- Amornwattana, S., Enke, D., & Dagli, C. H. (2007). A hybrid option pricing model using a neural network for estimating volatility. International Journal of General Systems, 36(5), 558–573.
Paper not yet in RePEc: Add citation now
Andreou, P. C., Charalambous, C., & Martzoukos, S. H. (2008). Pricing and trading European options by combining artificial neural networks and parametric models with implied parameters. European Journal of Operational Research, 185(3), 1415–1433.
- Anwar, M. N., & Andallah, L. S. (2018). A study on numerical solution of Black–Scholes model. Journal of Mathematical Finance, 8, 372–381.
Paper not yet in RePEc: Add citation now
- Bangyal, W. H., Rauf, H. T., Batool, H., Bangyal, S. A., Ahmed, J., & Pervaiz, S. (2019). An improved particle swarm optimization algorithm with chi-square mutation strategy. International Journal of Advanced Computer Science and Applications, 10(3), 481–491.
Paper not yet in RePEc: Add citation now
- Bates, D. S. (1996) 20 Testing option pricing models, Handbook of Statistics, Elsevier, vol. 14, 1996, 567–611, ISBN: 9780444819642.
Paper not yet in RePEc: Add citation now
Black, F., & Scholes, M. S. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81(3), 637–654.
Chowdhury, R., Mahdy, M. R. C., Alam, T. N., Al Quaderi, G. D., & Rahman, M. A. (2020) Predicting the stock price of frontier markets using machine learning and modified Black–Scholes Option pricing model. Physica A-Statistical Mechanics and its Applications, 555, Article Number: 124444.
- Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals and Systems, 2(4), 303–314.
Paper not yet in RePEc: Add citation now
- Das, S. P., & Padhy, S. (2017). A new hybrid parametric and machine learning model with homogeneity hint for European-style index option pricing. Neural Computing & Applications, 28(12), 4061–4077.
Paper not yet in RePEc: Add citation now
- Eberhart, R. C., & Kennedy, J. (1995). A new optimizer using particle swarm theory, in Symposium on Micro Machine and Human Science. Japan: Nagoya, Piscataway, NJ.
Paper not yet in RePEc: Add citation now
Farnoosh, R., Rezazadeh, H., Sobhani, A., et al. (2016). A numerical method for discrete single barrier option pricing with time-dependent parameters. Computational Economics, 48, 131–145.
- Farnoosh, R., Sobhani, A., Rezazadeh, H., & Beheshti, M. H. (2015). Numerical method for discrete double barrier option pricing with time-dependent parameters. Computers and Mathematics with Applications, 70(8), 2006–2013.
Paper not yet in RePEc: Add citation now
- Freitas, D., Lopes, L. G., & Morgado-Dias, F. (2020). Particle swarm optimisation: A historical review up to the current developments. Entropy, 22(3), 1–32.
Paper not yet in RePEc: Add citation now
Fusai, G., & Recchioni, M. C. (2008). Analysis of quadrature methods for pricing discrete barrier options. Journal of Economic Dynamics and Control, 31, 826–860.
Golbabai, A., & Nikan, O. (2020). A computational method based on the moving least-squares approach for pricing double barrier options in a time-fractional Black–Scholes model. Computational Economics, 55(1), 119–141.
- Golbabai, A., Nikan O. , & Nikazad, T. (2019). Numerical analysis of time fractional Black–Scholes European option pricing model arising in financial market. Computational and Applied Mathematics, 38(4), Article Number: 173.
Paper not yet in RePEc: Add citation now
- Halton, J. H. (1964). Algorithm 247: Radical-inverse quasi-random point sequence. Communications of the ACM, 7(12), 701–702.
Paper not yet in RePEc: Add citation now
- Hobson, D. (2004). Review Paper: A survey of mathematical finance. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 460(2052), 3369–3401.
Paper not yet in RePEc: Add citation now
Jang, H., & Lee, J. (2019). Generative Bayesian neural network model for risk-neutral pricing of American index options. Quantitative Finance, 19(4), 587–603.
- Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In: Proceedings of ICNN’95 - International Conference on Neural Networks, Perth, WA, Australia (pp. 1942–1948, vol. 4). https://doi.org/10.1109/ICNN.1995.488968 .
Paper not yet in RePEc: Add citation now
- Kolmogorov, A. N. (1957). On the representation of continuous functions of several variables by superpositions of continuous functions of one variable and addition. Dokl. Akad. Nauk SSSR 114, 953–956. English Translation: American Mathematical Society Translation 28(2), 1963, 55–59.
Paper not yet in RePEc: Add citation now
- Lajbcygier, P. (2004). Improving option pricing with the product constrained hybrid neural network. IEEE Transactions on Neural Networks, 15(2), 465–476.
Paper not yet in RePEc: Add citation now
Levy, G. (2016). Computational Finance Using C and C#. Derivatives and Valuation, 2nd Edition, Quantitative Finance Series, Academic Press, London, UK, ISBN: 978-0-12-803579-5.
- Malek, A., & Shekari Beidokhti, R. (2006). Numerical solution for high order differential equations using a hybrid neural network-optimization method. Applications and Mathematical Computation, 183, 260–271.
Paper not yet in RePEc: Add citation now
- Malliaris, M., & Salchenberger, L. (1993). A neural-network model for estimating option prices. Applied Intelligence, 3(3), 193–206.
Paper not yet in RePEc: Add citation now
- Martinez-Cantin, R. (2014). BayesOpt: A bayesian optimization library for nonlinear optimization, experimental design and bandits. Journal of Machine Learning Research, 15(115), 3915–3919.
Paper not yet in RePEc: Add citation now
- Muller, B., Reinhardt, J., & Strickland, M. T. (2002). Neural networks: An introduction (2nd ed.). Berlin: Springer.
Paper not yet in RePEc: Add citation now
- Ojha, V. K., Abraham, A., & Snasel, V. (2017). Metaheuristic design of feedforward neural networks: A review of two decades of research. Engineering Applications of Artificial Intelligence, 60, 97–116.
Paper not yet in RePEc: Add citation now
- Ömür, U. (2008). An introduction to computational finance. Imperial College Press: Series in Quantitative Finance. World Scientific Publishing Co.
Paper not yet in RePEc: Add citation now
Ozbayoglu, A. M., Gudelek, M. U., & Sezer, O. B. (2020). Deep learning for financial applications : A survey. Applied Soft Computing, Article Number: 106384.
- Pradip Roul, P. (2020). A high accuracy numerical method and its convergence for time-fractional Black–Scholes equation governing European options. Applied Numerical Mathematics, 151, 472–493.
Paper not yet in RePEc: Add citation now
- Roul, P., & Goura, V. M. K. P. (2020). A sixth order numerical method and its convergence for generalized Black–Scholes PDE. Journal of Computational and Applied Mathematics, 377, 112881.
Paper not yet in RePEc: Add citation now
- Sobol, I. Y. M. (1967). On the distribution of points in a cube and the approximate evaluation of integrals. Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 7(4), 784–802.
Paper not yet in RePEc: Add citation now
- Susan, S., Ranjan, R., Taluja, U., et al. (2020). Global-best optimization of ANN trained by PSO using the non-extensive cross-entropy with Gaussian gain. Soft Computation.
Paper not yet in RePEc: Add citation now
- Wilmott, P., Dewynne, J., & Howison, S. (1994). Option pricing: Mathematical models and computation. Oxford: Oxford Financial Press.
Paper not yet in RePEc: Add citation now
Yao, J. T., Li, Y. L., & Tan, C. L. (2000). Option price forecasting using neural networks. Omega-International Journal of Management Science, 28(4), 455–466.
- Yarpiz, (2020). Particle Swarm Optimization (PSO), 2015, https://www.mathworks.com/matlabcentral/fileexchange/52857-particle-swarm-optimization-pso , MATLAB Central File Exchange. Retrieved July 8.
Paper not yet in RePEc: Add citation now