313
Experimento 11
LENTES Y ESPEJOS ESFÉRICOS
Objetivos
1. Resolver ejercicios de formación de imágenes en espejos y lentes esféricos, y
2. Verificar experimentalmente la ecuación de Gauss para lentes convergentes
esféricos y delgados
Teoría
La óptica geométrica estudia la propagación de la luz asumiendo que viaja como
si se tratara de rayos rectos que solamente se desvían cuando sufren reflexión especular, o
cuando encuentran la interfaz entre dos medios transparentes (refracción). En un ejercicio
anterior estudiamos las leyes de la reflexión y la refracción. En este ejercicio vamos a
estudiar cómo se reflejan los rayos luminosos en espejos esféricos y cómo se refractan en
lentes delgadas. Tanto los espejos, como las lentes, son esféricas porque sus superficies
reflectoras, o refractoras, son cascos esféricos, es decir, provienen de esferas
Espejos esféricos
Las figuras 1 (a) y (b) muestran un espejo esférico cóncavo a la izquierda, y uno
convexo a la derecha. La línea horizontal sobre la cual se ubican los puntos C y F es el
eje principal de cada espejo. En ambos casos tenemos un objeto, situado frente a cada
espejo, representado por una flecha derecha de longitud . La distancia desde la flecha
hasta el espejo está representada por do. Se define la distancia focal f, como aquella que
existe entre un punto llamado foco, identificado como F en cada figura, y el vértice del
espejo. Esta distancia es igual a la mitad del radio de la superficie esférica y su
importancia estriba en que un haz luminoso, que incide sobre el espejo, viajando
paralelamente al eje principal, se refleja pasando por este punto, si el espejo es cóncavo, o
como si saliera de este punto, si el espejo es convexo. La distancia focal es positiva para
espejos cóncavos y negativa para espejos convexos. El radio de curvatura de cada espejo
se define con la letra r. La ubicación de la imagen se encuentra a una distancia di. Las
distancias del objeto al espejo, de la imagen al espejo, y la distancia focal están
relacionadas entre sí según la siguiente fórmula establecida por Gauss,
o i
1 1 1
d d f
+ =
El tamaño de la imagen se relaciona con el del objeto a través de la ecuación,
i
o
' d
m
d
= = −
Donde ’ es el tamaño de la imagen, y m su amplificación. Si ⏐m⏐ > 1, la
imagen es mayor que el objeto, de lo contrario es menor. Si m > 0, la imagen es derecha,
de lo contrario, invertida
314
Figura 1 Formación de imágenes en espejos cóncavos y convexos
Ejemplo 1
Sea un espejo cóncavo con una distancia focal f = 12 cm. Un objeto, cuya longitud es de
5 cm, se encuentra a una distancia do = 20 cm frente al espejo. Encuentre la posición de la
imagen y su longitud, y explique las siguientes características: (1) Su tamaño, (2) Si está
derecha o invertida, y (3) Si es real o virtual. (En la solución expuesta en seguida
discutiremos lo que son imágenes reales y virtuales)
Solución: Conocemos los valores de dos de las tres variables de la ecuación de
Gauss: do y f. Necesitamos encontrar el valor de la única variable desconocida, di,
así que la despejamos de la ecuación y sustituimos los valores dados,
o
i
o
12 20 240
30cm
20 12 8
fd
d
d f
×
= = = =
− −
Calculamos la amplificación de la imagen,
i
o
30
1.5
20
d
m
d
= − = − = −
Por lo tanto, ’ = m = (-1.5)(5) = -7.5 cm. (1) En cuanto a su tamaño, vemos
que la amplificación tiene un valor absoluto mayor que la unidad, lo que
significa que la imagen es mayor que el objeto. (2) Por otro lado, en cuanto a
si está derecha o invertida, vemos que m es menor que cero, lo cual significa
que la imagen está invertida. (3) Por lo que respecta a si la imagen es real o
virtual, esto depende de si di es positiva o negativa. De ser positiva, la imagen
es real. De lo contrario, virtual. En este ejemplo es real
El ejemplo 1 describe una situación similar a la de la figura 1 (a). Notemos que la
aplicación de las dos ecuaciones provistas produce resultados acordes con la figura
Ejemplo 2
Sea un espejo convexo con una distancia focal f = -12 cm. Un objeto, cuya longitud es
de 5 cm, se encuentra a una distancia do = 20 cm frente al espejo. Encuentre la posición
de la imagen y su longitud, y explique sus características: (1) Su tamaño, (2) Si está
derecha o invertida, y (3) Si es real o virtual
315
Solución: Nuevamente conocemos los valores de dos de las tres variables de la
ecuación de Gauss. Note, sin embargo, que en este caso, por tratarse de un espejo
convexo, la distancia focal es negativa. De cualquier forma, necesitamos
encontrar el valor de la única variable desconocida, así que la despejamos de la
ecuación y sustituimos los valores dados,
o
i
o
12 20 240
7.5cm
20 ( 12) 32
fd
d
d f
− × −
= = = = −
− − −
Calculamos la amplificación de la imagen,
i
o
7.5
0.375
20
d
m
d
−
= − = − =
Por lo tanto, ’ = m = (0.375)(5) = 1.875 cm. (1) En cuanto a su tamaño, vemos
que la amplificación tiene un valor absoluto menor que la unidad, lo que
significa que la imagen es menor que el objeto. (2) Por otro lado, en cuanto
a si está derecha o invertida, vemos que m es mayor que cero, lo cual
significa que la imagen está derecha. (3) Por lo que respecta a si la imagen es
real o virtual, vemos que la distancia di es negativa, por lo tanto, la imagen es
virtual
El ejemplo 2 describe una situación similar a la de la figura 1 (b). Notemos que la
aplicación de las dos ecuaciones provistas produce resultados acordes con la figura
Ejercicio 1
En la siguiente tabla tenemos algunos datos para un espejo cóncavo y uno convexo.
Usted debe completar las celdas vacías de la tabla 1 usando los datos conocidos y las
ecuaciones correspondientes. En cada caso haga los dibujos como los de las figuras 1 (a)
y (b) y compruebe que estos dibujos están de acuerdo con los resultados numéricos
Tabla 1. Datos para espejos
Variables Cóncavo Convexo
f 10 cm -20 cm
do 30 cm
di -4 cm
m
¿Imagen real
o virtual?
¿Imagen derecha
o invertida?
¿Imagen agrandada
o reducida?
Respuestas: Espejo cóncavo, 15 cm, - ½, real, invertida, reducida. Espejo convexo, 5 cm,
0.8, virtual, derecha, reducida
316
Lentes esféricos delgados
La figura 2 muestra un lente convergente, esférico y delgado. La línea horizontal
sobre la cual se ubican los puntos C, F, F’ y C’ es el eje principal del lente. Al lado
izquierdo hay un objeto, situado frente al lente, representado por una flecha derecha de
longitud . La distancia desde la flecha hasta el lente está representada por do. Se define
la distancia focal f, como aquella que existe entre un punto llamado foco, identificado
como F en la figura 2, y el centro del lente. Note que en los lentes delgados hay dos
focos, situados simétricamente a cada lado. La distancia focal es igual a la mitad del radio
de la superficie esférica y su importancia estriba en que un haz luminoso que incide sobre
el lado izquierdo del lente, viajando paralelamente al eje principal, se refracta pasando
por F’, si el lente es convergente, o como si saliera de F, si el lente es divergente. La
distancia focal es positiva para lentes convergentes y negativa para lentes divergentes. El
radio de curvatura del lente se define con la letra r. La ubicación de la imagen se
encuentra a una distancia di. Las distancias del objeto al lente, de la imagen al lente, y la
distancia focal están relacionadas entre sí según la misma fórmula establecida por Gauss,
para espejos esféricos, estudiada anteriormente. La ecuación para la amplificación, m, es
también la misma que en los espejos
Ejemplo 3
Sea un lente convergente delgado con una distancia focal f = 16 cm. Un objeto, cuya
longitud es de 10 cm, se encuentra a una distancia do = 40 cm frente al lente. Esta
situación es similar a la de la figura 2. Encuentre la posición de la imagen y su longitud, y
explique las siguientes características: (1) Su tamaño, (2) Si está derecha o invertida, y
(3) Si es real o virtual
Figura 2 Formación de la imagen en un lente convergente
Solución: Dijimos que la ecuación que relaciona la distancia del objeto al lente,
del lente a la imagen y la distancia focal, es la misma ecuación de Gauss que
usamos con los espejos, por lo tanto, conocemos los valores de dos de sus tres
variables: d0 y f, y necesitamos encontrar el valor de la única variable
desconocida, di, así que la despejamos de la ecuación y sustituimos los valores
dados,
o
i
o
15 40 600
24cm
40 15 25
fd
d
d f
×
= = = =
− −
317
Calculamos la amplificación de la imagen,
i
o
24
0.6
40
d
m
d
= − = − = −
Por lo tanto, ’ = m = (-0.6)(10) = -6 cm. (1) En cuanto a su tamaño, vemos
que la amplificación tiene un valor absoluto menor que la unidad, lo que
significa que la imagen es menor que el objeto. (2) Por otro lado, en cuanto a
si está derecha o invertida, vemos que m es menor que cero, lo cual significa
que la imagen está invertida. (3) Por lo que respecta a si la imagen es real o
virtual, igual que en el caso de los espejos, esto depende de si di es positiva o
negativa. De ser positiva, la imagen es real, de lo contrario, virtual. En este
ejemplo es real
Como dijimos anteriormente, el ejemplo 3 describe una situación similar a la de la
figura 2. Notemos que la aplicación de las dos ecuaciones provistas produce resultados
acordes con la figura
Ejemplo 4
Sea un lente divergente con una distancia focal f = -16 cm. Un objeto, cuya longitud es de
10 cm, se encuentra a una distancia do = 24 cm frente al lente. Encuentre la posición de la
imagen y su longitud, y explique sus características: (1) Su tamaño, (2) Si está derecha o
invertida, y (3) Si es real o virtual. Haga el dibujo correspondiente y compruebe si sus
resultados están de acuerdo con los cálculos numéricos. Ver la figura 3
Solución: Nuevamente conocemos los valores de dos de las tres variables de la
ecuación de Gauss. Note, sin embargo, que en este caso, por tratarse de un lente
divergente, la distancia focal es negativa. De cualquier forma, necesitamos
encontrar el valor de la única variable desconocida, así que la despejamos de la
ecuación y sustituimos los valores dados,
o
i
o
16 24 384
9.6cm
24 ( 16) 40
fd
d
d f
− × −
= = = = −
− − −
Calculamos la amplificación de la imagen,
i
o
9.6
0.4
24
d
m
d
−
= − = − =
Por lo tanto, ’ = m = (0.4)(10) = 4 cm. (1) En cuanto a su tamaño, vemos
que la amplificación tiene un valor absoluto menor que la unidad, lo que
significa que la imagen es menor que el objeto. (2) Por otro lado, en cuanto a
si está derecha o invertida, vemos que m es mayor que cero, lo cual significa
que la imagen está derecha. (3) Por lo que respecta a si la imagen es real o virtual,
igual que en el caso de los espejos, esto depende de si di es positiva o
negativa. De ser positiva, la imagen es real, de lo contrario, virtual. En este
ejemplo es virtual
318
Figura 3 Formación de una imagen virtual en un lente divergente
La figura 3 muestra la situación descrita en el ejemplo 4. Notemos que representa
fielmente lo que obtuvimos en los resultados numéricos. Note que por simplicidad, y por
tratarse de un lente delgado, hemos sustituido el dibujo del lente por una línea con dos
flechas invertidas en sus extremos, lo que se usa comúnmente para representar este tipo
de lentes. Si el lente fuera convergente, las puntas de las flechas no estarían invertidas
Ejercicio 2
En la tabla 2 tenemos algunos datos para un lente convergente y uno divergente. Usted
debe completar las celdas vacías de esa tabla usando los datos conocidos y las ecuaciones
correspondientes. En cada caso haga los dibujos como los de las figuras 2 y 3 y
compruebe que estos dibujos están de acuerdo con los resultados numéricos
Respuestas: Lente convergente, 20 cm, - 1, real, invertida, del mismo tamaño que el
objeto. Lente divergente, -6 cm, 0.6, virtual, derecha, reducida
Tabla 2. Datos para lentes
Variables Convergente Divergente
f 10 cm -15 cm
do 20 cm 10 cm
di
m
¿Imagen real
o virtual?
¿Imagen derecha
o invertida?
¿Imagen agrandada
o reducida?
Materiales y equipo
Un banco óptico,
Pantalla,
Juego de dos lentes convergentes (f1 = 100 mm y f2 = 200 mm) y
Fuente luminosa
319
Procedimiento
1. Asegúrese de que en su mesa de trabajo está instalado el banco óptico con los
accesorios mencionados en el listado de materiales y equipo
2. Coteje si la pantalla está en la posición 0 cm (cero) de la escala del banco óptico.
De no ser así, sitúela en esa posición
3. Coteje si la fuente luminosa está en la posición 100 cm de la escala del banco
óptico. De no ser así, sitúela en esa posición
4. Asegúrese de que la fuente luminosa tiene el dibujo de dos flechas
perpendiculares, en su cara frontal
5. Note que hay un lente convergente en el banco óptico situado entre la fuente
luminosa y la pantalla. Ver la figura 4
Figura 4 Para formar una imagen nítida en la pantalla ajustamos la posición del lente
6. Encienda la fuente luminosa y mueva el lente hacia la pantalla, o alejándolo
de ella, hasta formar una imagen nítida de las flechas
7. Mida los valores de las distancias do y di y escríbalos en su hoja de informe
junto con la distancia focal, que está escrita en el soporte del lente
8. Repita los pasos 5 y 6 para otra posición del lente hasta formar una nueva
imagen, sin alterar las posiciones originales de la pantalla y la fuente luminosa
9. Haga el cálculo de las dos distancias di usando la fórmula de Gauss de los lentes
delgados y los valores medidos de las dos distancias do y compárelos con los
valores medidos
10. Compruebe si las imágenes tienen las características esperadas de tamaño,
derechas o invertidas y reales o virtuales, predichas por la teoría
11. Repita el experimento anterior cambiando el lente por otro con una distancia
focal diferente
320
Preguntas
Conteste correctamente antes de hacer el experimento
1. La óptica geométrica estudia:
a. La propagación de la luz como si se tratara de un fenómeno ondulatorio,
b. La geometría de los lentes y espejos esféricos,
c. La propagación de la luz asumiendo que viaja como si se tratara de rayos
rectos,
d. Todo lo relacionado con la luz, o
e. Las leyes de los instrumentos ópticos
2. En la óptica geométrica los rayos de luz:
a. Siguen trayectorias curvilíneas,
b. Son frentes de ondas esféricas,
c. Se desvían solamente cuando sufren reflexión especular o cuando encuentran
la interfaz entre dos medios transparentes,
d. Nunca sufren desviación, o
e. Resultan de la reflexión difusa
3. Decimos que un espejo es esférico:
a. Cuando es una esfera,
b. Porque es capaz de refractar la luz,
c. Porque tiene un centro y un radio,
d. Porque su superficie reflectora es parte de un casco esférico, o
e. Cuando su perímetro es circular
4. La línea horizontal que aloja a los puntos C y F de un espejo:
a. Es su eje principal,
b. Cambia con la distancia del objeto,
c. Es un rayo de luz,
d. Tiene otros puntos C y F detrás del espejo, o
e. No aloja a ningún punto de interés
5. La distancia focal de un lente o espejo esféricos:
a. Es el doble del radio,
b. Es igual al radio,
c. Es la distancia que existe entre el centro de curvatura del espejo y cualquier
punto de su superficie reflectora,
d. Varía con la distancia de la imagen, o
e. Es la mitad del radio
321
6. Las distancias del objeto al lente, del lente a la imagen y la focal:
a. Son constantes para cada lente,
b. Están relacionadas entre sí según una fórmula descubierta por Gauss,
c. Son negativas en los lentes divergentes,
d. Son virtuales, o
e. Dependen de la amplificación de la imagen
7. Cuando la amplificación de una imagen formada por un espejo esférico es negativa
implica que la imagen:
a. Es virtual,
b. Está reducida con respecto al objeto,
c. Está derecha,
d. Está invertida, o
e. No existe
8. Cuando el valor absoluto de la amplificación de una imagen formada por un lente
esférico es menor que la unidad implica que la imagen:
a. Es virtual,
b. No existe,
c. Está derecha,
d. Está invertida, o
e. Está reducida con respecto al objeto
9. Cuando el valor de la distancia desde la imagen al lente es negativa implica que la
imagen:
a. Es virtual,
b. No existe,
c. Está derecha,
d. Está invertida, o
e. Está reducida con respecto al objeto
10. Los lentes esféricos pueden ser:
a. Planos,
b. Convergentes,
c. Convexos,
d. Cóncavos, o
e. Parabólicos
322
11. En la tabla 3 tenemos algunos datos para un espejo cóncavo y uno convexo. Usted
debe completar las celdas vacías de la tabla usando los datos conocidos y las
ecuaciones correspondientes
Tabla 3
Variables Cóncavo Convexo
F 10 cm -20 cm
d0 30 cm
di -4 cm
M
¿Imagen real
o virtual?
¿Imagen derecha
o invertida?
¿Imagen agrandada
o reducida?
12. En la tabla 4 tenemos algunos datos para un lente convergente y uno divergente.
Usted debe completar las celdas vacías de la tabla usando los datos conocidos y las
ecuaciones correspondientes
Tabla 4
Variables Convergente Divergente
f 10 cm -15 cm
d0 20 cm 10 cm
di
m
¿Imagen real
o virtual?
¿Imagen derecha
o invertida?
¿Imagen agrandada
o reducida?
323
Informe del Experimento 11. Lentes y espejos esféricos
Sección ________ Mesa ____________
Fecha: _______________________________________________________________
Estudiantes:
1. __________________________________________________________________
2. __________________________________________________________________
3. __________________________________________________________________
4. __________________________________________________________________
Primer lente. Primera imagen
Distancia focal, f = __________________cm
1. Enfoque la imagen de las flechas sobre la pantalla ajustando cuidadosamente la
posición del lente. Muévalo hacia la pantalla o hacia la fuente luminosa hasta obtener
una imagen nítida
2. Anote en seguida la posición del lente según identificada en la cinta métrica del banco
óptico. Ver la figura 4
3. Posición del lente x = _________________cm
4. Escriba el valor de la distancia di = ____________________cm. Note que este valor
es la posición del lente. Este es el valor medido
5. Escriba el valor de la distancia do = ___________________cm. Note que este valor es
100 – x
6. Use la ecuación de Gauss para calcular el valor esperado de di dados f y do. Muestre
sus cálculos en el espacio provisto abajo
324
7. Calcule la diferencia relativa porcentual Δ% entre las distancias di medida y calculada
i, medida i,calculada
i, calculada
% 100
d
d d−
Δ = × =
8. Calcule el valor de la amplificación de la imagen,
i
o
d
m
d
= − = _____________________
9. De acuerdo con los resultados teóricos determine cómo debe ser la imagen en cuanto
a su tamaño, si es derecha o invertida y real o virtual ¿Concuerdan estos resultados
teóricos con lo que obtuvo en el ejercicio?
Sí
No
Primer lente. Segunda imagen
Distancia focal (debe ser la misma que en el primer ejercicio),
f = __________________cm
10. Manteniendo fija la distancia entre la pantalla y la fuente luminosa deslice el lente a
todo lo largo del banco hasta formar una nueva imagen en una posición del lente
distinta a la anterior. Ajuste la posición del lente moviéndolo hacia la pantalla o hacia
la fuente luminosa hasta obtener una imagen nítida
11. Anote en seguida la nueva posición del lente según identificada en la cinta métrica del
banco óptico. Ver la figura 4
12. Posición del lente x = _________________cm
13. Escriba el valor de la distancia di = ____________________cm. Note que este valor
es la posición del lente. Este es el valor medido
14. Escriba el valor de la distancia do = ___________________cm. Note que este valor es
100 – x
15. Use la ecuación de Gauss para calcular el valor esperado de di dados f y do. Muestre
sus cálculos en el espacio provisto abajo
325
16. Calcule la diferencia relativa porcentual Δ% entre las distancias di medida y calculada
i, medida i,calculada
i, calculada
% 100
d
d d−
Δ = × =
17. Calcule el valor de la amplificación de la imagen,
i
o
d
m
d
= − = _____________________
18. De acuerdo con los resultados teóricos determine cómo debe ser la imagen en cuanto
a su tamaño, si es derecha o invertida y real o virtual ¿Concuerdan estos resultados
teóricos con lo que obtuvo en el ejercicio?
Sí
No
Segundo lente. Primera imagen
Distancia focal, f = __________________cm
19. Enfoque la imagen de las flechas sobre la pantalla ajustando cuidadosamente la
posición del lente. Muévalo hacia la pantalla o hacia la fuente luminosa hasta obtener
una imagen nítida
20. Anote en seguida la posición del lente según identificada en la cinta métrica del banco
óptico. Ver la figura 4
21. Posición del lente x = _________________cm
22. Escriba el valor de la distancia di = ____________________cm. Note que este valor
es la posición del lente. Este es el valor medido
23. Escriba el valor de la distancia do = ___________________cm. Note que este valor es
100 – x
24. Use la ecuación de Gauss para calcular el valor esperado de di dados f y do. Muestre
sus cálculos en el espacio provisto abajo
326
25. Calcule la diferencia relativa porcentual Δ% entre las distancias di medida y calculada
i, medida i,calculada
i, calculada
% 100
d
d d−
Δ = × =
26. Calcule el valor de la amplificación de la imagen,
i
o
d
m
d
= − = _____________________
27. De acuerdo con los resultados teóricos determine cómo debe ser la imagen en cuanto
a su tamaño, si es derecha o invertida y real o virtual ¿Concuerdan estos resultados
teóricos con lo que obtuvo en el ejercicio?
Sí
No
Segundo lente. Segunda imagen
Distancia focal (debe ser la misma que en el primer ejercicio), f =
__________________cm
28. Manteniendo fija la distancia entre la pantalla y la fuente luminosa deslice el lente a
todo lo largo del banco hasta formar una nueva imagen en una posición del lente
distinta a la anterior. Ajuste la posición del lente moviéndolo hacia la pantalla o hacia
la fuente luminosa hasta obtener una imagen nítida
29. Anote en seguida la nueva posición del lente según identificada en la cinta métrica del
banco óptico. Ver la figura 4
30. Posición del lente x = _________________cm
31. Escriba el valor de la distancia di = ____________________cm. Note que este valor
es la posición del lente. Este es el valor medido
327
32. Escriba el valor de la distancia do = ___________________cm. Note que este valor es
100 – x
33. Use la ecuación de Gauss para calcular el valor esperado de di dados f y do. Muestre
sus cálculos en el espacio provisto abajo
34. Calcule la diferencia relativa porcentual Δ% entre las distancias di medida y calculada
i, medida i,calculada
i, calculada
% 100
d
d d−
Δ = × =
35. Calcule el valor de la amplificación de la imagen,
i
o
d
m
d
= − = _____________________
36. De acuerdo con los resultados teóricos determine cómo debe ser la imagen en cuanto
a su tamaño, si es derecha o invertida y real o virtual ¿Concuerdan estos resultados
teóricos con lo que obtuvo en el ejercicio?
Sí
No
328
Conclusiones

Más contenido relacionado

PPTX
Movimiento angular
PDF
Informe de lineas equipotenciales
PPTX
Transistor tipo mosfet
PPTX
Estructura y función de la membrana plasmática
DOCX
3 ro examen de diagnostico 2 2014 2015
PPTX
forjado
PPSX
Formación de imágenes en espejos y lentes
PPT
Trabajo de fisica: Lentes y la formacion de la imagen
Movimiento angular
Informe de lineas equipotenciales
Transistor tipo mosfet
Estructura y función de la membrana plasmática
3 ro examen de diagnostico 2 2014 2015
forjado
Formación de imágenes en espejos y lentes
Trabajo de fisica: Lentes y la formacion de la imagen

Similar a 2nd part experiment 11 (20)

PPT
Tippens fisica 7e_diapositivas_34b
PPT
Tippens fisica 7e_diapositivas_34b
PDF
Espejos.pdf
DOCX
Unidad 2 de Fisica 4
PDF
118942272 fisica-ejercicios-resueltos-soluciones-optica-geometrica-selectivid...
PPTX
Imagenes formada en espejos esféricos
PDF
9. óptica geométrica
DOC
Lab fisica iv exp.1 al 10
PDF
LAB3 OPTICA.pdf
PPTX
S07_s1 - Material de clase.pptxXXXXXUTP.
PDF
PPTX
trabajo tIPOS DE LENTES Y TRAZOS DE RAYOS (2).pptx
DOCX
Imágenes formadas por espejos concavos y convexos
PPTX
DOC
Lentes dlgadas (reparado)
PPT
Optica (1)
PDF
Imágenes ópticas, problemas Tipler, Física ..pdf
DOC
Boletín optica geométrica
Tippens fisica 7e_diapositivas_34b
Tippens fisica 7e_diapositivas_34b
Espejos.pdf
Unidad 2 de Fisica 4
118942272 fisica-ejercicios-resueltos-soluciones-optica-geometrica-selectivid...
Imagenes formada en espejos esféricos
9. óptica geométrica
Lab fisica iv exp.1 al 10
LAB3 OPTICA.pdf
S07_s1 - Material de clase.pptxXXXXXUTP.
trabajo tIPOS DE LENTES Y TRAZOS DE RAYOS (2).pptx
Imágenes formadas por espejos concavos y convexos
Lentes dlgadas (reparado)
Optica (1)
Imágenes ópticas, problemas Tipler, Física ..pdf
Boletín optica geométrica
Publicidad

Más de raul cardona (20)

PPTX
DIAPOSITIVAS SOCIALIZACION COLEGIOS ARTICULADOS.pptx
PPTX
CARTILLA 2 Y 3 CICLO 1 MODELO A CRECER.pptx
PDF
Actividad evaluativa n3 mercados capitales
PDF
Actividad evaluativa n3 revisión del intento2 rrrr
PDF
Reporte resultados (2)
PDF
Evaluacion 3 gestion ti
PDF
Evaluacion 3 gerencia y gestion ti
PDF
Actividad evaluativa n3 mercados capitales r1
PDF
Actividad evaluativa n3 revisión del intento mercados capitales
PDF
Resultados saber11 mateo
PDF
Resultados saber11 juan parra
PDF
Resultados saber11 ketty durango
PDF
Resultados saber11 victor
PDF
Resultados saber11 nayelis
PDF
Resultados saber11 luis barrios
PDF
Resultados saber11 brendy
PDF
Resultados saber11 daniela bernal
PDF
Resultados saber11 luisa rada
PDF
Resultados saber11 hector
PDF
Resultados saber11 yuliana
DIAPOSITIVAS SOCIALIZACION COLEGIOS ARTICULADOS.pptx
CARTILLA 2 Y 3 CICLO 1 MODELO A CRECER.pptx
Actividad evaluativa n3 mercados capitales
Actividad evaluativa n3 revisión del intento2 rrrr
Reporte resultados (2)
Evaluacion 3 gestion ti
Evaluacion 3 gerencia y gestion ti
Actividad evaluativa n3 mercados capitales r1
Actividad evaluativa n3 revisión del intento mercados capitales
Resultados saber11 mateo
Resultados saber11 juan parra
Resultados saber11 ketty durango
Resultados saber11 victor
Resultados saber11 nayelis
Resultados saber11 luis barrios
Resultados saber11 brendy
Resultados saber11 daniela bernal
Resultados saber11 luisa rada
Resultados saber11 hector
Resultados saber11 yuliana
Publicidad

Último (20)

DOCX
TEXTO DE TRABAJO DE EDUCACION RELIGIOSA - CUARTO GRADO.docx
PPTX
TEMA 1ORGANIZACIÓN FUNCIONAL DEL CUERPO, MEDIO INTERNO Y HOMEOSTASIS (3) [Aut...
PDF
Introducción a la historia de la filosofía
DOCX
PLAN DE CASTELLANO 2021 actualizado a la normativa
PDF
informe tipos de Informatica perfiles profesionales _pdf
PDF
Manual del Gobierno Escolar -MINEDUC.pdf
PDF
Como usar el Cerebro en las Aulas SG2 NARCEA Ccesa007.pdf
PDF
Texto Digital Los Miserables - Victor Hugo Ccesa007.pdf
PDF
MATERIAL DIDÁCTICO 2023 SELECCIÓN 1_REFORZAMIENTO 1° BIMESTRE.pdf
PDF
Telos 127 Generacion Al fa Beta - fundaciontelefonica
DOC
Manual de Convivencia 2025 actualizado a las normas vigentes
PDF
La Inteligencia Emocional - Fabian Goleman TE4 Ccesa007.pdf
PDF
Aumente su Autoestima - Lair Ribeiro Ccesa007.pdf
PDF
E1 Guía_Matemática_5°_grado.pdf paraguay
PDF
Introduccion a la Investigacion Cualitativa FLICK Ccesa007.pdf
PDF
Jodorowsky, Alejandro - Manual de Psicomagia.pdf
PPTX
Clase 3 del silabo-gestion y control financiero
PDF
Los10 Mandamientos de la Actitud Mental Positiva Ccesa007.pdf
PDF
RM2025 - FUNDAMENTOS TEÓRICOS - PEDIATRÍA.pdf
PDF
ciencia_tecnologia_sociedad Mitcham Carl. (1994)..pdf
TEXTO DE TRABAJO DE EDUCACION RELIGIOSA - CUARTO GRADO.docx
TEMA 1ORGANIZACIÓN FUNCIONAL DEL CUERPO, MEDIO INTERNO Y HOMEOSTASIS (3) [Aut...
Introducción a la historia de la filosofía
PLAN DE CASTELLANO 2021 actualizado a la normativa
informe tipos de Informatica perfiles profesionales _pdf
Manual del Gobierno Escolar -MINEDUC.pdf
Como usar el Cerebro en las Aulas SG2 NARCEA Ccesa007.pdf
Texto Digital Los Miserables - Victor Hugo Ccesa007.pdf
MATERIAL DIDÁCTICO 2023 SELECCIÓN 1_REFORZAMIENTO 1° BIMESTRE.pdf
Telos 127 Generacion Al fa Beta - fundaciontelefonica
Manual de Convivencia 2025 actualizado a las normas vigentes
La Inteligencia Emocional - Fabian Goleman TE4 Ccesa007.pdf
Aumente su Autoestima - Lair Ribeiro Ccesa007.pdf
E1 Guía_Matemática_5°_grado.pdf paraguay
Introduccion a la Investigacion Cualitativa FLICK Ccesa007.pdf
Jodorowsky, Alejandro - Manual de Psicomagia.pdf
Clase 3 del silabo-gestion y control financiero
Los10 Mandamientos de la Actitud Mental Positiva Ccesa007.pdf
RM2025 - FUNDAMENTOS TEÓRICOS - PEDIATRÍA.pdf
ciencia_tecnologia_sociedad Mitcham Carl. (1994)..pdf

2nd part experiment 11

  • 1. 313 Experimento 11 LENTES Y ESPEJOS ESFÉRICOS Objetivos 1. Resolver ejercicios de formación de imágenes en espejos y lentes esféricos, y 2. Verificar experimentalmente la ecuación de Gauss para lentes convergentes esféricos y delgados Teoría La óptica geométrica estudia la propagación de la luz asumiendo que viaja como si se tratara de rayos rectos que solamente se desvían cuando sufren reflexión especular, o cuando encuentran la interfaz entre dos medios transparentes (refracción). En un ejercicio anterior estudiamos las leyes de la reflexión y la refracción. En este ejercicio vamos a estudiar cómo se reflejan los rayos luminosos en espejos esféricos y cómo se refractan en lentes delgadas. Tanto los espejos, como las lentes, son esféricas porque sus superficies reflectoras, o refractoras, son cascos esféricos, es decir, provienen de esferas Espejos esféricos Las figuras 1 (a) y (b) muestran un espejo esférico cóncavo a la izquierda, y uno convexo a la derecha. La línea horizontal sobre la cual se ubican los puntos C y F es el eje principal de cada espejo. En ambos casos tenemos un objeto, situado frente a cada espejo, representado por una flecha derecha de longitud . La distancia desde la flecha hasta el espejo está representada por do. Se define la distancia focal f, como aquella que existe entre un punto llamado foco, identificado como F en cada figura, y el vértice del espejo. Esta distancia es igual a la mitad del radio de la superficie esférica y su importancia estriba en que un haz luminoso, que incide sobre el espejo, viajando paralelamente al eje principal, se refleja pasando por este punto, si el espejo es cóncavo, o como si saliera de este punto, si el espejo es convexo. La distancia focal es positiva para espejos cóncavos y negativa para espejos convexos. El radio de curvatura de cada espejo se define con la letra r. La ubicación de la imagen se encuentra a una distancia di. Las distancias del objeto al espejo, de la imagen al espejo, y la distancia focal están relacionadas entre sí según la siguiente fórmula establecida por Gauss, o i 1 1 1 d d f + = El tamaño de la imagen se relaciona con el del objeto a través de la ecuación, i o ' d m d = = − Donde ’ es el tamaño de la imagen, y m su amplificación. Si ⏐m⏐ > 1, la imagen es mayor que el objeto, de lo contrario es menor. Si m > 0, la imagen es derecha, de lo contrario, invertida
  • 2. 314 Figura 1 Formación de imágenes en espejos cóncavos y convexos Ejemplo 1 Sea un espejo cóncavo con una distancia focal f = 12 cm. Un objeto, cuya longitud es de 5 cm, se encuentra a una distancia do = 20 cm frente al espejo. Encuentre la posición de la imagen y su longitud, y explique las siguientes características: (1) Su tamaño, (2) Si está derecha o invertida, y (3) Si es real o virtual. (En la solución expuesta en seguida discutiremos lo que son imágenes reales y virtuales) Solución: Conocemos los valores de dos de las tres variables de la ecuación de Gauss: do y f. Necesitamos encontrar el valor de la única variable desconocida, di, así que la despejamos de la ecuación y sustituimos los valores dados, o i o 12 20 240 30cm 20 12 8 fd d d f × = = = = − − Calculamos la amplificación de la imagen, i o 30 1.5 20 d m d = − = − = − Por lo tanto, ’ = m = (-1.5)(5) = -7.5 cm. (1) En cuanto a su tamaño, vemos que la amplificación tiene un valor absoluto mayor que la unidad, lo que significa que la imagen es mayor que el objeto. (2) Por otro lado, en cuanto a si está derecha o invertida, vemos que m es menor que cero, lo cual significa que la imagen está invertida. (3) Por lo que respecta a si la imagen es real o virtual, esto depende de si di es positiva o negativa. De ser positiva, la imagen es real. De lo contrario, virtual. En este ejemplo es real El ejemplo 1 describe una situación similar a la de la figura 1 (a). Notemos que la aplicación de las dos ecuaciones provistas produce resultados acordes con la figura Ejemplo 2 Sea un espejo convexo con una distancia focal f = -12 cm. Un objeto, cuya longitud es de 5 cm, se encuentra a una distancia do = 20 cm frente al espejo. Encuentre la posición de la imagen y su longitud, y explique sus características: (1) Su tamaño, (2) Si está derecha o invertida, y (3) Si es real o virtual
  • 3. 315 Solución: Nuevamente conocemos los valores de dos de las tres variables de la ecuación de Gauss. Note, sin embargo, que en este caso, por tratarse de un espejo convexo, la distancia focal es negativa. De cualquier forma, necesitamos encontrar el valor de la única variable desconocida, así que la despejamos de la ecuación y sustituimos los valores dados, o i o 12 20 240 7.5cm 20 ( 12) 32 fd d d f − × − = = = = − − − − Calculamos la amplificación de la imagen, i o 7.5 0.375 20 d m d − = − = − = Por lo tanto, ’ = m = (0.375)(5) = 1.875 cm. (1) En cuanto a su tamaño, vemos que la amplificación tiene un valor absoluto menor que la unidad, lo que significa que la imagen es menor que el objeto. (2) Por otro lado, en cuanto a si está derecha o invertida, vemos que m es mayor que cero, lo cual significa que la imagen está derecha. (3) Por lo que respecta a si la imagen es real o virtual, vemos que la distancia di es negativa, por lo tanto, la imagen es virtual El ejemplo 2 describe una situación similar a la de la figura 1 (b). Notemos que la aplicación de las dos ecuaciones provistas produce resultados acordes con la figura Ejercicio 1 En la siguiente tabla tenemos algunos datos para un espejo cóncavo y uno convexo. Usted debe completar las celdas vacías de la tabla 1 usando los datos conocidos y las ecuaciones correspondientes. En cada caso haga los dibujos como los de las figuras 1 (a) y (b) y compruebe que estos dibujos están de acuerdo con los resultados numéricos Tabla 1. Datos para espejos Variables Cóncavo Convexo f 10 cm -20 cm do 30 cm di -4 cm m ¿Imagen real o virtual? ¿Imagen derecha o invertida? ¿Imagen agrandada o reducida? Respuestas: Espejo cóncavo, 15 cm, - ½, real, invertida, reducida. Espejo convexo, 5 cm, 0.8, virtual, derecha, reducida
  • 4. 316 Lentes esféricos delgados La figura 2 muestra un lente convergente, esférico y delgado. La línea horizontal sobre la cual se ubican los puntos C, F, F’ y C’ es el eje principal del lente. Al lado izquierdo hay un objeto, situado frente al lente, representado por una flecha derecha de longitud . La distancia desde la flecha hasta el lente está representada por do. Se define la distancia focal f, como aquella que existe entre un punto llamado foco, identificado como F en la figura 2, y el centro del lente. Note que en los lentes delgados hay dos focos, situados simétricamente a cada lado. La distancia focal es igual a la mitad del radio de la superficie esférica y su importancia estriba en que un haz luminoso que incide sobre el lado izquierdo del lente, viajando paralelamente al eje principal, se refracta pasando por F’, si el lente es convergente, o como si saliera de F, si el lente es divergente. La distancia focal es positiva para lentes convergentes y negativa para lentes divergentes. El radio de curvatura del lente se define con la letra r. La ubicación de la imagen se encuentra a una distancia di. Las distancias del objeto al lente, de la imagen al lente, y la distancia focal están relacionadas entre sí según la misma fórmula establecida por Gauss, para espejos esféricos, estudiada anteriormente. La ecuación para la amplificación, m, es también la misma que en los espejos Ejemplo 3 Sea un lente convergente delgado con una distancia focal f = 16 cm. Un objeto, cuya longitud es de 10 cm, se encuentra a una distancia do = 40 cm frente al lente. Esta situación es similar a la de la figura 2. Encuentre la posición de la imagen y su longitud, y explique las siguientes características: (1) Su tamaño, (2) Si está derecha o invertida, y (3) Si es real o virtual Figura 2 Formación de la imagen en un lente convergente Solución: Dijimos que la ecuación que relaciona la distancia del objeto al lente, del lente a la imagen y la distancia focal, es la misma ecuación de Gauss que usamos con los espejos, por lo tanto, conocemos los valores de dos de sus tres variables: d0 y f, y necesitamos encontrar el valor de la única variable desconocida, di, así que la despejamos de la ecuación y sustituimos los valores dados, o i o 15 40 600 24cm 40 15 25 fd d d f × = = = = − −
  • 5. 317 Calculamos la amplificación de la imagen, i o 24 0.6 40 d m d = − = − = − Por lo tanto, ’ = m = (-0.6)(10) = -6 cm. (1) En cuanto a su tamaño, vemos que la amplificación tiene un valor absoluto menor que la unidad, lo que significa que la imagen es menor que el objeto. (2) Por otro lado, en cuanto a si está derecha o invertida, vemos que m es menor que cero, lo cual significa que la imagen está invertida. (3) Por lo que respecta a si la imagen es real o virtual, igual que en el caso de los espejos, esto depende de si di es positiva o negativa. De ser positiva, la imagen es real, de lo contrario, virtual. En este ejemplo es real Como dijimos anteriormente, el ejemplo 3 describe una situación similar a la de la figura 2. Notemos que la aplicación de las dos ecuaciones provistas produce resultados acordes con la figura Ejemplo 4 Sea un lente divergente con una distancia focal f = -16 cm. Un objeto, cuya longitud es de 10 cm, se encuentra a una distancia do = 24 cm frente al lente. Encuentre la posición de la imagen y su longitud, y explique sus características: (1) Su tamaño, (2) Si está derecha o invertida, y (3) Si es real o virtual. Haga el dibujo correspondiente y compruebe si sus resultados están de acuerdo con los cálculos numéricos. Ver la figura 3 Solución: Nuevamente conocemos los valores de dos de las tres variables de la ecuación de Gauss. Note, sin embargo, que en este caso, por tratarse de un lente divergente, la distancia focal es negativa. De cualquier forma, necesitamos encontrar el valor de la única variable desconocida, así que la despejamos de la ecuación y sustituimos los valores dados, o i o 16 24 384 9.6cm 24 ( 16) 40 fd d d f − × − = = = = − − − − Calculamos la amplificación de la imagen, i o 9.6 0.4 24 d m d − = − = − = Por lo tanto, ’ = m = (0.4)(10) = 4 cm. (1) En cuanto a su tamaño, vemos que la amplificación tiene un valor absoluto menor que la unidad, lo que significa que la imagen es menor que el objeto. (2) Por otro lado, en cuanto a si está derecha o invertida, vemos que m es mayor que cero, lo cual significa que la imagen está derecha. (3) Por lo que respecta a si la imagen es real o virtual, igual que en el caso de los espejos, esto depende de si di es positiva o negativa. De ser positiva, la imagen es real, de lo contrario, virtual. En este ejemplo es virtual
  • 6. 318 Figura 3 Formación de una imagen virtual en un lente divergente La figura 3 muestra la situación descrita en el ejemplo 4. Notemos que representa fielmente lo que obtuvimos en los resultados numéricos. Note que por simplicidad, y por tratarse de un lente delgado, hemos sustituido el dibujo del lente por una línea con dos flechas invertidas en sus extremos, lo que se usa comúnmente para representar este tipo de lentes. Si el lente fuera convergente, las puntas de las flechas no estarían invertidas Ejercicio 2 En la tabla 2 tenemos algunos datos para un lente convergente y uno divergente. Usted debe completar las celdas vacías de esa tabla usando los datos conocidos y las ecuaciones correspondientes. En cada caso haga los dibujos como los de las figuras 2 y 3 y compruebe que estos dibujos están de acuerdo con los resultados numéricos Respuestas: Lente convergente, 20 cm, - 1, real, invertida, del mismo tamaño que el objeto. Lente divergente, -6 cm, 0.6, virtual, derecha, reducida Tabla 2. Datos para lentes Variables Convergente Divergente f 10 cm -15 cm do 20 cm 10 cm di m ¿Imagen real o virtual? ¿Imagen derecha o invertida? ¿Imagen agrandada o reducida? Materiales y equipo Un banco óptico, Pantalla, Juego de dos lentes convergentes (f1 = 100 mm y f2 = 200 mm) y Fuente luminosa
  • 7. 319 Procedimiento 1. Asegúrese de que en su mesa de trabajo está instalado el banco óptico con los accesorios mencionados en el listado de materiales y equipo 2. Coteje si la pantalla está en la posición 0 cm (cero) de la escala del banco óptico. De no ser así, sitúela en esa posición 3. Coteje si la fuente luminosa está en la posición 100 cm de la escala del banco óptico. De no ser así, sitúela en esa posición 4. Asegúrese de que la fuente luminosa tiene el dibujo de dos flechas perpendiculares, en su cara frontal 5. Note que hay un lente convergente en el banco óptico situado entre la fuente luminosa y la pantalla. Ver la figura 4 Figura 4 Para formar una imagen nítida en la pantalla ajustamos la posición del lente 6. Encienda la fuente luminosa y mueva el lente hacia la pantalla, o alejándolo de ella, hasta formar una imagen nítida de las flechas 7. Mida los valores de las distancias do y di y escríbalos en su hoja de informe junto con la distancia focal, que está escrita en el soporte del lente 8. Repita los pasos 5 y 6 para otra posición del lente hasta formar una nueva imagen, sin alterar las posiciones originales de la pantalla y la fuente luminosa 9. Haga el cálculo de las dos distancias di usando la fórmula de Gauss de los lentes delgados y los valores medidos de las dos distancias do y compárelos con los valores medidos 10. Compruebe si las imágenes tienen las características esperadas de tamaño, derechas o invertidas y reales o virtuales, predichas por la teoría 11. Repita el experimento anterior cambiando el lente por otro con una distancia focal diferente
  • 8. 320 Preguntas Conteste correctamente antes de hacer el experimento 1. La óptica geométrica estudia: a. La propagación de la luz como si se tratara de un fenómeno ondulatorio, b. La geometría de los lentes y espejos esféricos, c. La propagación de la luz asumiendo que viaja como si se tratara de rayos rectos, d. Todo lo relacionado con la luz, o e. Las leyes de los instrumentos ópticos 2. En la óptica geométrica los rayos de luz: a. Siguen trayectorias curvilíneas, b. Son frentes de ondas esféricas, c. Se desvían solamente cuando sufren reflexión especular o cuando encuentran la interfaz entre dos medios transparentes, d. Nunca sufren desviación, o e. Resultan de la reflexión difusa 3. Decimos que un espejo es esférico: a. Cuando es una esfera, b. Porque es capaz de refractar la luz, c. Porque tiene un centro y un radio, d. Porque su superficie reflectora es parte de un casco esférico, o e. Cuando su perímetro es circular 4. La línea horizontal que aloja a los puntos C y F de un espejo: a. Es su eje principal, b. Cambia con la distancia del objeto, c. Es un rayo de luz, d. Tiene otros puntos C y F detrás del espejo, o e. No aloja a ningún punto de interés 5. La distancia focal de un lente o espejo esféricos: a. Es el doble del radio, b. Es igual al radio, c. Es la distancia que existe entre el centro de curvatura del espejo y cualquier punto de su superficie reflectora, d. Varía con la distancia de la imagen, o e. Es la mitad del radio
  • 9. 321 6. Las distancias del objeto al lente, del lente a la imagen y la focal: a. Son constantes para cada lente, b. Están relacionadas entre sí según una fórmula descubierta por Gauss, c. Son negativas en los lentes divergentes, d. Son virtuales, o e. Dependen de la amplificación de la imagen 7. Cuando la amplificación de una imagen formada por un espejo esférico es negativa implica que la imagen: a. Es virtual, b. Está reducida con respecto al objeto, c. Está derecha, d. Está invertida, o e. No existe 8. Cuando el valor absoluto de la amplificación de una imagen formada por un lente esférico es menor que la unidad implica que la imagen: a. Es virtual, b. No existe, c. Está derecha, d. Está invertida, o e. Está reducida con respecto al objeto 9. Cuando el valor de la distancia desde la imagen al lente es negativa implica que la imagen: a. Es virtual, b. No existe, c. Está derecha, d. Está invertida, o e. Está reducida con respecto al objeto 10. Los lentes esféricos pueden ser: a. Planos, b. Convergentes, c. Convexos, d. Cóncavos, o e. Parabólicos
  • 10. 322 11. En la tabla 3 tenemos algunos datos para un espejo cóncavo y uno convexo. Usted debe completar las celdas vacías de la tabla usando los datos conocidos y las ecuaciones correspondientes Tabla 3 Variables Cóncavo Convexo F 10 cm -20 cm d0 30 cm di -4 cm M ¿Imagen real o virtual? ¿Imagen derecha o invertida? ¿Imagen agrandada o reducida? 12. En la tabla 4 tenemos algunos datos para un lente convergente y uno divergente. Usted debe completar las celdas vacías de la tabla usando los datos conocidos y las ecuaciones correspondientes Tabla 4 Variables Convergente Divergente f 10 cm -15 cm d0 20 cm 10 cm di m ¿Imagen real o virtual? ¿Imagen derecha o invertida? ¿Imagen agrandada o reducida?
  • 11. 323 Informe del Experimento 11. Lentes y espejos esféricos Sección ________ Mesa ____________ Fecha: _______________________________________________________________ Estudiantes: 1. __________________________________________________________________ 2. __________________________________________________________________ 3. __________________________________________________________________ 4. __________________________________________________________________ Primer lente. Primera imagen Distancia focal, f = __________________cm 1. Enfoque la imagen de las flechas sobre la pantalla ajustando cuidadosamente la posición del lente. Muévalo hacia la pantalla o hacia la fuente luminosa hasta obtener una imagen nítida 2. Anote en seguida la posición del lente según identificada en la cinta métrica del banco óptico. Ver la figura 4 3. Posición del lente x = _________________cm 4. Escriba el valor de la distancia di = ____________________cm. Note que este valor es la posición del lente. Este es el valor medido 5. Escriba el valor de la distancia do = ___________________cm. Note que este valor es 100 – x 6. Use la ecuación de Gauss para calcular el valor esperado de di dados f y do. Muestre sus cálculos en el espacio provisto abajo
  • 12. 324 7. Calcule la diferencia relativa porcentual Δ% entre las distancias di medida y calculada i, medida i,calculada i, calculada % 100 d d d− Δ = × = 8. Calcule el valor de la amplificación de la imagen, i o d m d = − = _____________________ 9. De acuerdo con los resultados teóricos determine cómo debe ser la imagen en cuanto a su tamaño, si es derecha o invertida y real o virtual ¿Concuerdan estos resultados teóricos con lo que obtuvo en el ejercicio? Sí No Primer lente. Segunda imagen Distancia focal (debe ser la misma que en el primer ejercicio), f = __________________cm 10. Manteniendo fija la distancia entre la pantalla y la fuente luminosa deslice el lente a todo lo largo del banco hasta formar una nueva imagen en una posición del lente distinta a la anterior. Ajuste la posición del lente moviéndolo hacia la pantalla o hacia la fuente luminosa hasta obtener una imagen nítida 11. Anote en seguida la nueva posición del lente según identificada en la cinta métrica del banco óptico. Ver la figura 4 12. Posición del lente x = _________________cm 13. Escriba el valor de la distancia di = ____________________cm. Note que este valor es la posición del lente. Este es el valor medido 14. Escriba el valor de la distancia do = ___________________cm. Note que este valor es 100 – x 15. Use la ecuación de Gauss para calcular el valor esperado de di dados f y do. Muestre sus cálculos en el espacio provisto abajo
  • 13. 325 16. Calcule la diferencia relativa porcentual Δ% entre las distancias di medida y calculada i, medida i,calculada i, calculada % 100 d d d− Δ = × = 17. Calcule el valor de la amplificación de la imagen, i o d m d = − = _____________________ 18. De acuerdo con los resultados teóricos determine cómo debe ser la imagen en cuanto a su tamaño, si es derecha o invertida y real o virtual ¿Concuerdan estos resultados teóricos con lo que obtuvo en el ejercicio? Sí No Segundo lente. Primera imagen Distancia focal, f = __________________cm 19. Enfoque la imagen de las flechas sobre la pantalla ajustando cuidadosamente la posición del lente. Muévalo hacia la pantalla o hacia la fuente luminosa hasta obtener una imagen nítida 20. Anote en seguida la posición del lente según identificada en la cinta métrica del banco óptico. Ver la figura 4 21. Posición del lente x = _________________cm 22. Escriba el valor de la distancia di = ____________________cm. Note que este valor es la posición del lente. Este es el valor medido 23. Escriba el valor de la distancia do = ___________________cm. Note que este valor es 100 – x 24. Use la ecuación de Gauss para calcular el valor esperado de di dados f y do. Muestre sus cálculos en el espacio provisto abajo
  • 14. 326 25. Calcule la diferencia relativa porcentual Δ% entre las distancias di medida y calculada i, medida i,calculada i, calculada % 100 d d d− Δ = × = 26. Calcule el valor de la amplificación de la imagen, i o d m d = − = _____________________ 27. De acuerdo con los resultados teóricos determine cómo debe ser la imagen en cuanto a su tamaño, si es derecha o invertida y real o virtual ¿Concuerdan estos resultados teóricos con lo que obtuvo en el ejercicio? Sí No Segundo lente. Segunda imagen Distancia focal (debe ser la misma que en el primer ejercicio), f = __________________cm 28. Manteniendo fija la distancia entre la pantalla y la fuente luminosa deslice el lente a todo lo largo del banco hasta formar una nueva imagen en una posición del lente distinta a la anterior. Ajuste la posición del lente moviéndolo hacia la pantalla o hacia la fuente luminosa hasta obtener una imagen nítida 29. Anote en seguida la nueva posición del lente según identificada en la cinta métrica del banco óptico. Ver la figura 4 30. Posición del lente x = _________________cm 31. Escriba el valor de la distancia di = ____________________cm. Note que este valor es la posición del lente. Este es el valor medido
  • 15. 327 32. Escriba el valor de la distancia do = ___________________cm. Note que este valor es 100 – x 33. Use la ecuación de Gauss para calcular el valor esperado de di dados f y do. Muestre sus cálculos en el espacio provisto abajo 34. Calcule la diferencia relativa porcentual Δ% entre las distancias di medida y calculada i, medida i,calculada i, calculada % 100 d d d− Δ = × = 35. Calcule el valor de la amplificación de la imagen, i o d m d = − = _____________________ 36. De acuerdo con los resultados teóricos determine cómo debe ser la imagen en cuanto a su tamaño, si es derecha o invertida y real o virtual ¿Concuerdan estos resultados teóricos con lo que obtuvo en el ejercicio? Sí No