Abdi-Mazraeh, S., Khani, A., & Irandoust-Pakchin, S. (2020). Multiple shooting method for solving Black–Scholes equation. Computational Economics, 56(4), 723–746.
- Burden, R. L., & Faires, J. D. (2001). Numerical analysis. Brooks Cole.
Paper not yet in RePEc: Add citation now
- Chen, J., Ewald, C., & Kutan, A. M. (2019). Time-dependent volatility in futures contract options. Investment Analysts Journal, 48(1), 30–41.
Paper not yet in RePEc: Add citation now
de Lima, U. S., & Samanez, C. P. (2016). Complex derivatives valuation: Applying the Least-Squares Monte Carlo Simulation Method with several polynomial basis. Financial Innovation, 2(1), 1–14.
- Deshpande, J. V., Dewan, I., Lam, K. F., & Naik-Nimbalkar, U. V. (2019). Tests for specific nonparametric relations between two distribution functions with applications. Applied Stochastic Models in Business and Industry, 35(2), 247–259.
Paper not yet in RePEc: Add citation now
Farnoosh, R., Rezazadeh, H., Sobhani, A., & Beheshti, M. H. (2016). A numerical method for discrete single barrier option pricing with time-dependent parameters. Computational Economics, 48(1), 131–145.
- Georgiev, S. G., & Vulkov, L. G. (2020). Computational recovery of time-dependent volatility from integral observations in option pricing. Journal of Computational Science, 39, 101054.
Paper not yet in RePEc: Add citation now
- Higham, D. J. (2004). Black-Scholes for scientific computing students. Computing in Science & Engineering, 6(6), 72–79.
Paper not yet in RePEc: Add citation now
Jang, H., Kim, S., Han, J., Lee, S., Ban, J., Han, H., Lee, C., Darae, J., & Kim, J. (2020). Fast Monte Carlo simulation for pricing equity-linked securities. Computational Economics, 56(4), 865–882.
Jeong, D., Yoo, M., Yoo, C., & Kim, J. (2019). A hybrid Monte Carlo and finite difference method for option pricing. Computational Economics, 53(1), 111–124.
Jerbi, Y. (2016). Early exercise premium method for pricing American options under the J-model. Financial Innovation, 2(1), 1–26.
- Jia, L., & Chen, W. (2020). Knock-in options of an uncertain stock model with floating interest rate. Chaos, Solitons & Fractals, 141, 110324.
Paper not yet in RePEc: Add citation now
- Jin, Y., Wang, J., Kim, S., Heo, Y., Yoo, C., Kim, Y., Kim, J., & Jeong, D. (2018). Reconstruction of the time-dependent volatility function using the Black-Scholes model. Discrete Dynamics in Nature and Society, 2018, 1.
Paper not yet in RePEc: Add citation now
Kim, S. T., Kim, H. G., & Kim, J. H. (2021). ELS pricing and hedging in a fractional Brownian motion environment. Chaos, Solitons & Fractals, 142, 110453.
- Kim, S., Han, H., Jang, H., Jeong, D., Lee, C., Lee, W., & Kim, J. (2021). Reconstruction of the local volatility function using the Black–Scholes model. Journal of Computational Science, 51, 101341.
Paper not yet in RePEc: Add citation now
Koffi, R. S., & Tambue, A. (2020). A fitted multi-point flux approximation method for pricing two options. Computational Economics, 55(2), 597–628.
Kontosakos, V. E., Mendonca, K., Pantelous, A. A., & Zuev, K. M. (2021). Pricing discretely-monitored double barrier options with small probabilities of execution. European Journal of Operational Research, 290(1), 313–330.
Lee, H. Lee., & Ko, B. (2022). A semi-analytic valuation of two-asset barrier options and autocallable products using Brownian bridge. The North American Journal of Economics and Finance, 61, 101704.
- Lee, M., & Hong, J. (2021). Semi closed-form pricing autocallable ELS using Brownian Bridge. Communications for Statistical Applications and Methods, 28(3), 251–265.
Paper not yet in RePEc: Add citation now
Li, Z., & Tourin, A. (2022). A finite difference scheme for pairs trading with transaction costs. Computational Economics, 60, 601–632.
- Liu, Z., & Yang, Y. (2021). Barrier swaption pricing problem in uncertain financial market. Mathematical Methods in the Applied Sciences, 44(1), 568–582.
Paper not yet in RePEc: Add citation now
Lo, C. F., Lee, H. C., & Hui, C. H. (2003). A simple approach for pricing barrier options with time-dependent parameters. Quantitative Finance, 3(2), 98.
Lux, T. (2022). Bayesian estimation of agent-based models via adaptive particle Markov Chain Monte Carlo. Computational Economics, 60, 451–477.
- Naz, R., & Johnpillai, A. G. (2018). Exact solutions via invariant approach for Black-Scholes model with time-dependent parameters. Mathematical Methods in the Applied Sciences, 41(12), 4417–4427.
Paper not yet in RePEc: Add citation now
Nugroho, L. A. (2016). Franchise ownership redirection: Real options perspective. Financial Innovation, 2(1), 1–11.
- Oh, H., & Lee, S. (2019). Parameter change test for location-scale time series models with heteroscedasticity based on bootstrap. Applied Stochastic Models in Business and Industry, 35(6), 1322–1343.
Paper not yet in RePEc: Add citation now
- Shreve, S. E. (2004). Stochastic calculus for finance II: Continuous-time models (Vol. 11). Springer.
Paper not yet in RePEc: Add citation now
- Tavella, D., & Randall, C. (2000). Pricing financial instruments: The finite difference method (Vol. 13). Wiley.
Paper not yet in RePEc: Add citation now
- Thomas, L. (1949). Elliptic problems in linear differential equations over a network: Watson scientific computing laboratory. Columbia Univ.
Paper not yet in RePEc: Add citation now
- Wang, X., Li, J., & Li, J. A. (2022). Deep learning based numerical PDE method for option pricing. Computational economics, 1, 1–16.
Paper not yet in RePEc: Add citation now
- Windcliff, H., Forsyth, P. A., & Vetzal, K. R. (2004). Analysis of the stability of the linear boundary condition for the Black–Scholes equation. Journal of Computational Finance, 8, 65–92.
Paper not yet in RePEc: Add citation now