create a website

Increasing the Hong Kong Stock Market Predictability: A Temporal Convolutional Network Approach. (2024). Ge, Lei ; Guo, Lingling ; Chen, Shun.
In: Computational Economics.
RePEc:kap:compec:v:64:y:2024:i:5:d:10.1007_s10614-024-10547-y.

Full description at Econpapers || Download paper

Cited: 0

Citations received by this document

Cites: 37

References cited by this document

Cocites: 55

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

    This document has not been cited yet.

References

References cited by this document

  1. Abu-Mostafa, Y. S., & Atiya, A. F. (1996). Introduction to financial forecasting. Applied Intelligence, 6(3), 205–213.
    Paper not yet in RePEc: Add citation now
  2. Alhashel, B. S., Almudhaf, F. W., & Hansz, J. A. (2018). Can technical analysis generate superior returns in securitized property markets? Evidence from east Asia markets. Pacific-Basin Finance Journal, 47, 92–108.

  3. Appel, G. (1979). The moving average convergence divergence trading method (150 Great Neck Rd, Great Neck, NY 11021: Signalert Corp).
    Paper not yet in RePEc: Add citation now
  4. Bai, S., Kolter, J. Z., & Koltun, V. (2018). An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. Universal language model fine-tuning for text classification, pp. 30–44.
    Paper not yet in RePEc: Add citation now
  5. Barbaglia, L., Manzan, S., & Tosetti, E. (2021). Forecasting loan default in europe with machine learning. Journal of Financial Econometrics pp. 1–28.
    Paper not yet in RePEc: Add citation now
  6. Bucci, A. (2020). Realized volatility forecasting with neural networks. Journal of Financial Econometrics, 18(3), 502–531.

  7. Cho, K., Van Merriënboer, B., & Bahdanau, D. (2014). On the properties of neural machine translation: Encoder-decoder approaches. Proceedings of SSST 2014—8th workshop on syntax, semantics and structure in statistical translation, pp. 103–111.
    Paper not yet in RePEc: Add citation now
  8. Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv:1412.3555 .
    Paper not yet in RePEc: Add citation now
  9. Creamer, G. (2012). Model calibration and automated trading agent for euro futures. Quantitative Finance, 12(4), 531–545.

  10. Edwards, R. D., Magee, J., & Bassetti, W. (2018). Technical analysis of stock trends. CRC Press.
    Paper not yet in RePEc: Add citation now
  11. Elend, L., Tideman, S. A., Lopatta, K., & Kramer, O. (2020). Earnings prediction with deep leaning. KI 2020: Advances in artificial intelligence, pp. 267–274. Cham: Springer International Publishing.
    Paper not yet in RePEc: Add citation now
  12. Erel, I., Stern, L. H., Tan, C., & Weisbach, M. S. (2021). Selecting directors using machine learning. The Review of Financial Studies, 34(7), 3226–3264.

  13. Goel, K., Vohra, R., & Sahoo, J. K. (2014). Polyphonic music generation by modeling temporal dependencies using a rnn-dbn. In International conference on artificial neural networks, pp. 217–224.
    Paper not yet in RePEc: Add citation now
  14. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778.
    Paper not yet in RePEc: Add citation now
  15. Heaton, J. B., Polson, N. G., & Witte, J. H. (2017). Deep learning for finance: Deep portfolios. Applied Stochastic Models in Business and Industry, 33(1), 3–12.
    Paper not yet in RePEc: Add citation now
  16. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780.
    Paper not yet in RePEc: Add citation now
  17. Huang, C. L., & Tsai, C. Y. (2009). A hybrid SOFM-SVR with a filter-based feature selection for stock market forecasting. Expert Systems with Applications, 36(2), 1529–1539.
    Paper not yet in RePEc: Add citation now
  18. Kara, Y., Boyacioglu, M. A., & Baykan, Ö. K. (2011). Predicting direction of stock price index movement using artificial neural networks and support vector machines: The sample of the istanbul stock exchange. Expert systems with Applications, 38(5), 5311–5319.
    Paper not yet in RePEc: Add citation now
  19. Koo, E., & Kim, G. (2023). A new neural network approach for predicting the volatility of stock market. Computational Economics, 61, 1665–1679.

  20. Lea, C., Flynn, M. D., Vidal, R., Reiter, A., & Hager, G. D. (2017). Temporal convolutional networks for action segmentation and detection. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 156–165.
    Paper not yet in RePEc: Add citation now
  21. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.
    Paper not yet in RePEc: Add citation now
  22. Leippold, M., Wang, Q., & Zhou, W. (2022). Machine learning in the Chinese stock market. Journal of Financial Economics, 145(2), 64–82.

  23. Liu, Y., Dong, H., Wang, X., & Han, S. (2019). Time series prediction based on temporal convolutional network. 2019 IEEE/ACIS 18th International conference on computer and information science (ICIS), pp. 300–305.
    Paper not yet in RePEc: Add citation now
  24. Novak, M. G., & Velušček, D. (2016). Prediction of stock price movement based on daily high prices. Quantitative Finance, 16(5), 793–826.

  25. Persio, L. D., & Honchar, O. (2017). Recurrent neural networks approach to the financial forecast of google assets. International Journal of Mathematics and Computers in Simulation, 11, 7–13.
    Paper not yet in RePEc: Add citation now
  26. Sen, J., & Mehtab, S. (2021). Accurate stock price forecasting using robust and optimized deep learning models. International Conference on Intelligent Technologies (CONIT), 2021, 1–9.
    Paper not yet in RePEc: Add citation now
  27. Shen, T., Zhou, T., Long, G., Jiang, J., Pan, S., & Zhang, C. (2018). Disan: Directional self-attention network for RNN/CNN-free language understanding. Proceedings of the AAAI conference on artificial intelligence vol 32, no. 1.
    Paper not yet in RePEc: Add citation now
  28. Tan, T. Z., Quek, C., & Ng, G. S. (2007). Biological brain-inspired genetic complementary learning for stock market and bank failure prediction. Computational Intelligence, 23(2), 236–261.
    Paper not yet in RePEc: Add citation now
  29. Thawornwong, S., Enke, D., & Dagli, C. (2003). Neural networks as a decision maker for stock trading: A technical analysis approach. International Journal of Smart Engineering System Design, 5(4), 313–325.
    Paper not yet in RePEc: Add citation now
  30. Ticknor, J. L. (2013). A Bayesian regularized artificial neural network for stock market forecasting. Expert Systems with Applications, 40(14), 5501–5506.
    Paper not yet in RePEc: Add citation now
  31. Vijh, M., Chandola, D., Tikkiwal, V. A., & Kumar, A. (2020). Stock closing price prediction using machine learning techniques. Procedia Computer Science, 167, 599–606.
    Paper not yet in RePEc: Add citation now
  32. Weng, B., Ahmed, M. A., & Megahed, F. M. (2017). Stock market one-day ahead movement prediction using disparate data sources. Expert Systems with Applications, 79, 153–163.
    Paper not yet in RePEc: Add citation now
  33. Wiese, M., Knobloch, R., Korn, R., & Kretschmer, P. (2020). Quant gans: Deep generation of financial time series. Quantitative Finance, 20(9), 1419–1440.

  34. Wilder, J. (1978). New concepts in technical trading systems.
    Paper not yet in RePEc: Add citation now
  35. Yao, H., Xia, S., & Liu, H. (2022). Six-factor asset pricing and portfolio investment via deep learning: Evidence from Chinese stock market. Pacific-Basin Finance Journal, 76, 101886.

  36. Yu, F., & Koltun, V. (2016). Multi-scale context aggregation by dilated convolutions. International Conference on Learning Representations (ICLR), 2016, 1–13.
    Paper not yet in RePEc: Add citation now
  37. Yule, G. U. (1909). The applications of the method of correlation to social and economic statistics. Journal of the Royal Statistical Society, 72(4), 721–730.
    Paper not yet in RePEc: Add citation now

Cocites

Documents in RePEc which have cited the same bibliography

  1. Forecasting the Volatility of US Oil and Gas Firms With Machine Learning. (2025). Hansen, Erwin ; Cabrera, Gabriel ; Daz, Juan D.
    In: Journal of Forecasting.
    RePEc:wly:jforec:v:44:y:2025:i:4:p:1383-1402.

    Full description at Econpapers || Download paper

  2. Measuring and Forecasting Stock Market Volatilities with High-Frequency Data. (2025). Vo, Minh.
    In: Computational Economics.
    RePEc:kap:compec:v:65:y:2025:i:6:d:10.1007_s10614-024-10674-6.

    Full description at Econpapers || Download paper

  3. Volatility forecasting and volatility-timing strategies: A machine learning approach. (2025). Ryu, Doojin ; Cho, Hoon ; Chun, Dohyun.
    In: Research in International Business and Finance.
    RePEc:eee:riibaf:v:75:y:2025:i:c:s0275531924005166.

    Full description at Econpapers || Download paper

  4. Option profit and loss attribution and pricing in the Chinese options market. (2025). Ruan, Xinfeng ; Fan, Zheqi ; Jia, Xiaolan.
    In: Pacific-Basin Finance Journal.
    RePEc:eee:pacfin:v:91:y:2025:i:c:s0927538x25000198.

    Full description at Econpapers || Download paper

  5. Learning about tail risk: Machine learning and combination with regularization in market risk management. (2025). Wang, Jianzhou ; Lu, Helen ; Zhang, Dongxue ; Xing, Qianyi.
    In: Omega.
    RePEc:eee:jomega:v:133:y:2025:i:c:s0305048324002135.

    Full description at Econpapers || Download paper

  6. Forecasting realized volatility with spillover effects: Perspectives from graph neural networks. (2025). Cucuringu, Mihai ; Dong, Xiaowen ; Zhang, Chao ; Pu, Xingyue.
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:41:y:2025:i:1:p:377-397.

    Full description at Econpapers || Download paper

  7. A novel HAR-type realized volatility forecasting model using graph neural network. (2025). Yin, Xuebao ; Yao, Yuhang ; Hu, Nan.
    In: International Review of Financial Analysis.
    RePEc:eee:finana:v:98:y:2025:i:c:s1057521924008135.

    Full description at Econpapers || Download paper

  8. A long short-term memory enhanced realized conditional heteroskedasticity model. (2025). Kohn, Robert ; Tran, Minh-Ngoc ; Wang, Chao ; Liu, Chen.
    In: Economic Modelling.
    RePEc:eee:ecmode:v:142:y:2025:i:c:s0264999324002797.

    Full description at Econpapers || Download paper

  9. Integrated GARCH-GRU in Financial Volatility Forecasting. (2025). Cui, Zhenyu ; Yang, Steve ; Wei, Jingyi.
    In: Papers.
    RePEc:arx:papers:2504.09380.

    Full description at Econpapers || Download paper

  10. SpotV2Net: Multivariate Intraday Spot Volatility Forecasting via Vol-of-Vol-Informed Graph Attention Networks. (2025). Toscano, Giacomo ; Brini, Alessio.
    In: Papers.
    RePEc:arx:papers:2401.06249.

    Full description at Econpapers || Download paper

  11. Global Neural Networks and The Data Scaling Effect in Financial Time Series Forecasting. (2025). Kohn, Robert ; Gerlach, Richard ; Tran, Minh-Ngoc ; Liu, Chen ; Wang, Chao.
    In: Papers.
    RePEc:arx:papers:2309.02072.

    Full description at Econpapers || Download paper

  12. Forecasting Crude Oil Volatility Using the Deep Learning‐Based Hybrid Models With Common Factors. (2024). Hu, Nan ; Yang, KE ; Tian, Fengping.
    In: Journal of Futures Markets.
    RePEc:wly:jfutmk:v:44:y:2024:i:8:p:1429-1446.

    Full description at Econpapers || Download paper

  13. Forecasting the high‐frequency volatility based on the LSTM‐HIT model. (2024). Wang, Min ; Zhuang, Ziyan ; Liu, Guangying.
    In: Journal of Forecasting.
    RePEc:wly:jforec:v:43:y:2024:i:5:p:1356-1373.

    Full description at Econpapers || Download paper

  14. Predicting carbon and oil price returns using hybrid models based on machine and deep learning. (2024). Perote, Javier ; Molinamuoz, Jesus ; Moravalencia, Andres.
    In: Intelligent Systems in Accounting, Finance and Management.
    RePEc:wly:isacfm:v:31:y:2024:i:2:n:e1563.

    Full description at Econpapers || Download paper

  15. Artificial intelligence in Finance: a comprehensive review through bibliometric and content analysis. (2024). Cucculelli, Marco ; Goga, Xhoana ; Bahoo, Salman ; Mondolo, Jasmine.
    In: SN Business & Economics.
    RePEc:spr:snbeco:v:4:y:2024:i:2:d:10.1007_s43546-023-00618-x.

    Full description at Econpapers || Download paper

  16. A hybrid econometrics and machine learning based modeling of realized volatility of natural gas. (2024). Kristjanpoller, Werner.
    In: Financial Innovation.
    RePEc:spr:fininn:v:10:y:2024:i:1:d:10.1186_s40854-023-00577-0.

    Full description at Econpapers || Download paper

  17. Predicting the volatility of Chinese stock indices based on realized recurrent conditional heteroskedasticity. (2024). Zhao, Huanyu ; Zhang, Gongtao ; Fan, Rujie.
    In: PLOS ONE.
    RePEc:plo:pone00:0308967.

    Full description at Econpapers || Download paper

  18. Forecasting Value-at-Risk Using Deep Neural Network Quantile Regression*. (2024). Raftapostolos, Aristeidis ; Kapetanios, George ; Chronopoulos, Ilias.
    In: Journal of Financial Econometrics.
    RePEc:oup:jfinec:v:22:y:2024:i:3:p:636-669..

    Full description at Econpapers || Download paper

  19. Increasing the Hong Kong Stock Market Predictability: A Temporal Convolutional Network Approach. (2024). Ge, Lei ; Guo, Lingling ; Chen, Shun.
    In: Computational Economics.
    RePEc:kap:compec:v:64:y:2024:i:5:d:10.1007_s10614-024-10547-y.

    Full description at Econpapers || Download paper

  20. Scenario Generation for Financial Data with a Machine Learning Approach Based on Realized Volatility and Copulas. (2024). Valle, Cristiano Arbex ; Mesquita, Caio Mario ; Machado, Adriano Cesar.
    In: Computational Economics.
    RePEc:kap:compec:v:63:y:2024:i:5:d:10.1007_s10614-023-10387-2.

    Full description at Econpapers || Download paper

  21. Does managerial market timing with stock repurchases exist in stock market? Evidence from Thailand. (2024). Kumpamool, Chamaiporn.
    In: International Review of Economics & Finance.
    RePEc:eee:reveco:v:96:y:2024:i:pb:s1059056024006348.

    Full description at Econpapers || Download paper

  22. Geopolitical risks and crude oil futures volatility: Evidence from machine learning. (2024). Niu, Zibo ; Wang, Wentao ; Zhang, Hongwei.
    In: Resources Policy.
    RePEc:eee:jrpoli:v:98:y:2024:i:c:s0301420724007414.

    Full description at Econpapers || Download paper

  23. A False Discovery Rate approach to optimal volatility forecasting model selection. (2024). Baker, Paul L ; Platanakis, Emmanouil ; Hassanniakalager, Arman.
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:40:y:2024:i:3:p:881-902.

    Full description at Econpapers || Download paper

  24. Forecasting exchange rate volatility: An amalgamation approach. (2024). Souropanis, Ioannis ; Alexandridis, Antonios K ; Panopoulou, Ekaterini.
    In: Journal of International Financial Markets, Institutions and Money.
    RePEc:eee:intfin:v:97:y:2024:i:c:s1042443124001331.

    Full description at Econpapers || Download paper

  25. Do industries predict stock market volatility? Evidence from machine learning models. (2024). Demirer, Riza ; Niu, Zibo ; Zhu, Xuehong ; Suleman, Muhammad Tahir ; Zhang, Hongwei.
    In: Journal of International Financial Markets, Institutions and Money.
    RePEc:eee:intfin:v:90:y:2024:i:c:s1042443123001713.

    Full description at Econpapers || Download paper

  26. Chaos, overfitting and equilibrium: To what extent can machine learning beat the financial market?. (2024). Peng, Yaohao ; de Moraes, Joo Gabriel.
    In: International Review of Financial Analysis.
    RePEc:eee:finana:v:95:y:2024:i:pb:s105752192400406x.

    Full description at Econpapers || Download paper

  27. Machine-learning stock market volatility: Predictability, drivers, and economic value. (2024). Hansen, Erwin ; Diaz, Juan D ; Cabrera, Gabriel.
    In: International Review of Financial Analysis.
    RePEc:eee:finana:v:94:y:2024:i:c:s1057521924002187.

    Full description at Econpapers || Download paper

  28. Prediction of realized volatility and implied volatility indices using AI and machine learning: A review. (2024). Westgaard, Sjur ; Risstad, Morten ; Isern, Hkon Ramon ; Gunnarsson, Elias Sovik ; Vigdel, Benjamin ; Kaloudis, Aristidis.
    In: International Review of Financial Analysis.
    RePEc:eee:finana:v:93:y:2024:i:c:s1057521924001534.

    Full description at Econpapers || Download paper

  29. Volatility prediction for the energy sector with economic determinants: Evidence from a hybrid model. (2024). Wang, Yuejing ; Jiang, Ying ; Liu, Xiaoquan ; Ye, Wuyi.
    In: International Review of Financial Analysis.
    RePEc:eee:finana:v:92:y:2024:i:c:s1057521924000267.

    Full description at Econpapers || Download paper

  30. A novel integrated method for improving the forecasting accuracy of crude oil: ESMD-CFastICA-BiLSTM-Attention. (2024). Ouyang, Zisheng ; Zhou, Xuewei ; Wang, Ren ; Lu, Min.
    In: Energy Economics.
    RePEc:eee:eneeco:v:138:y:2024:i:c:s0140988324005590.

    Full description at Econpapers || Download paper

  31. Forecasting realized volatility: Does anything beat linear models?. (2024). Zevallos, Mauricio ; Rubesam, Alexandre ; Branco, Rafael R.
    In: Journal of Empirical Finance.
    RePEc:eee:empfin:v:78:y:2024:i:c:s0927539824000598.

    Full description at Econpapers || Download paper

  32. COMEX Copper Futures Volatility Forecasting: Econometric Models and Deep Learning. (2024). Wang, Zian ; Lu, Xinyi.
    In: Papers.
    RePEc:arx:papers:2409.08356.

    Full description at Econpapers || Download paper

  33. Loss-based Bayesian Sequential Prediction of Value at Risk with a Long-Memory and Non-linear Realized Volatility Model. (2024). Gerlach, Richard ; Peiris, Rangika ; Tran, Minh-Ngoc ; Wang, Chao.
    In: Papers.
    RePEc:arx:papers:2408.13588.

    Full description at Econpapers || Download paper

  34. The Hybrid Forecast of S&P 500 Volatility ensembled from VIX, GARCH and LSTM models. (2024). Ślepaczuk, Robert ; Roszyk, Natalia.
    In: Papers.
    RePEc:arx:papers:2407.16780.

    Full description at Econpapers || Download paper

  35. HARd to Beat: The Overlooked Impact of Rolling Windows in the Era of Machine Learning. (2024). Chassot, Jonathan ; Audrino, Francesco.
    In: Papers.
    RePEc:arx:papers:2406.08041.

    Full description at Econpapers || Download paper

  36. From GARCH to Neural Network for Volatility Forecast. (2024). Hung, Wilfred Siu ; Zhao, Pengfei ; Zhu, Haoren ; Lee, Dik Lun.
    In: Papers.
    RePEc:arx:papers:2402.06642.

    Full description at Econpapers || Download paper

  37. Forecasting realized volatility in turbulent times using temporal fusion transformers. (2023). Frank, Johannes.
    In: FAU Discussion Papers in Economics.
    RePEc:zbw:iwqwdp:032023.

    Full description at Econpapers || Download paper

  38. Do world stock markets “jump” together? A measure of high-frequency volatility risk spillover networks. (2023). Liu, Xiao-Xing ; Zhou, Dong-Hai.
    In: Journal of International Financial Markets, Institutions and Money.
    RePEc:eee:intfin:v:88:y:2023:i:c:s1042443123001117.

    Full description at Econpapers || Download paper

  39. Using fear, greed and machine learning for optimizing global portfolios: A Black-Litterman approach. (2023). Barua, Ronil ; Sharma, Anil K.
    In: Finance Research Letters.
    RePEc:eee:finlet:v:58:y:2023:i:pc:s1544612323008875.

    Full description at Econpapers || Download paper

  40. Forecasting stock market volatility with various geopolitical risks categories: New evidence from machine learning models. (2023). Niu, Zibo ; Zhang, Hongwei ; Wang, Chenlu.
    In: International Review of Financial Analysis.
    RePEc:eee:finana:v:89:y:2023:i:c:s1057521923002545.

    Full description at Econpapers || Download paper

  41. Forecasting stock index return and volatility based on GAVMD- Carbon-BiLSTM: How important is carbon emission trading?. (2023). Ouyang, Zisheng ; Lai, Yongzeng ; Lu, Min.
    In: Energy Economics.
    RePEc:eee:eneeco:v:128:y:2023:i:c:s0140988323006321.

    Full description at Econpapers || Download paper

  42. Forecasting realized volatility with machine learning: Panel data perspective. (2023). Liu, Zhi ; Bai, LU ; He, Lidan ; Zhu, Haibin.
    In: Journal of Empirical Finance.
    RePEc:eee:empfin:v:73:y:2023:i:c:p:251-271.

    Full description at Econpapers || Download paper

  43. The role of uncertainty in forecasting volatility comovements across stock markets. (2023). Rossi, Eduardo ; Palomba, Giulio ; Bucci, Andrea.
    In: Economic Modelling.
    RePEc:eee:ecmode:v:125:y:2023:i:c:s0264999323001219.

    Full description at Econpapers || Download paper

  44. Constructing Efficient Simulated Moments Using Temporal Convolutional Networks. (2023). Creel, Michael ; Chassot, Jonathan.
    In: Working Papers.
    RePEc:bge:wpaper:1412.

    Full description at Econpapers || Download paper

  45. Deep Learning Enhanced Realized GARCH. (2023). Kohn, Robert ; Tran, Minh-Ngoc ; Liu, Chen ; Wang, Chao.
    In: Papers.
    RePEc:arx:papers:2302.08002.

    Full description at Econpapers || Download paper

  46. Volatility forecasting with machine learning and intraday commonality. (2023). Qian, Zhongmin ; Zhang, Yihuang ; Cucuringu, Mihai.
    In: Papers.
    RePEc:arx:papers:2202.08962.

    Full description at Econpapers || Download paper

  47. Forecasting Commodity Market Returns Volatility: A Hybrid Ensemble Learning GARCH‐LSTM based Approach. (2022). Gupta, Shivang ; Ghate, Kshitish ; Kakade, Kshitij ; Mishra, Aswini Kumar.
    In: Intelligent Systems in Accounting, Finance and Management.
    RePEc:wly:isacfm:v:29:y:2022:i:2:p:103-117.

    Full description at Econpapers || Download paper

  48. A Comprehensive Study of Market Prediction from Efficient Market Hypothesis up to Late Intelligent Market Prediction Approaches. (2022). Raoofi, Ali ; Aminimehr, Amirhossein.
    In: Computational Economics.
    RePEc:kap:compec:v:60:y:2022:i:2:d:10.1007_s10614-022-10283-1.

    Full description at Econpapers || Download paper

  49. Deep learning in the Chinese stock market: The role of technical indicators. (2022). Yan, Sheng ; Ma, Chenyao.
    In: Finance Research Letters.
    RePEc:eee:finlet:v:49:y:2022:i:c:s1544612322002653.

    Full description at Econpapers || Download paper

  50. Nonparametric Value-at-Risk via Sieve Estimation. (2022). Ratz, Philipp.
    In: Papers.
    RePEc:arx:papers:2205.07101.

    Full description at Econpapers || Download paper

  51. Profitability of moving-average technical analysis over the firm life cycle: Evidence from Taiwan. (2021). Shih, Yi-Cheng ; Su, Xuan-Qi ; Lin, Li-Feng ; Chen, Kuan-Hau.
    In: Pacific-Basin Finance Journal.
    RePEc:eee:pacfin:v:69:y:2021:i:c:s0927538x21001402.

    Full description at Econpapers || Download paper

  52. A machine learning approach to volatility forecasting. (2021). Veliyev, Bezirgen ; Siggaard, Mathias ; Christensen, Kim.
    In: CREATES Research Papers.
    RePEc:aah:create:2021-03.

    Full description at Econpapers || Download paper

  53. Testing the performance of technical analysis and sentiment-TAR trading rules in the Malaysian stock market. (2020). Tan, Siow-Hooi ; Lai, Ming-Ming ; Chong, Lee-Lee ; Tey, Eng-Xin.
    In: The North American Journal of Economics and Finance.
    RePEc:eee:ecofin:v:51:y:2020:i:c:s1062940818302250.

    Full description at Econpapers || Download paper

  54. Tactical asset allocation on technical trading rules and data snooping. (2019). Cao, Zhiguang ; Wang, Qiyu ; Han, Qiheng ; Yang, Junmin.
    In: Pacific-Basin Finance Journal.
    RePEc:eee:pacfin:v:57:y:2019:i:c:s0927538x18300775.

    Full description at Econpapers || Download paper

  55. Too much cocited documents. This list is not complete

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-09-24 04:36:37 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.