SlideShare una empresa de Scribd logo
UNIVERSIDAD NACIONAL DEL ALTIPLANO PUNO
ESCUELA PROFESIONAL DE INGENIERIA CIVIL
ANALISISESTRUCTURAL I
ESTRUCTURACIÓNY PREDIMENSIONAMIENTO
ING. HECTOR AROQUIPA VELASQUEZ
PUNO, NOVIEMBRE 2012
LA INGENIERÍA ESTRUCTURAL
• Ingeniería estructural es la aplicación de los conocimientos de
la Mecánica, ciencia que estudia las fuerzas y sus efectos, al
arte de diseñar estructuras.
• En el análisis estructural conjugamos conocimientos de ciencias
básicas aplicadas al arte de la ingeniería para encontrar fuerzas
y deformaciones en una estructura.
OBJETIVOSDE LA INGENIERÍAESTRUCTURAL
 Objetivo General
Identificar, estudiar alternativas, seleccionar, analizar y verificar
resultados de la solución estructural a un problema ingenieril,
teniendo presentes los criterios de funcionalidad, economía y
seguridad.
En el diseño estructural completo se distinguen dos etapas:
análisis y diseño.
Objetivo del Análisis
Determinar fuerzas internas (axiales, cortantes, momentos) y
deformaciones de una estructura, sobre la base de: una forma
dada de la estructura, del tamaño y propiedades del material
usado en los elementos y de las cargas aplicadas.
OBJETIVOSDE LA INGENIERÍAESTRUCTURAL
 Objetivo del Diseño
Selección de la forma, de los materiales y detallado
(dimensiones, conexiones y refuerzo) de los componentes que
conforman el sistema estructural.
Ambas etapas son inseparables, parecería que se empieza por el
diseño, ya que es en esta etapa donde se crea y luego se analiza,
pero las cosas no terminan ahí, se requiere verificar que las
fuerzas encontradas en el análisis, si son soportadas y resistidas
con los materiales y dimensiones seleccionadas, por lo tanto
volveríamos al diseño, es decir, el proceso es iterativo.
OBJETIVOSDE LA INGENIERÍAESTRUCTURAL
2 pre-dimensionamiento
CAPITULO II
ESTRUCTURACION Y PREDIMENSIONAMIENTO
GENERALIDADES
DESARROLLO DE LA MEMORIA DESCRIPTIVA DEL PROYECTO.
A. EXPLICAR LAS CARACTERÍSTICAS DEL ANTEPROYECTO
ARQUITECTÓNICO.
Ambiente.
Servicios
Áreas de uso
1.2.PRE-DIMENSIONAMIENTO
• Estudio del suelo:
• 𝐺𝑟𝑎𝑣𝑎 𝑎𝑟𝑒𝑛𝑜𝑠𝑎 𝑏𝑖𝑒𝑛 𝑔𝑟𝑎𝑑𝑢𝑎𝑑𝑎.
• 𝐶𝑎𝑝𝑎𝑐𝑖𝑑𝑎𝑑 𝑎𝑑𝑚𝑖𝑠𝑖𝑏𝑙𝑒 = 4 𝑘𝑔/𝑐𝑚2
• 𝐸𝑚𝑝𝑢𝑗𝑒 𝑎𝑐𝑡𝑖𝑣𝑜 (𝐾𝑎) = 0.29
• 𝑃𝑟𝑜𝑓𝑢𝑛𝑑𝑖𝑑𝑎𝑑 𝑚í𝑛𝑖𝑚𝑎 𝑑𝑒 𝑐𝑖𝑚𝑒𝑛𝑡𝑎𝑐𝑖ó𝑛 = 1.20 𝑚.
• Características y propiedades de los materiales:
• Concreto:
• 𝑅𝑒𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑖𝑎 𝑛𝑜𝑚𝑖𝑛𝑎𝑙 𝑎 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑖ó𝑛 = 𝑓´𝑐 = 210 𝑘𝑔/𝑐𝑚2
• 𝑀ó𝑑𝑢𝑙𝑜 𝑑𝑒 𝑒𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑑𝑎𝑑 = 𝐸𝑐 = 200,000 𝑘𝑔/𝑐𝑚2 = 2´000,000 𝑡𝑜𝑛/𝑚2
• 𝑀ó𝑑𝑢𝑙𝑜 𝑑𝑒 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 = 0.15
• Acero de Refuerzo:
• 𝐶𝑜𝑟𝑟𝑢𝑔𝑎𝑑𝑜, 𝑔𝑟𝑎𝑑𝑜 60, 𝑒𝑠𝑓𝑢𝑒𝑟𝑧𝑜 𝑑𝑒 𝑓𝑙𝑢𝑒𝑛𝑐𝑖𝑎 ( 𝑓𝑦 ) = 4200 𝑘𝑔/𝑐𝑚2 =
4.2 𝑡𝑜𝑛/𝑐𝑚2
• 𝑀ó𝑑𝑢𝑙𝑜 𝑑𝑒 𝑒𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑑𝑎𝑑 = 𝐸𝑠 = 2´000,000 𝑘𝑔/𝑐𝑚2
• 𝐷𝑒𝑓𝑜𝑟𝑚𝑎𝑐𝑖ó𝑛 𝑎𝑙 𝑖𝑛𝑖𝑐𝑖𝑜 𝑑𝑒 𝑙𝑎 𝑓𝑙𝑢𝑒𝑛𝑐𝑖𝑎 = 𝜇 = 0.0021
• Ladrillo.
B. CARACTERÍSTICASDELOSMATERIALES.
USO PARA EL DISEÑO DE CONCRETO ARMADO Y CONCRETO SICLOPEO
• Reglamento Nacional de Edificaciones (RNE)
• Norma E-020 → Determinación de Cargas (pesos propios, S/C)
• Norma E-030 → Determinación de Fuerzas Sísmicas
• Norma E-060 → Diseño sísmico en Concreto Armado
• Norma E-070 → Diseño en Albañilería
• Norma E-050 → Aspectos relativos a Suelos y Cimentaciones.
• Código – Instituto Americano Del Concreto. (ACI - 318).
B. NORMATIVIDADY CÓDIGOSDEDISEÑO.
B. CARGAS ACTUANTES.
2 pre-dimensionamiento
2 pre-dimensionamiento
A. Consiste en la elección
de los elementos
estructurales y su
distribución en base a
los ejes primarios y
secundarios (por
recepción de carga).
B. La distribución en base
a los ejes es aprovechar
la regidez de las
mismas.
C. ESTRUCTURACIÓN.
2 pre-dimensionamiento
Elementos estructurales:
• Tipos de Losas
• Losa macizas
• Losas nervadas
• Losas aligeradas
SEGÚN LAS CONDICIONES DE APOYO
SEGUN LA DIRECCIÓN DEL ARMADO
SEGÚN EL MATERIAL
Y MÉTODO
CONSTRUCTIVO
SEGÚN SU SECCIÓN TRANSVERSAL
2 pre-dimensionamiento
• Tipos de vigas
Elementos estructurales:
• COLUMNAS
• PLACAS – MUROS DE CORTE
Elementos estructurales:
A. LOSAS ALIGERADOS
El Reglamento Nacional de Construcciones da peraltes mínimos para no
verificar deflexiones: “ En losas aligeradas continuas conformadas por
viguetas de 10 cm. de ancho, bloques de ladrillo de 30 cm. de ancho y losa
superior de 5 cm. con sobrecargas menores a 300 Kg/cm2 y luces menores de
7.5 m. , el peralte debe cumplir (se recomienda la siguiente relación) :
𝒉 ≥ 𝑳 / 𝟏𝟖 (1)
𝒉 ≥ 𝑳 / 𝟐𝟓 (2)
Donde:
ℎ → 𝑝𝑒𝑟𝑎𝑙𝑡𝑒 𝑑𝑒 𝑙𝑎 𝑙𝑜𝑠𝑎
𝐿 → 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑 𝑚𝑎𝑠 𝑐𝑟𝑖𝑡𝑖𝑐𝑎 (𝑒𝑛𝑡𝑟𝑒 𝑒𝑗𝑒𝑠 𝑑𝑒 𝑐𝑜𝑙𝑢𝑚𝑛𝑎)
𝑙/18 → material de pésima calidad, mano de obra no calificada y equipos y herramientas
convencionales.
𝑙/25 → material de buena calidad, mano de obra calificada y equipos y herramientas
adecuados.
1.2.PRE-DIMENSIONAMIENTO
2 pre-dimensionamiento
A. LOSAS ALIGERADOS
De las relaciones anteriores, podemos dar los siguientes criterios
de dimensiones:
PERALTE DE LOSA LUZ MAS CRITICA (M)
ℎ = 17 𝑐𝑚 < 4 𝑚
ℎ = 20 𝑐𝑚 4 𝑚. ≤ 5.5 𝑚. <
ℎ = 25 𝑐𝑚 5 𝑚. ≤ 6.5 𝑚. <
ℎ = 30 𝑐𝑚 6 𝑚. ≤ 7.5 𝑚. <
1.2.PRE-DIMENSIONAMIENTO
B. LOSAS MACIZAS
De las relaciones anteriores, podemos dar los siguientes criterios
de dimensiones:
PERALTE DE LOSA LUZ MAS CRITICA (M)
ℎ = 12 @ 13 𝑐𝑚 𝐿 < 4 𝑚
ℎ = 15 𝑐𝑚 L ≤ 5.5 𝑚.
ℎ = 20 𝑐𝑚 𝐿 ≤ 6.5 𝑚.
ℎ = 25 𝑐𝑚 𝐿 ≤ 7.5 𝑚.
1.2.PRE-DIMENSIONAMIENTO
C. LOSAS NERVADAS
DISPOSICIONES PARA LOSAS NERVADAS – E 60
• 8.11.1 Las losas nervadas consisten en una combinación monolítica
de nervios o viguetas regularmente espaciados y una losa colocada
en la parte superior que actúa en una dirección o en dos direcciones
ortogonales.
• Para viguetas de distancias separadas en 70 cm. Se puede
considerara el siguiente dimensionamiento.
1.2.PRE-DIMENSIONAMIENTO
ANCHO DE VIGUETA PERALTE LUZ
10 @ 15 𝑐𝑚 35 cm L < 7.5 𝑚
10 @ 15 𝑐𝑚 40 cm L < 8.5 𝑚
10 @ 15 𝑐𝑚 50 cm L < 9.5 𝑚
2 pre-dimensionamiento
D. VIGAS - PERALTE. (principales)
Al pre dimensionar las vigas, se tiene que considerar la acción de
cargas de gravedad y de sismo. Hay criterios prácticos que, de alguna
manera, toman en cuenta la acción de combinada de cargas verticales
y de sismo, a continuación se muestra alguno de estos criterios.
𝒉 = 𝑳 / 𝟏𝟎 (1)
𝒉 = 𝑳 / 𝟏𝟐 (2)
Donde:
criterio práctico frente a sismos
ℎ → 𝑝𝑒𝑟𝑎𝑙𝑡𝑒 𝑑𝑒 𝑙𝑎 𝑣𝑖𝑔𝑎
𝐿 → 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑 𝑚𝑎𝑠 𝑐𝑟𝑖𝑡𝑖𝑐𝑎 (𝑒𝑛𝑡𝑟𝑒 𝑒𝑗𝑒𝑠 𝑑𝑒 𝑐𝑜𝑙𝑢𝑚𝑛𝑎)
𝑙/10 → material de pésima calidad, mano de obra no calificada y equipos y herramientas
convencionales.
𝑙/12 → material de buena calidad, mano de obra calificada y equipos y herramientas adecuados.
1.2.PRE-DIMENSIONAMIENTO
E. VIGAS – BASE (principales)
𝒃 = 𝒉/𝟐 (1)
𝒃 = 𝟐𝒉 / 𝟑 (2)
Donde:
𝑏 → 𝑏𝑎𝑠𝑒 𝑑𝑒 𝑙𝑎 𝑣𝑖𝑔𝑎
ℎ → 𝑝𝑒𝑟𝑎𝑙𝑡𝑒 𝑑𝑒 𝑙𝑎 𝑣𝑖𝑔𝑎
F. VIGAS SECUNDARIAS.
Se recomienda la siguiente relación:
𝒉 = 𝑳/𝟏𝟒 (1)
𝒃 = 𝒉/𝟐 (2)
Donde:
𝑏 → 𝑏𝑎𝑠𝑒 𝑑𝑒 𝑙𝑎 𝑣𝑖𝑔𝑎
ℎ → 𝑝𝑒𝑟𝑎𝑙𝑡𝑒 𝑑𝑒 𝑙𝑎 𝑣𝑖𝑔𝑎
1.2.PRE-DIMENSIONAMIENTO
2 pre-dimensionamiento
G. VIGAS
De las relaciones anteriores, podemos dar los siguientes criterios
de dimensiones (como dimensiones usuales):
PERALTE DE VIGA Dimensiones (cm)
𝑙 ≤ 5.5 𝑚 25 × 50, 30 × 50
𝑙 ≤ 6.5 𝑚 25 × 60, 30 × 60; 40 × 60
𝑙 ≤ 7.5 𝑚 25 × 70; 30 × 70; 40 × 70; 50 × 70
𝑙 ≤ 8.5 𝑚 30 × 75; 40 × 75; 30 × 80; 40 × 80
𝑙 ≤ 9.5 𝑚 30 × 85; 30 × 90; 40 × 85; 40 × 90
1.2.PRE-DIMENSIONAMIENTO
2 pre-dimensionamiento
H. COLUMNAS
Se siguió el criterio de dimensionamiento por carga vertical, pues
en la edificación se ha usado el sistema mixto de pórticos y
muros de corte, el cual permite que los momentos en las
columnas debido a sismo se reduzcan muy considerablemente.
Para este tipo de edificio se recomiendan los siguientes criterios
de pre dimensionamiento:
a) Columnas Centrales : Área de columna =
𝑃 (𝑠𝑒𝑟𝑣𝑖𝑐𝑜)
0.45∗𝑓´ 𝑐
b) Columnas Exteriores o Esquineras :
Área de Columna =
𝑃 ( 𝑠𝑒𝑟𝑣𝑖𝑐𝑖𝑜 )
0.35 ∗ 𝑓´𝑐
1.2.PRE-DIMENSIONAMIENTO
I. PLACAS.
Es difícil poder fijar un dimensionamiento para las placas puesto que,
como su principal función es absorber las fuerzas de sismo, mientras
más abundantes o importantes sean tomarán un mayor porcentaje del
cortante sísmico total, aliviando más a los pórticos.
• Para pre-dimensionar los muros se puede utilizar un método
aproximado, el cual consiste en calcular las fuerzas cortantes en la
base con el método establecido en la Norma E.060 e igualarlos a la
suma de la resistencia al corte de los muros, dada por:
𝑉𝑐 = 0.53 ∗ 𝑓 ′𝑐 ∗ 𝑏 ∗ 𝐿 .
donde:
𝑏 = 𝑒𝑠𝑝𝑒𝑠𝑜𝑟 𝑒𝑠𝑡𝑖𝑚𝑎𝑑𝑜 𝑑𝑒 𝑚𝑢𝑟𝑜𝑠
𝐿 = 𝑚𝑒𝑡𝑟𝑜𝑠 𝑙𝑖𝑛𝑒𝑎𝑙𝑒𝑠 𝑝𝑜𝑠𝑖𝑏𝑙𝑒𝑠 𝑑𝑒 𝑚𝑢𝑟𝑜𝑠
𝐸𝑠𝑡𝑒 𝑚é𝑡𝑜𝑑𝑜 𝑒𝑠 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑖𝑎𝑙 𝑦 𝑠𝑒 𝑑𝑒𝑏𝑒𝑟á 𝑒𝑓𝑒𝑐𝑡𝑢𝑎𝑟 𝑢𝑛𝑎 𝑒𝑣𝑎𝑙𝑢𝑎𝑐𝑖ó𝑛
𝑓𝑖𝑛𝑎𝑙 𝑙𝑢𝑒𝑔𝑜 𝑑𝑒 𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑟 𝑢𝑛 𝑎𝑛á𝑙𝑖𝑠𝑖𝑠 𝑠í𝑠𝑚𝑖𝑐𝑜.
1.2.PRE-DIMENSIONAMIENTO
J. CISTERNA Y TANQUE ELEVADO
La cisterna será construida en
concreto armado en su totalidad, con
paredes de espesor de 10 @ 20 cm. ,
y estará ubicada en la parte baja del
edificio. El tanque elevado será
también de concreto armado en su
totalidad y estará ubicado encima de
la escalera, las dimensiones serán
calculadas de acuerdo a lo estipulado
en el Título X del Reglamento
Nacional de Construcciones.
1.2.PRE-DIMENSIONAMIENTO
K. ESCALERAS
• La escalera de concreto es una losa dentada e inclinada, que
nos permite subir o bajar de un nivel a otro.
• Una escalera está conformada por tramos, descansos y
barandas. Los tramos están formados por escalones; y los
escalones, por pasos y contrapasos
1.2.PRE-DIMENSIONAMIENTO
2 pre-dimensionamiento
1.1.ESTRUCTURACIONY PREDIMENSIONAMIENTO
2 pre-dimensionamiento
2 pre-dimensionamiento
1.1.ESTRUCTURACIONY PREDIMENSIONAMIENTO
DSADSA
• SADSADSA

Más contenido relacionado

PPTX
Ladrillo y albañileria
PDF
Diseño biaxial de columnas
PDF
Losas aligeradas-en-dos-direcciones
PDF
Vigas de gran altura. ménsulas. distribución no lineal de deformaciones y mod...
PDF
empalmes y anclajes
PDF
Losas aligeradas-en-dos-direcciones
PDF
ESTRUCTURACIÓN Y PREDIMENSIONAMIENTO
Ladrillo y albañileria
Diseño biaxial de columnas
Losas aligeradas-en-dos-direcciones
Vigas de gran altura. ménsulas. distribución no lineal de deformaciones y mod...
empalmes y anclajes
Losas aligeradas-en-dos-direcciones
ESTRUCTURACIÓN Y PREDIMENSIONAMIENTO

La actualidad más candente (20)

PDF
Metrados para Obras de Edificacion (OE) - Editada por Titulos, Subtitulos y P...
PDF
Ensayo ladrillo
PDF
Memoria de calculo
DOC
Cap9 otazzi flexion 1
PDF
PDF
Losas en dos direcciones
PPTX
Cimentaciones y control de calidad y seguridad en obras
PDF
PDF
Apoyos en puentes
PPTX
Concreto postensado
PDF
Manual puente vigas i preesforzado - csi bridge
PDF
INFORME MURO DE CONTENCION.pdf
PPTX
Diseño en acero
PPTX
Concreto presforzado
PPTX
Laboratorio tec. de madera 1: Absorcion y higroscopicidad
PPTX
Método de rigidez según gere en vigas planas
PDF
Formulario final concreto armado (2)
PPTX
Cisternas
DOCX
DISEÑO DE LOSAS BIDIRECCIONALES BASADO EN EL MÉTODO DE COEFICIENTES.
Metrados para Obras de Edificacion (OE) - Editada por Titulos, Subtitulos y P...
Ensayo ladrillo
Memoria de calculo
Cap9 otazzi flexion 1
Losas en dos direcciones
Cimentaciones y control de calidad y seguridad en obras
Apoyos en puentes
Concreto postensado
Manual puente vigas i preesforzado - csi bridge
INFORME MURO DE CONTENCION.pdf
Diseño en acero
Concreto presforzado
Laboratorio tec. de madera 1: Absorcion y higroscopicidad
Método de rigidez según gere en vigas planas
Formulario final concreto armado (2)
Cisternas
DISEÑO DE LOSAS BIDIRECCIONALES BASADO EN EL MÉTODO DE COEFICIENTES.
Publicidad

Similar a 2 pre-dimensionamiento (20)

PDF
2. pre dimensionamiento
PDF
HAV2. pre dimensionamiento 2013 ii
PPTX
Predimencionamiento de estructuras
PPTX
PREDIMENSIONAMIENTO DE ELEMENTOS ESTRUCTURALES
PDF
Predimensionamientodeestructuras
PPTX
DIapositiva de sistema de construccion de la institucion educativa inicial mi...
PDF
Vergara juan proyecto final u2_puente de tallarines
PPTX
PRESENTACIÓN TESIS-FINAL_Sergio Reyna_OK7.pptx
PDF
Memoria de calculo estrutura lpdf02. memoria de calculo estrutural (1)
PDF
PE_S01.pdf
PPTX
Grupo 5_Diseño por Desempeño de una Estructura (1).pptx
PDF
Calculo estructural
DOC
Predimensionamiento de columnas en acero estructural
PPTX
Analisis Estructural del Techo del comedor
DOCX
0.1 MEMORIA DE CALCULO EDIFICIO DE OFICIANS HUACHIPA.docx
PDF
CAP8_REQUISITOS_GENERALES_PARA_EL_ANALISIS_Y_DISEÑO.pdf
PDF
PC-PROY-EST-MEMDESC-REV01.pdf
PDF
Análisis no lineal estático de una edificación de muros cortantes con un mode...
PDF
Ejemplo memoria de calculo estructural
PPTX
presentacion
2. pre dimensionamiento
HAV2. pre dimensionamiento 2013 ii
Predimencionamiento de estructuras
PREDIMENSIONAMIENTO DE ELEMENTOS ESTRUCTURALES
Predimensionamientodeestructuras
DIapositiva de sistema de construccion de la institucion educativa inicial mi...
Vergara juan proyecto final u2_puente de tallarines
PRESENTACIÓN TESIS-FINAL_Sergio Reyna_OK7.pptx
Memoria de calculo estrutura lpdf02. memoria de calculo estrutural (1)
PE_S01.pdf
Grupo 5_Diseño por Desempeño de una Estructura (1).pptx
Calculo estructural
Predimensionamiento de columnas en acero estructural
Analisis Estructural del Techo del comedor
0.1 MEMORIA DE CALCULO EDIFICIO DE OFICIANS HUACHIPA.docx
CAP8_REQUISITOS_GENERALES_PARA_EL_ANALISIS_Y_DISEÑO.pdf
PC-PROY-EST-MEMDESC-REV01.pdf
Análisis no lineal estático de una edificación de muros cortantes con un mode...
Ejemplo memoria de calculo estructural
presentacion
Publicidad

Último (20)

PDF
UD3 -Producción, distribución del aire MA.pdf
PDF
TRABAJO DE ANÁLISIS DE RIESGOS EN PROYECTOS
PPTX
Electronica II, material basico de electronica II
DOCX
Cumplimiento normativo y realidad laboral
PDF
BROCHURE SERVICIOS CONSULTORIA ISOTEMPO 2025
PPTX
Riesgo eléctrico 5 REGLAS DE ORO PARA TRABAJOS CON TENSION
PDF
SESION 10 SEGURIDAD EN TRABAJOS CON ELECTRICIDAD.pdf
PDF
alimentos de bebidas45rtrtytyurrrr 1.pdf
PPTX
DEBL Presentación PG 23.pptx [Autoguardado].pptx
PDF
Presentación Ejecutiva Minimalista Azul.pdf
PPTX
Cómo Elaborar e Implementar el IPERC_ 2023.pptx
PPTX
clase MICROCONTROLADORES ago-dic 2019.pptx
PPTX
PPT PE 7 ASOCIACIONES HUAMANGA_TALLER DE SENSIBILIZACIÓN_20.04.025.pptx
PDF
Clase 2 de abril Educacion adistancia.pdf
PDF
SESION 9 seguridad IZAJE DE CARGAS.pdf ingenieria
PPTX
CNE-Tx-ZyD_Comite_2020-12-02-Consolidado-Version-Final.pptx
PPTX
ARQUITECTURA INTEGRAL EN OBRA, PRINCIPIOS BASICOS Y TERMINOS
PDF
LIBRO UNIVERSITARIO DESARROLLO ORGANIZACIONAL BN.pdf
PDF
manual-sap-gratuito _ para induccion de inicio a SAP
PPT
357161027-seguridad-industrial-diapositivas-ppt.ppt
UD3 -Producción, distribución del aire MA.pdf
TRABAJO DE ANÁLISIS DE RIESGOS EN PROYECTOS
Electronica II, material basico de electronica II
Cumplimiento normativo y realidad laboral
BROCHURE SERVICIOS CONSULTORIA ISOTEMPO 2025
Riesgo eléctrico 5 REGLAS DE ORO PARA TRABAJOS CON TENSION
SESION 10 SEGURIDAD EN TRABAJOS CON ELECTRICIDAD.pdf
alimentos de bebidas45rtrtytyurrrr 1.pdf
DEBL Presentación PG 23.pptx [Autoguardado].pptx
Presentación Ejecutiva Minimalista Azul.pdf
Cómo Elaborar e Implementar el IPERC_ 2023.pptx
clase MICROCONTROLADORES ago-dic 2019.pptx
PPT PE 7 ASOCIACIONES HUAMANGA_TALLER DE SENSIBILIZACIÓN_20.04.025.pptx
Clase 2 de abril Educacion adistancia.pdf
SESION 9 seguridad IZAJE DE CARGAS.pdf ingenieria
CNE-Tx-ZyD_Comite_2020-12-02-Consolidado-Version-Final.pptx
ARQUITECTURA INTEGRAL EN OBRA, PRINCIPIOS BASICOS Y TERMINOS
LIBRO UNIVERSITARIO DESARROLLO ORGANIZACIONAL BN.pdf
manual-sap-gratuito _ para induccion de inicio a SAP
357161027-seguridad-industrial-diapositivas-ppt.ppt

2 pre-dimensionamiento

  • 1. UNIVERSIDAD NACIONAL DEL ALTIPLANO PUNO ESCUELA PROFESIONAL DE INGENIERIA CIVIL ANALISISESTRUCTURAL I ESTRUCTURACIÓNY PREDIMENSIONAMIENTO ING. HECTOR AROQUIPA VELASQUEZ PUNO, NOVIEMBRE 2012
  • 2. LA INGENIERÍA ESTRUCTURAL • Ingeniería estructural es la aplicación de los conocimientos de la Mecánica, ciencia que estudia las fuerzas y sus efectos, al arte de diseñar estructuras. • En el análisis estructural conjugamos conocimientos de ciencias básicas aplicadas al arte de la ingeniería para encontrar fuerzas y deformaciones en una estructura.
  • 3. OBJETIVOSDE LA INGENIERÍAESTRUCTURAL  Objetivo General Identificar, estudiar alternativas, seleccionar, analizar y verificar resultados de la solución estructural a un problema ingenieril, teniendo presentes los criterios de funcionalidad, economía y seguridad. En el diseño estructural completo se distinguen dos etapas: análisis y diseño.
  • 4. Objetivo del Análisis Determinar fuerzas internas (axiales, cortantes, momentos) y deformaciones de una estructura, sobre la base de: una forma dada de la estructura, del tamaño y propiedades del material usado en los elementos y de las cargas aplicadas. OBJETIVOSDE LA INGENIERÍAESTRUCTURAL
  • 5.  Objetivo del Diseño Selección de la forma, de los materiales y detallado (dimensiones, conexiones y refuerzo) de los componentes que conforman el sistema estructural. Ambas etapas son inseparables, parecería que se empieza por el diseño, ya que es en esta etapa donde se crea y luego se analiza, pero las cosas no terminan ahí, se requiere verificar que las fuerzas encontradas en el análisis, si son soportadas y resistidas con los materiales y dimensiones seleccionadas, por lo tanto volveríamos al diseño, es decir, el proceso es iterativo. OBJETIVOSDE LA INGENIERÍAESTRUCTURAL
  • 7. CAPITULO II ESTRUCTURACION Y PREDIMENSIONAMIENTO
  • 8. GENERALIDADES DESARROLLO DE LA MEMORIA DESCRIPTIVA DEL PROYECTO. A. EXPLICAR LAS CARACTERÍSTICAS DEL ANTEPROYECTO ARQUITECTÓNICO. Ambiente. Servicios Áreas de uso 1.2.PRE-DIMENSIONAMIENTO
  • 9. • Estudio del suelo: • 𝐺𝑟𝑎𝑣𝑎 𝑎𝑟𝑒𝑛𝑜𝑠𝑎 𝑏𝑖𝑒𝑛 𝑔𝑟𝑎𝑑𝑢𝑎𝑑𝑎. • 𝐶𝑎𝑝𝑎𝑐𝑖𝑑𝑎𝑑 𝑎𝑑𝑚𝑖𝑠𝑖𝑏𝑙𝑒 = 4 𝑘𝑔/𝑐𝑚2 • 𝐸𝑚𝑝𝑢𝑗𝑒 𝑎𝑐𝑡𝑖𝑣𝑜 (𝐾𝑎) = 0.29 • 𝑃𝑟𝑜𝑓𝑢𝑛𝑑𝑖𝑑𝑎𝑑 𝑚í𝑛𝑖𝑚𝑎 𝑑𝑒 𝑐𝑖𝑚𝑒𝑛𝑡𝑎𝑐𝑖ó𝑛 = 1.20 𝑚. • Características y propiedades de los materiales: • Concreto: • 𝑅𝑒𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑖𝑎 𝑛𝑜𝑚𝑖𝑛𝑎𝑙 𝑎 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑖ó𝑛 = 𝑓´𝑐 = 210 𝑘𝑔/𝑐𝑚2 • 𝑀ó𝑑𝑢𝑙𝑜 𝑑𝑒 𝑒𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑑𝑎𝑑 = 𝐸𝑐 = 200,000 𝑘𝑔/𝑐𝑚2 = 2´000,000 𝑡𝑜𝑛/𝑚2 • 𝑀ó𝑑𝑢𝑙𝑜 𝑑𝑒 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 = 0.15 • Acero de Refuerzo: • 𝐶𝑜𝑟𝑟𝑢𝑔𝑎𝑑𝑜, 𝑔𝑟𝑎𝑑𝑜 60, 𝑒𝑠𝑓𝑢𝑒𝑟𝑧𝑜 𝑑𝑒 𝑓𝑙𝑢𝑒𝑛𝑐𝑖𝑎 ( 𝑓𝑦 ) = 4200 𝑘𝑔/𝑐𝑚2 = 4.2 𝑡𝑜𝑛/𝑐𝑚2 • 𝑀ó𝑑𝑢𝑙𝑜 𝑑𝑒 𝑒𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑑𝑎𝑑 = 𝐸𝑠 = 2´000,000 𝑘𝑔/𝑐𝑚2 • 𝐷𝑒𝑓𝑜𝑟𝑚𝑎𝑐𝑖ó𝑛 𝑎𝑙 𝑖𝑛𝑖𝑐𝑖𝑜 𝑑𝑒 𝑙𝑎 𝑓𝑙𝑢𝑒𝑛𝑐𝑖𝑎 = 𝜇 = 0.0021 • Ladrillo. B. CARACTERÍSTICASDELOSMATERIALES.
  • 10. USO PARA EL DISEÑO DE CONCRETO ARMADO Y CONCRETO SICLOPEO • Reglamento Nacional de Edificaciones (RNE) • Norma E-020 → Determinación de Cargas (pesos propios, S/C) • Norma E-030 → Determinación de Fuerzas Sísmicas • Norma E-060 → Diseño sísmico en Concreto Armado • Norma E-070 → Diseño en Albañilería • Norma E-050 → Aspectos relativos a Suelos y Cimentaciones. • Código – Instituto Americano Del Concreto. (ACI - 318). B. NORMATIVIDADY CÓDIGOSDEDISEÑO.
  • 14. A. Consiste en la elección de los elementos estructurales y su distribución en base a los ejes primarios y secundarios (por recepción de carga). B. La distribución en base a los ejes es aprovechar la regidez de las mismas. C. ESTRUCTURACIÓN.
  • 16. Elementos estructurales: • Tipos de Losas • Losa macizas • Losas nervadas • Losas aligeradas SEGÚN LAS CONDICIONES DE APOYO SEGUN LA DIRECCIÓN DEL ARMADO SEGÚN EL MATERIAL Y MÉTODO CONSTRUCTIVO SEGÚN SU SECCIÓN TRANSVERSAL
  • 18. • Tipos de vigas Elementos estructurales:
  • 19. • COLUMNAS • PLACAS – MUROS DE CORTE Elementos estructurales:
  • 20. A. LOSAS ALIGERADOS El Reglamento Nacional de Construcciones da peraltes mínimos para no verificar deflexiones: “ En losas aligeradas continuas conformadas por viguetas de 10 cm. de ancho, bloques de ladrillo de 30 cm. de ancho y losa superior de 5 cm. con sobrecargas menores a 300 Kg/cm2 y luces menores de 7.5 m. , el peralte debe cumplir (se recomienda la siguiente relación) : 𝒉 ≥ 𝑳 / 𝟏𝟖 (1) 𝒉 ≥ 𝑳 / 𝟐𝟓 (2) Donde: ℎ → 𝑝𝑒𝑟𝑎𝑙𝑡𝑒 𝑑𝑒 𝑙𝑎 𝑙𝑜𝑠𝑎 𝐿 → 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑 𝑚𝑎𝑠 𝑐𝑟𝑖𝑡𝑖𝑐𝑎 (𝑒𝑛𝑡𝑟𝑒 𝑒𝑗𝑒𝑠 𝑑𝑒 𝑐𝑜𝑙𝑢𝑚𝑛𝑎) 𝑙/18 → material de pésima calidad, mano de obra no calificada y equipos y herramientas convencionales. 𝑙/25 → material de buena calidad, mano de obra calificada y equipos y herramientas adecuados. 1.2.PRE-DIMENSIONAMIENTO
  • 22. A. LOSAS ALIGERADOS De las relaciones anteriores, podemos dar los siguientes criterios de dimensiones: PERALTE DE LOSA LUZ MAS CRITICA (M) ℎ = 17 𝑐𝑚 < 4 𝑚 ℎ = 20 𝑐𝑚 4 𝑚. ≤ 5.5 𝑚. < ℎ = 25 𝑐𝑚 5 𝑚. ≤ 6.5 𝑚. < ℎ = 30 𝑐𝑚 6 𝑚. ≤ 7.5 𝑚. < 1.2.PRE-DIMENSIONAMIENTO
  • 23. B. LOSAS MACIZAS De las relaciones anteriores, podemos dar los siguientes criterios de dimensiones: PERALTE DE LOSA LUZ MAS CRITICA (M) ℎ = 12 @ 13 𝑐𝑚 𝐿 < 4 𝑚 ℎ = 15 𝑐𝑚 L ≤ 5.5 𝑚. ℎ = 20 𝑐𝑚 𝐿 ≤ 6.5 𝑚. ℎ = 25 𝑐𝑚 𝐿 ≤ 7.5 𝑚. 1.2.PRE-DIMENSIONAMIENTO
  • 24. C. LOSAS NERVADAS DISPOSICIONES PARA LOSAS NERVADAS – E 60 • 8.11.1 Las losas nervadas consisten en una combinación monolítica de nervios o viguetas regularmente espaciados y una losa colocada en la parte superior que actúa en una dirección o en dos direcciones ortogonales. • Para viguetas de distancias separadas en 70 cm. Se puede considerara el siguiente dimensionamiento. 1.2.PRE-DIMENSIONAMIENTO ANCHO DE VIGUETA PERALTE LUZ 10 @ 15 𝑐𝑚 35 cm L < 7.5 𝑚 10 @ 15 𝑐𝑚 40 cm L < 8.5 𝑚 10 @ 15 𝑐𝑚 50 cm L < 9.5 𝑚
  • 26. D. VIGAS - PERALTE. (principales) Al pre dimensionar las vigas, se tiene que considerar la acción de cargas de gravedad y de sismo. Hay criterios prácticos que, de alguna manera, toman en cuenta la acción de combinada de cargas verticales y de sismo, a continuación se muestra alguno de estos criterios. 𝒉 = 𝑳 / 𝟏𝟎 (1) 𝒉 = 𝑳 / 𝟏𝟐 (2) Donde: criterio práctico frente a sismos ℎ → 𝑝𝑒𝑟𝑎𝑙𝑡𝑒 𝑑𝑒 𝑙𝑎 𝑣𝑖𝑔𝑎 𝐿 → 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑 𝑚𝑎𝑠 𝑐𝑟𝑖𝑡𝑖𝑐𝑎 (𝑒𝑛𝑡𝑟𝑒 𝑒𝑗𝑒𝑠 𝑑𝑒 𝑐𝑜𝑙𝑢𝑚𝑛𝑎) 𝑙/10 → material de pésima calidad, mano de obra no calificada y equipos y herramientas convencionales. 𝑙/12 → material de buena calidad, mano de obra calificada y equipos y herramientas adecuados. 1.2.PRE-DIMENSIONAMIENTO
  • 27. E. VIGAS – BASE (principales) 𝒃 = 𝒉/𝟐 (1) 𝒃 = 𝟐𝒉 / 𝟑 (2) Donde: 𝑏 → 𝑏𝑎𝑠𝑒 𝑑𝑒 𝑙𝑎 𝑣𝑖𝑔𝑎 ℎ → 𝑝𝑒𝑟𝑎𝑙𝑡𝑒 𝑑𝑒 𝑙𝑎 𝑣𝑖𝑔𝑎 F. VIGAS SECUNDARIAS. Se recomienda la siguiente relación: 𝒉 = 𝑳/𝟏𝟒 (1) 𝒃 = 𝒉/𝟐 (2) Donde: 𝑏 → 𝑏𝑎𝑠𝑒 𝑑𝑒 𝑙𝑎 𝑣𝑖𝑔𝑎 ℎ → 𝑝𝑒𝑟𝑎𝑙𝑡𝑒 𝑑𝑒 𝑙𝑎 𝑣𝑖𝑔𝑎 1.2.PRE-DIMENSIONAMIENTO
  • 29. G. VIGAS De las relaciones anteriores, podemos dar los siguientes criterios de dimensiones (como dimensiones usuales): PERALTE DE VIGA Dimensiones (cm) 𝑙 ≤ 5.5 𝑚 25 × 50, 30 × 50 𝑙 ≤ 6.5 𝑚 25 × 60, 30 × 60; 40 × 60 𝑙 ≤ 7.5 𝑚 25 × 70; 30 × 70; 40 × 70; 50 × 70 𝑙 ≤ 8.5 𝑚 30 × 75; 40 × 75; 30 × 80; 40 × 80 𝑙 ≤ 9.5 𝑚 30 × 85; 30 × 90; 40 × 85; 40 × 90 1.2.PRE-DIMENSIONAMIENTO
  • 31. H. COLUMNAS Se siguió el criterio de dimensionamiento por carga vertical, pues en la edificación se ha usado el sistema mixto de pórticos y muros de corte, el cual permite que los momentos en las columnas debido a sismo se reduzcan muy considerablemente. Para este tipo de edificio se recomiendan los siguientes criterios de pre dimensionamiento: a) Columnas Centrales : Área de columna = 𝑃 (𝑠𝑒𝑟𝑣𝑖𝑐𝑜) 0.45∗𝑓´ 𝑐 b) Columnas Exteriores o Esquineras : Área de Columna = 𝑃 ( 𝑠𝑒𝑟𝑣𝑖𝑐𝑖𝑜 ) 0.35 ∗ 𝑓´𝑐 1.2.PRE-DIMENSIONAMIENTO
  • 32. I. PLACAS. Es difícil poder fijar un dimensionamiento para las placas puesto que, como su principal función es absorber las fuerzas de sismo, mientras más abundantes o importantes sean tomarán un mayor porcentaje del cortante sísmico total, aliviando más a los pórticos. • Para pre-dimensionar los muros se puede utilizar un método aproximado, el cual consiste en calcular las fuerzas cortantes en la base con el método establecido en la Norma E.060 e igualarlos a la suma de la resistencia al corte de los muros, dada por: 𝑉𝑐 = 0.53 ∗ 𝑓 ′𝑐 ∗ 𝑏 ∗ 𝐿 . donde: 𝑏 = 𝑒𝑠𝑝𝑒𝑠𝑜𝑟 𝑒𝑠𝑡𝑖𝑚𝑎𝑑𝑜 𝑑𝑒 𝑚𝑢𝑟𝑜𝑠 𝐿 = 𝑚𝑒𝑡𝑟𝑜𝑠 𝑙𝑖𝑛𝑒𝑎𝑙𝑒𝑠 𝑝𝑜𝑠𝑖𝑏𝑙𝑒𝑠 𝑑𝑒 𝑚𝑢𝑟𝑜𝑠 𝐸𝑠𝑡𝑒 𝑚é𝑡𝑜𝑑𝑜 𝑒𝑠 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑖𝑎𝑙 𝑦 𝑠𝑒 𝑑𝑒𝑏𝑒𝑟á 𝑒𝑓𝑒𝑐𝑡𝑢𝑎𝑟 𝑢𝑛𝑎 𝑒𝑣𝑎𝑙𝑢𝑎𝑐𝑖ó𝑛 𝑓𝑖𝑛𝑎𝑙 𝑙𝑢𝑒𝑔𝑜 𝑑𝑒 𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑟 𝑢𝑛 𝑎𝑛á𝑙𝑖𝑠𝑖𝑠 𝑠í𝑠𝑚𝑖𝑐𝑜. 1.2.PRE-DIMENSIONAMIENTO
  • 33. J. CISTERNA Y TANQUE ELEVADO La cisterna será construida en concreto armado en su totalidad, con paredes de espesor de 10 @ 20 cm. , y estará ubicada en la parte baja del edificio. El tanque elevado será también de concreto armado en su totalidad y estará ubicado encima de la escalera, las dimensiones serán calculadas de acuerdo a lo estipulado en el Título X del Reglamento Nacional de Construcciones. 1.2.PRE-DIMENSIONAMIENTO
  • 34. K. ESCALERAS • La escalera de concreto es una losa dentada e inclinada, que nos permite subir o bajar de un nivel a otro. • Una escalera está conformada por tramos, descansos y barandas. Los tramos están formados por escalones; y los escalones, por pasos y contrapasos 1.2.PRE-DIMENSIONAMIENTO