comparison of the Performance of Supervised Learning Algorithms for Solar Power Prediction. (2021). Gutierrez, Leidy ; Patio, Julian ; Duque-Grisales, Eduardo.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:15:p:4424-:d:599316.

    Full description at Econpapers || Download paper

  28. A Comparative Study of Machine Learning-Based Methods for Global Horizontal Irradiance Forecasting. (2021). Thil, Stephane ; Grieu, Stephane ; Gbemou, Shab ; Eynard, Julien ; Guillot, Emmanuel.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:11:p:3192-:d:565352.

    Full description at Econpapers || Download paper

  29. Progress in full spectrum solar energy utilization by spectral beam splitting hybrid PV/T system. (2021). Cheng, Ziming ; Shuai, Yong ; Yang, Luwei ; Liang, Huaxu ; Tan, Heping ; Wang, Fuqiang.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:141:y:2021:i:c:s1364032121000800.

    Full description at Econpapers || Download paper

  30. State-of-the-art short-term electricity market operation with solar generation: A review. (2021). Wang, Jessie ; Li, Z ; Fang, X ; Yin, S.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:138:y:2021:i:c:s136403212030931x.

    Full description at Econpapers || Download paper

  31. Ultra-short-term exogenous forecasting of photovoltaic power production using genetically optimized non-linear auto-regressive recurrent neural networks. (2021). Nwokolo, Samuel Chukwujindu ; Bailek, Nadjem ; Hassan, Muhammed A ; Bouchouicha, Kada.
    In: Renewable Energy.
    RePEc:eee:renene:v:171:y:2021:i:c:p:191-209.

    Full description at Econpapers || Download paper

  32. Hybrid deep neural model for hourly solar irradiance forecasting. (2021). Huang, Xiaoqiao ; Liu, Wuming ; Zhang, Jun ; Shi, Junsheng ; Gao, Bixuan ; Chen, Zaiqing ; Tai, Yonghang.
    In: Renewable Energy.
    RePEc:eee:renene:v:171:y:2021:i:c:p:1041-1060.

    Full description at Econpapers || Download paper

  33. Application of data-based solar field models to optimal generation scheduling in concentrating solar power plants. (2021). Vasallo, Manuel Jesus ; Gegundez, Manuel Emilio ; Cojocaru, Emilian Gelu ; Marin, Diego.
    In: Mathematics and Computers in Simulation (MATCOM).
    RePEc:eee:matcom:v:190:y:2021:i:c:p:1130-1149.

    Full description at Econpapers || Download paper

  34. Day-ahead hourly photovoltaic power forecasting using attention-based CNN-LSTM neural network embedded with multiple relevant and target variables prediction pattern. (2021). Qian, Zheng ; Pei, Yan ; Qu, Jiaqi.
    In: Energy.
    RePEc:eee:energy:v:232:y:2021:i:c:s0360544221012445.

    Full description at Econpapers || Download paper

  35. Stochastic optimization model for the short-term joint operation of photovoltaic power and hydropower plants based on chance-constrained programming. (2021). Liu, Zhe ; Wu, Zening ; Wang, Xinqi ; Yuan, Wenlin ; Cheng, Chuntian ; Su, Chengguo.
    In: Energy.
    RePEc:eee:energy:v:222:y:2021:i:c:s0360544221002450.

    Full description at Econpapers || Download paper

  36. Probability density forecasts for steam coal prices in China: The role of high-frequency factors. (2021). Zhao, Zhongchao ; Han, Meng ; Ding, Lili.
    In: Energy.
    RePEc:eee:energy:v:220:y:2021:i:c:s0360544221000074.

    Full description at Econpapers || Download paper

  37. Combining CFD and artificial neural network techniques to predict the thermal performance of all-glass straight evacuated tube solar collector. (2021). Lund, Peter D ; Wang, Jun ; Du, Bin.
    In: Energy.
    RePEc:eee:energy:v:220:y:2021:i:c:s0360544220328206.

    Full description at Econpapers || Download paper

  38. Probabilistic real-time deep-water natural gas hydrate dispersion modeling by using a novel hybrid deep learning approach. (2021). Zhu, Yuan ; Li, Junjie ; Shi, Jihao ; Chen, Guoming ; Yang, Dongdong ; Usmani, Asif Sohail.
    In: Energy.
    RePEc:eee:energy:v:219:y:2021:i:c:s0360544220326797.

    Full description at Econpapers || Download paper

  39. SolarNet: A hybrid reliable model based on convolutional neural network and variational mode decomposition for hourly photovoltaic power forecasting. (2021). Korkmaz, Deniz.
    In: Applied Energy.
    RePEc:eee:appene:v:300:y:2021:i:c:s0306261921008072.

    Full description at Econpapers || Download paper

  40. Adjusted combination of moving averages: A forecasting system for medium-term solar irradiance. (2021). Trapero, Juan R ; Pedregal, Diego J.
    In: Applied Energy.
    RePEc:eee:appene:v:298:y:2021:i:c:s0306261921005882.

    Full description at Econpapers || Download paper

  41. Deep learning based solar radiation micro forecast by fusion of infrared cloud images and radiation data. (2021). Ajith, Meenu ; Martinez-Ramon, Manel.
    In: Applied Energy.
    RePEc:eee:appene:v:294:y:2021:i:c:s0306261921004803.

    Full description at Econpapers || Download paper

  42. Lifetime improvement for wind power generation system based on optimal effectiveness of thermal management. (2021). Du, Xiong ; Zhang, Jun ; Qian, Cheng.
    In: Applied Energy.
    RePEc:eee:appene:v:286:y:2021:i:c:s0306261921000416.

    Full description at Econpapers || Download paper

  43. Short-term solar power forecasting: Investigating the ability of deep learning models to capture low-level utility-scale Photovoltaic system behaviour. (2021). Strauss, J M ; Rix, A J ; du Plessis, A A.
    In: Applied Energy.
    RePEc:eee:appene:v:285:y:2021:i:c:s0306261920317657.

    Full description at Econpapers || Download paper

  44. Extensive comparison of physical models for photovoltaic power forecasting. (2021). Mayer, Martin Janos ; Grof, Gyula.
    In: Applied Energy.
    RePEc:eee:appene:v:283:y:2021:i:c:s0306261920316330.

    Full description at Econpapers || Download paper

  45. What drives the accuracy of PV output forecasts?. (2021). Nguyen, Thi Ngoc ; Musgens, Felix.
    In: Papers.
    RePEc:arx:papers:2111.02092.

    Full description at Econpapers || Download paper

  46. Combined Multi-Layer Feature Fusion and Edge Detection Method for Distributed Photovoltaic Power Station Identification. (2020). Deng, Yupeng ; Jie, Yongshi ; Zhang, YI ; Chen, Jing ; Yue, Anzhi.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:24:p:6742-:d:465673.

    Full description at Econpapers || Download paper

  47. Reliability Predictors for Solar Irradiance Satellite-Based Forecast. (2020). Cros, Sylvain ; Haeffelin, Martial ; Badosa, Jordi ; Szantai, Andre.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:21:p:5566-:d:433975.

    Full description at Econpapers || Download paper

  48. Impacts of Renewable Energy Resources on Effectiveness of Grid-Integrated Systems: Succinct Review of Current Challenges and Potential Solution Strategies. (2020). Tola, Vittorio ; Petrollese, Mario ; Oyekale, Joseph ; Cau, Giorgio.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:18:p:4856-:d:414596.

    Full description at Econpapers || Download paper

  49. Integration of Electric Vehicles in the Distribution Network: A Review of PV Based Electric Vehicle Modelling. (2020). Lie, Tek Tjing ; Zamora, Ramon ; Mohammad, Asaad.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:17:p:4541-:d:407570.

    Full description at Econpapers || Download paper

  50. Review of optimal methods and algorithms for sizing energy storage systems to achieve decarbonization in microgrid applications. (2020). Dong, Z Y ; Begum, R A ; Ker, Pin Jern ; Faisal, M ; Hannan, M A ; Zhang, C.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:131:y:2020:i:c:s1364032120303130.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-09-30 06:41:54 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.