create a website

A Practical Monte Carlo Method for Pricing Equity-Linked Securities with Time-Dependent Volatility and Interest Rate. (2024). Kim, Junseok ; Lyu, Jisang ; Jang, Hanbyeol ; Park, Eunchae ; Lee, Chaeyoung.
In: Computational Economics.
RePEc:kap:compec:v:63:y:2024:i:5:d:10.1007_s10614-023-10394-3.

Full description at Econpapers || Download paper

Cited: 1

Citations received by this document

Cites: 31

References cited by this document

Cocites: 15

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. Markov regime-switching in pricing equity-linked securities: An empirical study for losses in HSCEI-linked products. (2025). Kim, Hongjoong ; Park, Sungwon ; Moon, Kyoung-Sook.
    In: Finance Research Letters.
    RePEc:eee:finlet:v:76:y:2025:i:c:s154461232500193x.

    Full description at Econpapers || Download paper

References

References cited by this document

  1. Abdi-Mazraeh, S., Khani, A., & Irandoust-Pakchin, S. (2020). Multiple shooting method for solving Black–Scholes equation. Computational Economics, 56(4), 723–746.

  2. Burden, R. L., & Faires, J. D. (2001). Numerical analysis. Brooks Cole.
    Paper not yet in RePEc: Add citation now
  3. Chen, J., Ewald, C., & Kutan, A. M. (2019). Time-dependent volatility in futures contract options. Investment Analysts Journal, 48(1), 30–41.
    Paper not yet in RePEc: Add citation now
  4. de Lima, U. S., & Samanez, C. P. (2016). Complex derivatives valuation: Applying the Least-Squares Monte Carlo Simulation Method with several polynomial basis. Financial Innovation, 2(1), 1–14.

  5. Deshpande, J. V., Dewan, I., Lam, K. F., & Naik-Nimbalkar, U. V. (2019). Tests for specific nonparametric relations between two distribution functions with applications. Applied Stochastic Models in Business and Industry, 35(2), 247–259.
    Paper not yet in RePEc: Add citation now
  6. Farnoosh, R., Rezazadeh, H., Sobhani, A., & Beheshti, M. H. (2016). A numerical method for discrete single barrier option pricing with time-dependent parameters. Computational Economics, 48(1), 131–145.

  7. Georgiev, S. G., & Vulkov, L. G. (2020). Computational recovery of time-dependent volatility from integral observations in option pricing. Journal of Computational Science, 39, 101054.
    Paper not yet in RePEc: Add citation now
  8. Higham, D. J. (2004). Black-Scholes for scientific computing students. Computing in Science & Engineering, 6(6), 72–79.
    Paper not yet in RePEc: Add citation now
  9. Jang, H., Kim, S., Han, J., Lee, S., Ban, J., Han, H., Lee, C., Darae, J., & Kim, J. (2020). Fast Monte Carlo simulation for pricing equity-linked securities. Computational Economics, 56(4), 865–882.

  10. Jeong, D., Yoo, M., Yoo, C., & Kim, J. (2019). A hybrid Monte Carlo and finite difference method for option pricing. Computational Economics, 53(1), 111–124.

  11. Jerbi, Y. (2016). Early exercise premium method for pricing American options under the J-model. Financial Innovation, 2(1), 1–26.

  12. Jia, L., & Chen, W. (2020). Knock-in options of an uncertain stock model with floating interest rate. Chaos, Solitons & Fractals, 141, 110324.
    Paper not yet in RePEc: Add citation now
  13. Jin, Y., Wang, J., Kim, S., Heo, Y., Yoo, C., Kim, Y., Kim, J., & Jeong, D. (2018). Reconstruction of the time-dependent volatility function using the Black-Scholes model. Discrete Dynamics in Nature and Society, 2018, 1.
    Paper not yet in RePEc: Add citation now
  14. Kim, S. T., Kim, H. G., & Kim, J. H. (2021). ELS pricing and hedging in a fractional Brownian motion environment. Chaos, Solitons & Fractals, 142, 110453.

  15. Kim, S., Han, H., Jang, H., Jeong, D., Lee, C., Lee, W., & Kim, J. (2021). Reconstruction of the local volatility function using the Black–Scholes model. Journal of Computational Science, 51, 101341.
    Paper not yet in RePEc: Add citation now
  16. Koffi, R. S., & Tambue, A. (2020). A fitted multi-point flux approximation method for pricing two options. Computational Economics, 55(2), 597–628.

  17. Kontosakos, V. E., Mendonca, K., Pantelous, A. A., & Zuev, K. M. (2021). Pricing discretely-monitored double barrier options with small probabilities of execution. European Journal of Operational Research, 290(1), 313–330.

  18. Lee, H. Lee., & Ko, B. (2022). A semi-analytic valuation of two-asset barrier options and autocallable products using Brownian bridge. The North American Journal of Economics and Finance, 61, 101704.

  19. Lee, M., & Hong, J. (2021). Semi closed-form pricing autocallable ELS using Brownian Bridge. Communications for Statistical Applications and Methods, 28(3), 251–265.
    Paper not yet in RePEc: Add citation now
  20. Li, Z., & Tourin, A. (2022). A finite difference scheme for pairs trading with transaction costs. Computational Economics, 60, 601–632.

  21. Liu, Z., & Yang, Y. (2021). Barrier swaption pricing problem in uncertain financial market. Mathematical Methods in the Applied Sciences, 44(1), 568–582.
    Paper not yet in RePEc: Add citation now
  22. Lo, C. F., Lee, H. C., & Hui, C. H. (2003). A simple approach for pricing barrier options with time-dependent parameters. Quantitative Finance, 3(2), 98.

  23. Lux, T. (2022). Bayesian estimation of agent-based models via adaptive particle Markov Chain Monte Carlo. Computational Economics, 60, 451–477.

  24. Naz, R., & Johnpillai, A. G. (2018). Exact solutions via invariant approach for Black-Scholes model with time-dependent parameters. Mathematical Methods in the Applied Sciences, 41(12), 4417–4427.
    Paper not yet in RePEc: Add citation now
  25. Nugroho, L. A. (2016). Franchise ownership redirection: Real options perspective. Financial Innovation, 2(1), 1–11.

  26. Oh, H., & Lee, S. (2019). Parameter change test for location-scale time series models with heteroscedasticity based on bootstrap. Applied Stochastic Models in Business and Industry, 35(6), 1322–1343.
    Paper not yet in RePEc: Add citation now
  27. Shreve, S. E. (2004). Stochastic calculus for finance II: Continuous-time models (Vol. 11). Springer.
    Paper not yet in RePEc: Add citation now
  28. Tavella, D., & Randall, C. (2000). Pricing financial instruments: The finite difference method (Vol. 13). Wiley.
    Paper not yet in RePEc: Add citation now
  29. Thomas, L. (1949). Elliptic problems in linear differential equations over a network: Watson scientific computing laboratory. Columbia Univ.
    Paper not yet in RePEc: Add citation now
  30. Wang, X., Li, J., & Li, J. A. (2022). Deep learning based numerical PDE method for option pricing. Computational economics, 1, 1–16.
    Paper not yet in RePEc: Add citation now
  31. Windcliff, H., Forsyth, P. A., & Vetzal, K. R. (2004). Analysis of the stability of the linear boundary condition for the Black–Scholes equation. Journal of Computational Finance, 8, 65–92.
    Paper not yet in RePEc: Add citation now

Cocites

Documents in RePEc which have cited the same bibliography

  1. Markov regime-switching in pricing equity-linked securities: An empirical study for losses in HSCEI-linked products. (2025). Kim, Hongjoong ; Park, Sungwon ; Moon, Kyoung-Sook.
    In: Finance Research Letters.
    RePEc:eee:finlet:v:76:y:2025:i:c:s154461232500193x.

    Full description at Econpapers || Download paper

  2. A Practical Monte Carlo Method for Pricing Equity-Linked Securities with Time-Dependent Volatility and Interest Rate. (2024). Kim, Junseok ; Lyu, Jisang ; Jang, Hanbyeol ; Park, Eunchae ; Lee, Chaeyoung.
    In: Computational Economics.
    RePEc:kap:compec:v:63:y:2024:i:5:d:10.1007_s10614-023-10394-3.

    Full description at Econpapers || Download paper

  3. Numerical Approximation to a Variable-Order Time-Fractional Black–Scholes Model with Applications in Option Pricing. (2023). Zheng, Xiangcheng ; Zhang, Meihui.
    In: Computational Economics.
    RePEc:kap:compec:v:62:y:2023:i:3:d:10.1007_s10614-022-10295-x.

    Full description at Econpapers || Download paper

  4. Accurate and Efficient Finite Difference Method for the Black–Scholes Model with No Far-Field Boundary Conditions. (2023). Hwang, Youngjin ; Kwak, Soobin ; Kim, Junseok ; Lee, Chaeyoung.
    In: Computational Economics.
    RePEc:kap:compec:v:61:y:2023:i:3:d:10.1007_s10614-022-10242-w.

    Full description at Econpapers || Download paper

  5. Evaluation of Non-survey Methods for the Construction of Regional Input–Output Matrices When There is Partial Historical Information. (2023). Mardones, Cristian ; Silva, Darling.
    In: Computational Economics.
    RePEc:kap:compec:v:61:y:2023:i:3:d:10.1007_s10614-022-10241-x.

    Full description at Econpapers || Download paper

  6. Options as Silver Bullets: Valuation of Term Loans, Inventory Management, Emissions Trading and Insurance Risk Mitigation using Option Theory. (2022). Kashyap, Ravi.
    In: Annals of Operations Research.
    RePEc:spr:annopr:v:315:y:2022:i:2:d:10.1007_s10479-022-04610-w.

    Full description at Econpapers || Download paper

  7. Barrier option pricing under a Markov Regime switching diffusion model. (2022). Zhang, Xiaoyuan.
    In: The Quarterly Review of Economics and Finance.
    RePEc:eee:quaeco:v:86:y:2022:i:c:p:273-280.

    Full description at Econpapers || Download paper

  8. On the Solution of the Black–Scholes Equation Using Feed-Forward Neural Networks. (2021). Eskiizmirliler, Saadet ; Polat, Refet ; Gunel, Korhan.
    In: Computational Economics.
    RePEc:kap:compec:v:58:y:2021:i:3:d:10.1007_s10614-020-10070-w.

    Full description at Econpapers || Download paper

  9. Optimal non-uniform finite difference grids for the Black–Scholes equations. (2021). Kim, Sangkwon ; Lyu, Jisang ; Park, Jintae ; Lee, Chaeyoung ; Yoon, Sungha.
    In: Mathematics and Computers in Simulation (MATCOM).
    RePEc:eee:matcom:v:182:y:2021:i:c:p:690-704.

    Full description at Econpapers || Download paper

  10. A Computational Method Based on the Moving Least-Squares Approach for Pricing Double Barrier Options in a Time-Fractional Black–Scholes Model. (2020). Nikan, Omid ; Golbabai, Ahmad.
    In: Computational Economics.
    RePEc:kap:compec:v:55:y:2020:i:1:d:10.1007_s10614-019-09880-4.

    Full description at Econpapers || Download paper

  11. Detecting Possible Reduction of the Housing Bubble in Korea for Different Residential Types and Regions. (2020). Kim, Kyung Won ; Song, Jae Wook.
    In: Sustainability.
    RePEc:gam:jsusta:v:12:y:2020:i:3:p:1220-:d:318002.

    Full description at Econpapers || Download paper

  12. Finite Difference Method for the Multi-Asset Black–Scholes Equations. (2020). Kim, Sangkwon ; Jeong, Darae ; Lee, Chaeyoung.
    In: Mathematics.
    RePEc:gam:jmathe:v:8:y:2020:i:3:p:391-:d:330931.

    Full description at Econpapers || Download paper

  13. A Hybrid Monte Carlo and Finite Difference Method for Option Pricing. (2019). Yoo, Minhyun ; Kim, Junseok ; Jeong, Darae.
    In: Computational Economics.
    RePEc:kap:compec:v:53:y:2019:i:1:d:10.1007_s10614-017-9730-4.

    Full description at Econpapers || Download paper

  14. A New Approach for the Black–Scholes Model with Linear and Nonlinear Volatilities. (2019). Popescu, Catalin ; Gulen, Seda ; Sari, Murat.
    In: Mathematics.
    RePEc:gam:jmathe:v:7:y:2019:i:8:p:760-:d:258983.

    Full description at Econpapers || Download paper

  15. Finite Difference Method for the Black–Scholes Equation Without Boundary Conditions. (2018). Yoo, Minhyun ; Kim, Junseok ; Jeong, Darae.
    In: Computational Economics.
    RePEc:kap:compec:v:51:y:2018:i:4:d:10.1007_s10614-017-9653-0.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-10-02 05:19:00 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.