Ahmed, R. ; Sreeram, V. ; Mishra, Y. ; Arif, M.D. A review and evaluation of the state-of-the-art in PV solar power forecasting: techniques and optimization. 2020 Renew. Sustain. Energy Rev.. 124 -
- Alanazi, M. ; Alanazi, A. ; Khodaei, A. Long-term solar generation forecasting. 2016 En : 2016 IEEE/PES Transmission and Distribution Conference and Exposition (T&D). :
Paper not yet in RePEc: Add citation now
- Alcañiz, A. ; Grzebyk, D. ; Ziar, H. ; Isabella, O. Trends and gaps in photovoltaic power forecasting with machine learning. 2023 Energy Rep.. 9 447-471
Paper not yet in RePEc: Add citation now
- AlKandari, M. ; Ahmad, I. I. Solar power generation forecasting using ensemble approach based on deep learning and statistical methods. 2024 Appl. Comput. Inform.. 20 231-250
Paper not yet in RePEc: Add citation now
- Antonanzas, J. ; Osorio, N. ; Escobar, R. ; Urraca, R. ; Martinez-de-Pison, F.J. ; Antonanzas-Torres, F. Review of photovoltaic power forecasting. 2016 Sol. Energy. 136 78-111
Paper not yet in RePEc: Add citation now
- Belmahdi, B. ; Louzazni, M. ; El Bouardi, A. One month-ahead forecasting of mean daily global solar radiation using time series models. 2020 Optik. 219 -
Paper not yet in RePEc: Add citation now
- Bett, P.E. A simplified seasonal forecasting strategy, applied to wind and solar power in Europe. 2022 Climate Services. 27 -
Paper not yet in RePEc: Add citation now
Bett, P.E. ; Thornton, H.E. The climatological relationships between wind and solar energy supply in Britain. 2016 Renew. Energy. 87 96-110
- Bloomfield, H.C. ; Brayshaw, D.J. ; Gonzalez, P.L.M. ; Charlton-Perez, A. Sub-seasonal forecasts of demand and wind power and solar power generation for 28 European countries. 2021 Earth Syst. Sci. Data. 13 2259-2274
Paper not yet in RePEc: Add citation now
- Chinta, V. ; Song, G. ; Zhang, W. Validation of the medium-range and sub-seasonal forecast of solar irradiance and wind speed using ECMWF. 2023 Energy Rep.. 10 3908-3913
Paper not yet in RePEc: Add citation now
- Choi, J. ; Son, S.-W. Seasonal-to-decadal prediction of el nino-southern oscillation and pacific decadal oscillation. 2022 npj Climate and Atmospheric Science. 5 29-
Paper not yet in RePEc: Add citation now
- Craig, M.T. ; Wohland, J. ; Stoop, L.P. ; Kies, A. ; Pickering, B. ; Bloomfield, H.C. Overcoming the disconnect between energy system and climate modeling. 2022 Joule. 6 1405-1417
Paper not yet in RePEc: Add citation now
- Das, A. ; Roy, S.B. Evaluation of subseasonal to seasonal forecasts over India for renewable energy applications. 2021 Adv. Geosci.. 56 89-96
Paper not yet in RePEc: Add citation now
- Das, A. ; Roy, S.B. Evaluation of subseasonal to seasonal forecasts over India for renewable energy applications. 2021 Adv. Geosci.. 56 89-96
Paper not yet in RePEc: Add citation now
- De Felice, M. ; Soares, M.B. ; Alessandri, A. ; Troccoli, A. Scoping the potential usefulness of seasonal climate forecasts for solar power management. 2015 Renew. Energy. 142 215-233
Paper not yet in RePEc: Add citation now
- Gaboitaolelwe, J. ; Zungeru, A.M. ; Yahya, A. ; Lebekwe, C.K. ; Vinod, D.N. ; Salau, A.O. Machine learning based solar photovoltaic power forecasting: a review and comparison. 2023 IEEE Access. 11 40820-40845
Paper not yet in RePEc: Add citation now
Gandoman, F.H. ; Raeisi, F. ; Ahmadi, A. A literature review on estimating of PV-array hourly power under cloudy weather conditions. 2016 Renew. Sustain. Energy Rev.. 63 579-592
- Goddard, L. A verification framework for interannual-to-decadal predictions experiments. 2013 Clim. Dynam.. 40 245-272
Paper not yet in RePEc: Add citation now
- Gupta, A.S. ; Jourdain, N.C. ; Brown, J.N. ; Monselesan, D. Climate drift in the CMIP5 models. 2023 J. Clim.. 26 8597-8615
Paper not yet in RePEc: Add citation now
- Han, J.-Y. ; Kim, S.-W. ; Park, C.-H. ; Son, S.-W. Ensemble size versus bias correction effects in subseasonal-to-seasonal (S2S) forecasts. 2023 Geoscience Letters. 10 37-
Paper not yet in RePEc: Add citation now
- Hersbach, H. The ERA5 global reanalysis. 2020 Q. J. R. Meteorol. Soc.. 146 1999-2049
Paper not yet in RePEc: Add citation now
Hu, Z. ; Gao, Y. ; Ji, S. ; Mae, M. ; Imaizumi, T. Improved multistep ahead photovoltaic power prediction model based on LSTM and self-attention with weather forecast data. 2024 Appl. Energy. 359 -
- IEA Renewables 2023: Analysis and Forecast to 2028. 2024 International Energy Agency:
Paper not yet in RePEc: Add citation now
- IEA, Renewable Energy Progress Tracker Explore Electricity, Heat and Transport Data from Renewables 2023 and Renewables Ambitions by 2030. 2024 International Energy Agency:
Paper not yet in RePEc: Add citation now
Jerez, S. The impact of climate change on photovoltaic power generation in Europe. 2015 Nat. Commun.. 6 -
- Jimenez, P. WRF-SOLAR: description and clear-sky assessment of an augmented NWP model for solar power prediction. 2018 Bull. Am. Meteorol. Soc.. 97 1249-1264
Paper not yet in RePEc: Add citation now
- Li, H. ; Ren, Z. ; Xu, Y. ; Li, W. ; Hu, B. A multi-data driven hybrid learning method for weekly photovoltaic power scenario forecast. 2022 IEEE Trans. Sustain. Energy. 13 91-100
Paper not yet in RePEc: Add citation now
Li, J. ; Huang, J. The expansion of China's solar energy: challenges and policy options. 2020 Renew. Sustain. Energy Rev.. 132 -
- Lin, K.-P. ; Pai, P.-F. Solar power output forecasting using evolutionary seasonal decomposition least-square support vector regression. 2016 J. Clean. Prod.. 134 456-462
Paper not yet in RePEc: Add citation now
- Lin, K.-P. ; Pai, P.-F. Solar power output forecasting using evolutionary seasonal decomposition least-square support vector regression. 2016 J. Clean. Prod.. 134 456-462
Paper not yet in RePEc: Add citation now
Liu, B. ; Yang, D. ; Mayer, M.J. ; Coimbra, C.F.M. ; Kleissl, J. ; Kay, M. Predictability and forecast skill of solar irradiance over the contiguous United States. 2023 Renew. Sustain. Energy Rev.. 182 -
- Magana-Gonzalez, R.C. ; Rodriguez-Hernandez, O. ; Canul-Reyes, D.A. Analysis of seasonal variability and complementarity of wind and solar resources in Mexico. 2023 Sustain. Energy Technol. Assessments. 60 -
Paper not yet in RePEc: Add citation now
- Manzanas, R. Assessment of model drifts in seasonal forecasting: sensitivity to ensemble size and implications for bias correction. 2020 J. Adv. Model. Earth Syst.. 12 -
Paper not yet in RePEc: Add citation now
- Markovics, D. ; Mayer, M.J. Comparison of machine learning methods for photovoltaic power forecasting based on numerical weather prediction. 2022 Renew. Sustain. Energy Rev.. 161 -
Paper not yet in RePEc: Add citation now
Mayer, M.J. Benefits of physical and machine learning hybridization for photovoltaic power forecasting. 2022 Renew. Sustain. Energy Rev.. 168 -
Mayer, M.J. ; Gróf, G. Extensive comparison of physical models for photovoltaic power forecasting. 2021 Appl. Energy. 283 -
Mayer, M.J. ; Yang, D. Calibration of deterministic NWP forecasts and its impact on verification. 2023 Int. J. Forecast.. 39 981-991
Mayer, M.J. ; Yang, D. ; Szintai, B. Comparing global and regional downscaled NWP models for irradiance and photovoltaic power forecasting: ECMWF versus AROME. 2023 Appl. Energy. 352 -
- MOTIE 11th basic electricity supply and demand plan working plan released. 2024 En : Ministry of Trade, Industry, and Energy, Republic of Korea. :
Paper not yet in RePEc: Add citation now
- MOTIE, The 10th basic plan for electricity supply and demand, Ministry of Trade, Industry, and Energy, Republic of Korea (2023) (in Korean) https://www.motie.go.kr/kor/article/ATCLc01b2801b/68162/view.
Paper not yet in RePEc: Add citation now
Nie, Y. ; Li, X. ; Paletta, Q. ; Aragon, M. ; Scott, A. ; Brandt, A. Open-source sky image datasets for solar forecasting with deep learning: a comprehensive survey. 2024 Renew. Sustain. Energy Rev.. 189 -
Prasad, R. ; Ali, M. ; Xiang, Y. ; Khan, H. A double decomposition-based modelling approach to forecast weekly solar radiation. 2020 Renew. Energy. 152 9-22
Prema, V. ; Rao, K.U. Development of statistical time series models for solar power prediction. 2015 Renew. Energy. 83 100-109
- Rahimi, N. ; Park, S. ; Choi, W. ; Oh, B. ; Kim, S. ; Choi, Y.-H. A comprehensive review on ensemble solar power forecasting algorithms. 2023 J. Electr. Eng. Technol.. 18 719-733
Paper not yet in RePEc: Add citation now
Sabadus, A. A cross-sectional survey of deterministic PV power forecasting: progress and limitations in current approaches. 2024 Renew. Energy. 226 -
- Sheoran, S. ; Singh, R.S. ; Pasari, S. ; Kulshrestha, R. Forecasting of solar irradiances using time series and machine learning models: a case study from India. 2022 Appl. Sol. Energy. 58 137-151
Paper not yet in RePEc: Add citation now
- Sobri, S. ; Koohi-Kamali, S. ; Rahim, N. Abd Solar photovoltaic generation forecasting methods: a review. 2018 Energy Convers. Manag.. 156 459-497
Paper not yet in RePEc: Add citation now
- Tapiador, F.J. Assessment of renewable energy potential through satellite data and numerical models. 2009 Energy Environ. Sci.. 2 1142-1161
Paper not yet in RePEc: Add citation now
- UNFCCC Project 2684: Gimcheon PV Power Plant Site 2 CDM Project. 2009 Samsung C&T Corporation Gimcheon Solar Power Plant:
Paper not yet in RePEc: Add citation now
- Vitart, F. ; Ardilouze, C. ; Bonet, A. ; Brookshaw, A. ; Chen, M. ; Codorean, C. The sub-seasonal to seasonal (S2S) prediction project database. 2017 Bull. Am. Meteorol. Soc.. 98 163-176
Paper not yet in RePEc: Add citation now
Voyant, C. Machine learning methods for solar radiation forecasting: a review. 2017 Renew. Energy. 105 569-582
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences. 2020 Elsevier:
Paper not yet in RePEc: Add citation now
- Williams, K.D. The Met Office global coupled model 3.0 and 3.1 (GC3.0 and GC3.1) configurations. 2018 J. Adv. Model. Earth Syst.. 10 357-380
Paper not yet in RePEc: Add citation now
- Yang, D. A guideline to solar forecasting research practice: reproducible, operational, probabilistic or physically-based, ensemble, and skill (ROPES). 2019 J. Renew. Sustain. Energy. 11 -
Paper not yet in RePEc: Add citation now
- Zamo, M. ; Mestre, O. ; Arbogast, P. ; Pannekoucke, O. A benchmark of statistical regression methods for short-term forecasting of photovoltaic electricity production, part I: deterministic forecast of hourly production. 2014 Sol. Energy. 105 792-803
Paper not yet in RePEc: Add citation now
- Zhang, J. ; Verschae, R. ; Nobuhara, S. ; Lalonde, J.-F. Deep photovoltaic nowcasting. 2018 Sol. Energy. 176 267-276
Paper not yet in RePEc: Add citation now