SlideShare una empresa de Scribd logo
2
Lo más leído
5
Lo más leído
6
Lo más leído
54
TEMA 5.- CORREAS
INTRODUCCIÓN
Las correas se utilizan para transmitir,
mediante un movimiento de rotación, potencia
entre árboles normalmente paralelos, entre los
cuales no es preciso mantener una relación de
transmisión exacta y constante.
El hecho de no poder exigir una relación de
transmisión exacta y constante se debe a que en
estas transmisiones hay pérdidas debido al
deslizamiento de las correas sobre las poleas.
Dicho deslizamiento no es constante sino que
varía en función de las condiciones de trabajo, es
decir, de los valores de par transmitido y de la
velocidad de la correa.
Las transmisiones por medio de correas son
denominadas de tipo flexible pues absorben
vibraciones y choques de los que sólo tienden a
transmitir un mínimo al eje arrastrado.
Son estas transmisiones adecuadas para
distancias entre ejes relativamente grandes,
actuando bajo condiciones adversas de trabajo
(polvo, humedad, calor, etc.), son además
silenciosas y tienen una larga vida útil sin averías
ni problemas de funcionamiento.
CORREAS PLANAS. CARACTERÍSTICAS Y
CÁLCULO
Las correas del tipo plano están constituidas
por una banda continua cuya sección transversal
es rectangular, fabricadas de distintos materiales
siendo los más empleados:
• Cuero de 4 a 6 mm. de espesor. Para bandas
de más espesor se unen capas sucesivas de
cuero mediante adhesivos, construyéndose
bandas de dos capas y bandas de tres
capas.
Según su capacidad se pueden clasificar en
tres grupos:
- Clase I:
- σpermisible = 25 Kp/cm2
y velocidad
máxima de hasta 12 m/s.
- Clase II:
- σpermisible = 29 Kp/cm2
y velocidad
máxima de hasta 24 m/s.
- Clase III:
- σpermisible = 33 Kp/cm2
y velocidad
máxima de hasta 45 m/s.
• Tejido de algodón o banda de nylon. Se
construye con varias capas de tejido, normalmente
recubiertas de caucho o plástico para su
protección y mayor duración.
Su tensión permisible varía entre los 125 y 250
Kg/cm2 y su velocidad lineal máxima es de hasta
unos 40 m/sg.
Hay un concepto muy utilizado en las
transmisiones por correa, es el de relación de
transmisión.
Sea d1 el diámetro de la polea motriz y d2 el de
la polea arrastrada:
d d1 2
Figura 1.- Transmisión por correa
Es evidente que por ser la correa una banda
continua la velocidad lineal en cualquiera de sus
puntos tiene el mismo módulo. Por tanto si V es la
velocidad lineal se cumplirá (despreciando el
deslizamiento) que:
2211 r=r=V ⋅⋅ ωω
Como:
2211 r=r ⋅⋅ ωω
Se tiene que:
1
2
2
1
2211
n
n
=
d
d
dn=dn ⇒⋅⋅
La relación:
2
1
d
d
=r
arrastradapoleadiametro
motrizpoleadiametro
=
se denomina relación de transmisión.
55
Si se considera un elemento de correa, como
se presenta en la figura siguiente, de longitud dL
se tiene que:
dL
dS
F+dF
F
T
F
d
F
d
2
d
2
dN
R
2
1
θ
θ
θ
θ
Figura 2.- Cálculo de la relación entre F1 y F2
Si T es la fuerza que debido a la tensión de la
correa tiende a unir las dos poleas, debido al giro
de la polea en un ramal de la correa habrá una
fuerza F1 mayor que la fuerza resultante en el otro
ramal F2.
F1 - F2 es la diferencia entre el ramal cargado y
descargado.
Vamos a demostrar que:
µθ
e=
F
F
2
1
Siendo:
µ = coeficiente de rozamiento correa-polea
θ = ángulo de contacto correa-polea
Si dN es la fuerza que actúa entre la correa y la
polea y dS es la fuerza centrífuga del elemento de
correa considerado, se tendrá que como la fuerza
resultante normal es cero:
∑ 0=Fn ⇒
2
d
dF)sen+(F-
2
d
senF-dS+dN=0
θθ
⋅
Como dθ es muy pequeño
2
d
=
2
d
sen
θθ
⇒
( )
2
d
•dF+F-
2
d
•F-dS+dN=0
θθ
Despreciando:
2
d
dF
θ
⋅
Se tiene:
θdF-dS+dN=0 ⋅ ⇒ Sd-F.d=Nd θ
Si se supone que no hay deslizamiento de la
correa sobre la polea, se tiene que:
∑ 0=Ft
2
d
cosF)d+(F-
2
d
cosF+Nd=0
θθ
µ ⋅
Siendo:
µ = coeficiente de rozamiento correa-polea.
Como dθ es pequeño 1
2
d
cos →⇒
θ
por lo
que:
Fd-Nd=0 ⋅µ
Como: dN = F dθ - dS
dF-dS)-d(F=0 θµ ⋅
o bien:
dF-dS-dF=0 ⋅⋅⋅ µθµ
Si la masa del elemento dL de correa es dm, si
V es la velocidad lineal de la correa se tiene que:
R
V
dm=dS
2
⋅
Si γ es el peso específico de la correa:
γb.h.dL.=dm
Siendo
b = anchura de la correa
h = espesor de la correa
Como:
θθ R.dd
2
h
+R=dL ≈⋅





Siendo
R = radio de la polea
Se tiene que:
θγ .R.db.h.=dm
Con lo que:
56
θγ d•)R(V.R.b.h.=dS 2
Si se hace:
KV••b•h 2
=γ ⇒ θK.d=dS
Con lo que:
dF-d•K•-d•F=0 θµθµ ⋅
Despejando se tiene:
K-F
dF
=d•dF=d•K)-(F• θµθµ ⇒
Integrando se tiene que:
∫∫ =
−
θ
θµ
0
F
F
d•
KF
dF1
2
( )[ ]
KF
KF
•L•KF•L•
2
1F
F
1
2
−
−
=⇒−= θµθµ
θµ
2
1
e=
K-F
K-F
Como:
2
Vhb=K ⋅⋅⋅ γ
Si V = 0 se tiene que K = 0 ⇒
θµ
2
1
e=
F
F
(I)
Ecuación que será de gran utilidad en el
cálculo de frenos.
De forma inexacta, como los valores de K son
pequeños, es frecuente encontrar en el cálculo de
transmisiones por correa la fórmula (I) obtenida
anteriormente.
El coeficiente de rozamiento µ entre polea y
correa está muy estudiado, habiendo tablas como
la) siguiente que ofrecen valores de µ.
Material del cuerpo
rozante
µ0
(rozamiento de
partida)
µ
(rozamiento en
movimiento)
Acero sobre acero
Acero sobre bronce
Madera sobre madera
Cuero sobre metal
Cuero sobre fundición
Cuero sobre madera
0'15
0'2
0'65
0'6
0'5-0'6
0'47
0'1
0'16
0'25
0'25
0'28
0'27
Tabla 1.- Coeficientes de rozamiento
En el caso del cuero sobre poleas de acero hay
una fórmula empírica que ofrece el valor de µ
ligado a la velocidad lineal de la correa.
0'012.V+0'22=µ
Siendo V = velocidad lineal de la correa en m/s
Un aspecto necesario para el uso de las
transmisiones por correa es el del cálculo de la
longitud de la correa en función de los diámetros
de la polea motriz y arrastrada.
Para ello usando el esquema de la figura
siguiente se tiene:
A
D
C
B
OO
r
l
r
R-r
1 2
α
α
α
π-2α
π-2α
Figura 3.- Cálculo de la longitud de correa
De la figura se obtiene que:
α.cosOO=l 21
Siendo:
O1 O2 = distancia entre centros de las poleas
21
21
OO
r-R
=sen
R)2+(=BC;)2-(r=AD
cosOO=l=CD=AB
DA+CD+BC+AB=L
α
απαπ
α
⋅⋅
21OO
r-R
arcsen=α
ααπαπ cosO2O+2R+R+2r-r=L 21
ααπ cosO2O+r)-(R2+r)+(R=L 21
El cálculo de la sección transversal de la correa
se calcula con la fórmula que ofrece la tensión o
esfuerzo en el ramal más cargado, o sea el
sometido a la carga F1:
A
F
=
1
σ
Como σ ≤ σpermisible ⇒ Área mínima de la
sección vendrá dada por:
57
permisible
1F
=A
σ
Como el área A es una sección rectangular, si
b es la anchura de la correa se tendrá que el
espesor mínimo necesario en la correa es a, dado
por:
A=a.b ⇒
b
A
=a
La velocidad de la correa, como se desprende
del estudio realizado, incide de manera notable en
su comportamiento, ya que la fuerza centrífuga
crece rápidamente con la velocidad y puede llegar
a valores a los que la capacidad de transmisión de
potencia se anula.
En la práctica no se aconsejan velocidades
mayores de 30 m/s, ya que las flexiones a las que
se somete la correa al pasar sobre las poleas
actúan sobre la vida útil y a más velocidad lineal
mayor es el número de flexiones a las que se
somete la correa por unidad de tiempo y menor,
lógicamente, será su vida útil.
Un aspecto de gran importancia en el cálculo
de transmisiones con correas planas es el del
diámetro mínimo aconsejable de poleas.
Esta es una medida empírica cuyos valores
usuales son los siguientes:
Diámetro de polea (cm)
Velocidad
lineal m/s
espesor de
correa
pequeño<7mm
espesor
medio
7-9 mm
espesor
grande
9-14 mm
V<12
12<V<20
20<V<30
6-10
7-11
9-13
10-20
11-22
13-25
20-50
22-55
25-60
Tabla 2.-Diámetros mínimos aconsejables de poleas
Para poder transmitir potencia la correa debe
tener una tracción inicial, la denominada tracción
de reposo. Se recomiendan unos 125 N/cm de
anchura de correa.
Cuanto más tensa esté la correa más potencia
se puede transmitir sin deslizamiento excesivo,
pero por contra mayor y más rápido es el
deterioro.
Como ocurre que con el servicio las correas se
alargan haciéndose necesario el tensado
periódico, se recurre a sistemas de ajuste bien por
basculamiento bien por desplazamiento o bien, y
esta es una solución muy racional, por polea de
tensión que no sólo permite regular la tensión sino
que posibilita un mayor contacto de la correa con
la polea.
CORREAS TRAPECIALES. CARACTERÍSTICAS
Y CÁLCULO
Las correas trapeciales o en V son las más
ampliamente usadas en este tipo de
transmisiones.
Se construyen de caucho en cuyo interior se
colocan elementos resistentes a la tracción. El
esquema de una correa es el siguiente:
A
D
B
C
Figura 4.- Detalles constructivos de una correa trapecial
Los componentes que forman una correa
trapecial son:
- A: Funda exterior de tejido vulcanizado
- B: Elementos que soportan la carga
- C: Cojín resistente de caucho
- D: Capa de flexión
Las poleas con garganta acanalada afectan a
la capacidad de transmisión ya que el denominado
efecto cuña da lugar a una fuerza normal de la
correa sobre la polea muy superior a la de las
correas planas.
El efecto cuña favorece también el uso de
correas aplicadas a poleas con reducida distancia
entre sus centros, y grandes diferencias entre los
diámetros.
Es frecuente encontrar transmisiones con
correas trapeciales múltiples, con la única
condición de que se usen correas especialmente
próximas en longitud, es decir, de estrecha
tolerancia en su fabricación, pues, en caso
contrario, la correa más corta trabaja en exceso y
se romperá demasiado pronto.
La ecuación µθ
e=
K-F
K-F
2
1
obtenida para
correas planas es igualmente útil si se sustituye µ
por µ/sen φ, siendo 2 φ el ángulo de la garganta
que es próximo a 35º.
58
b
a
correa
polea
N
N/2·sen N/2·sen
2
φ φ
φ
φ φ
Figura 5.- Sección transversal de correa trapecial
y acanaladura de polea
Para determinar la relación de transmisión es
preciso definir el diámetro primitivo dp, que es el
que corresponde en la polea a la fibra neutra de la
correa. Se denomina fibra neutra a aquella fibra
cuya longitud no cambia cuando la correa se dobla
perpendicularmente a su base.
La relación de transmisión de las transmisiones
en correas trapeciales viene dada por:
2p1p nd=nd 21 ⋅⋅
Las correas trapeciales, en función de sus
dimensiones, se agrupan según la norma UNE
18006-93 en siete tipos básicos según su sección
transversal, a saber, Y, Z, A, B, C, D y E.
En la tabla siguiente se presentan los valores
característicos de los siete tipos de correas
comerciales:
bp: Ancho primitivo normal.b: Ancho aproximado de la base superior.
h: Altura aproximada.α: Ángulo de los flancos.
Sección Y Z A B C D E
bp (mm) 5,3 8,5 11 14 19 27 32
b (mm) 6 10 13 17 22 32 38
h (mm) 4 6 8 11 14 19 25
α 40º
Tabla 3.- Dimensiones normalizadas de correas trapeciales.
Además de las dimensiones señaladas para
cada tipo de sección, la norma UNE 18006-93
indica los desarrollo primitivos y las tolerancias de
fabricación, aspecto este último de suma
importancia para lograr un trabajo correcto en las
transmisiones de correas múltiples.
En referencia a los aspectos más importantes
de la poleas de garganta para correas trapeciales
estan recogidos en la norma UNE 18164-88.
Los ángulos de garganta que se utilizan para la
construcción de éstas son ligeramente inferiores a
los ángulos de los flancos de la correas que van a
alojar, en concreto se fabrican poleas con valores
de 32º, 34º, 36º y 38º.
El esquema de una polea con acanaladuras
trapeciales es el que se presenta en la figura
siguiente:
f
polea
correa
e
α
wd
bmin
hmin
dp
Figura 6.- Sección acotada de correa
Las dimensiones de poleas según la Norma
UNE 18164-85 son las que se presentan en la
tabla siguiente:
Sección de
garganta
wp bmín hmín e f
Y 5,3 1,6 4,7 8 7
Z 8,5 2 7 12 8
A 11 2,75 8,7 15 10
B 14 3,5 10,8 19 12,5
C 19 4,8 14,3 25,5 17
D 27 8,1 19,9 37 24
E 32 9,6 23,4 44,5 29
Tabla 4.- Dimensiones normalizadas de poleas con
acanaladuras para correa trapecial.
Igualmente se establecen un número de
diámetros de referencia limitados para cada tipo
de sección de garganta, estableciendose unos
valores recomendados (para las condiciones
medias de funcionamiento) y unos valores
mínimos, que se indican en la siguiente tabla:
Diámetro primitivo de polea
Perfil Recomendado
(mm)
Mínimo
(mm)
Y 60 20
Z 80 50
A 118 75
B 190 125
C 315 200
D 475 355
E 600 500
Tabla 5.- Diámetro primitivo mínimo de las poleas trapeciales
b
bp
α
h
59
Existe mucha más normativa referida a las
correas trapeciales que la citada y que abarca
aspectos tales como las tolerancias de fabricación
y montaje de los elementos de una transmisión,
las comprobaciones que se deben realizar sobre
cada uno de los componentes, tipos especiales de
correas trapeciales y otros muchos aspectos.
El uso de correas trapeciales aconseja no
utilizarlas para velocidades lineales mayores de 25
m/s, pues, aunque se sabe la velocidad lineal
incide notablemente en la potencia a transmitir, la
fuerza centrífuga reduce el contacto correa-polea
y limita la capacidad de transmisión de potencia.
La velocidad se puede variar eligiendo de
forma adecuada el diámetro de la polea, si bien
condiciones variadas de montaje o de diseño
pueden obligar a usar transmisiones con correas
múltiples.
Antes de finalizar este apartado se van a
enumerar una serie de ventajas e inconvenientes
que presentan las correas trapeciales.
Entre las ventajas se pueden enunciar:
- La distancia entre ejes puede ser tan
pequeña como permitan las poleas.
- La relación de diámetros entre poleas
puede ser muy grande, llegando hasta
12/1.
- Las correas trapeciales trabajan en
cualquier posición.
- Pueden usarse correas múltiples.
- Requieren gracias al efecto cuña muy
poca tensión inicial.
- Soporta muy bien las temperaturas
extremas.
- No atacan a los cojinetes de soporte de
las poleas por tensión excesiva.
- Resisten la intemperie.
- Hay modelos especiales SPA, SPB...
que soportan condiciones muy
adversas y agresivas.
Entre los inconvenientes es preciso tener en
cuenta que:
- Las grasas, aceites, gasolinas y gas-oil
las atacan.
- Su longitud crece con el uso.
- El deslizamiento las destruye
rápidamente.
Para concluir indicar que las correas
trapeciales deben trabajar siempre en un plano, si
bien hay ocasiones en las que pueden montarse
con transmisiones tan diversas que resulta hasta
espectacular.
POTENCIA TRANSMITIDA POR UNA CORREA
La potencia transmitida por una correa es
función de la diferencia entre las tensiones de sus
ramas y de su velocidad lineal, ya que como se
observa en la siguiente figura, el par transmitido
viene dado por:
F
F
r
1
2
Figura 7.- Fuerzas en una correa.
( ) r•FFM 21 −=
Siendo:
M = par motor.
F1 = fuerza en el ramal más cargado.
F2 = fuerza en el ramal menos cargado.
r = radio de la polea.
Y como entre las expresiones de la potencia se
tiene que:
n•MN =
Siendo:
N = potencia.
M = par motor.
n = régimen de giro.
Sustituyendo la primera expresión en la
segunda se tiene:
( ) r•n•FFN 21 −=
Y como:
n·r = velocidad lineal de la correa
se tiene:
( ) v•FFN 21 −=
Siendo:
N = potencia transmitida.
F1 - F2 = diferencia de carga entre los ramales
de la correa
v = velocidad lineal de la correa.
60
El cálculo de instalaciones de transmisión de
potencia con correas trapeciales podría hacerse
con una metodología semejante a la desarrollada.
Hoy, la amplia oferta comercial existente ofrece al
técnico tablas y ábacos que permiten un cálculo
rápido y preciso de este tipo de transmisiones.
De esta forma la tabla siguiente aporta la
potencia teórica que puede transmitir una correa
en función de su velocidad lineal, trabajando en
condiciones normales.
Velocidad
periférica
en m/s
Sección
Z
10×6
Sección
A
13×8
Sección
B
17×11
4'0
4'5
5'0
5'5
6'0
6'5
7'0
7'5
8'0
8'5
9'0
9'5
10'0
10'5
11'0
11'5
12'0
12'5
13'0
13'5
14'0
14'5
15'0
15'5
16'0
16'5
17'0
17'5
18'0
18'5
19'0
19'5
20'0
20'5
21'0
21'5
22'0
22'5
23'0
23'5
24'0
24'5
25'0
0'25
0'28
0'30
0'33
0'36
0'39
0'42
0'45
0'48
0'51
0'54
0'57
0'60
0'63
0'66
0'69
0'72
0'75
0'78
0'81
0'84
0'87
0'90
0'91
0'92
0'94
0'95
0'96
0'97
0'97
0'98
0'99
1'00
1'02
1'04
1'06
1'08
1'10
1'10
1'10
1'10
1'10
1'10
0'8
0'8
0'9
1'0
1'0
1'1
1'2
1'3
1'4
1'5
1'6
1'7
1'8
1'8
1'9
1'9
2'0
2'1
2'2
2'3
2'3
2'4
2'5
2'5
2'6
2'6
2'6
2'7
2'7
2'8
2'8
2'9
2'9
2'9
2'9
3'0
3'0
3'0
3'0
3'0
3'1
3'1
3'1
1'1
1'2
1'3
1'4
1'5
1'6
1'7
1'8
1'9
2'0
2'2
2'4
2'5
2'6
2'6
2'7
2'9
3'0
3'1
3'2
3'3
3'4
3'5
3'6
3'6
3'7
3'7
3'8
3'9
4'0
4'1
4'2
4'2
4'2
4'3
4'3
4'3
4'4
4'4
4'4
4'4
4'5
4'5
Velocidad
periférica
en m/s
Sección
C
22×14
Sección
D
32×19
Sección
E
38×25
4'0
4'5
5'0
5'5
6'0
6'5
7'0
7'5
8'0
8'5
9'0
2'4
2'6
3'0
3'2
3'4
3'6
3'9
4'2
4'5
4'8
5'2
4'7
5'0
5'5
6'1
6'7
7'3
7'9
8'5
9'0
9'5
10'0
6'5
7'1
7'9
8'7
9'4
10'2
10'9
11'6
12'3
13'0
13'7
Velocidad
periférica
en m/s
Sección
C
22×14
Sección
D
32×19
Sección
E
38×25
9'5
10'0
10'5
11'0
11'5
12'0
12'5
13'0
13'5
14'0
14'5
15'0
15'5
16'0
16'5
17'0
17'5
18'0
18'5
19'0
19'5
20'0
20'5
21'0
21'5
22'0
22'5
23'0
23'5
24'0
24'5
25'0
5'5
5'8
6'0
6´2
6'4
6'7
6'9
7'1
7'3
7'5
7'7
7'9
8'1
8'3
8'5
8'7
8'9
9'0
9'1
9'2
9'3
9'4
9'5
9'6
9'6
9'7
9'7
9'8
9'8
9'9
9'9
10'0
10'5
11'0
11'4
11'8
12'2
12'6
13'0
13'4
13'8
14'2
14'6
15'0
15'3
15'5
15'7
15'9
16'1
16'3
16'4
16'6
16'8
17'0
17'1
17'3
17'4
17'5
17'6
17'7
17'8
17'9
18'0
18'0
14'3
15'0
15'7
16'3
16'9
17'5
18'1
18'7
19'3
19'8
20'5
21'0
21'3
21'7
22'2
22'6
23'0
23'4
23'8
24'2
24'6
25'0
25'3
25'6
25'8
26'0
26'2
26'3
26'5
26'7
26'9
27'0
Tabla 6.- Potencia teórica transmitida
por las correas trapeciales (C.V.)
Cuando las condiciones son adversas se aplica
la fórmula empírica:
2
31
teóricareal
C
CC
N=N
⋅
⋅
Siendo:
C1 = coeficiente de corrección del ángulo de
contacto correa-polea
C2 = coeficiente de corrección debido a
sobrecargas en la transmisión
C3 = coeficiente de corrección debido a la
utilización de diámetros menores que los
mínimos permisibles
18164UNEnormalaporaconsejadomínimodiámetro
elegidousodediámetro
=C3
La tabla siguiente ofrece los valores de C1
según el ángulo de contacto.
Ángulo de
contacto 180º 170º 160º 150º 140º 130º
C1 1 0'98 0'95 0'92 0'89 0'86
Ángulo de
contacto 120º 110º 100º 90º 80º 70º
C1 0'82 0'78 0'73 0'68 0'63 0'58
Tabla 7.- Coeficiente de corrección por contacto
El coeficiente de corrección de sobrecargas se
ofrece en sendas tablas.
61
La tabla siguiente ofrece los valores de C2 en
función del % de sobrecarga y la tabla 8 ofrece C2
en función del tipo de la transmisión.
Sobrecarga
instantánea en % 0 25% 50% 100% 150%
C2 1 1'1 1'2 1'4 1'6
Tabla 8.- Coeficiente de corrección en función del % de
sobrecarga
Clase de máquina Coeficiente de corrección
Ventiladores pequeños hasta 10CV
Bombas centrífugas
Agitadores de líquidos
Compresores centrífugos
Soplantes
1'1 -1'2
Cintas transportadoras
Árboles de transmisión
Generadores
Punzonadoras
Cizallas y prensas
Troquetes
Ventiladores
Máquinas herramientas
Maquinaria de imprenta
1'2 - 1'4
Martillos pilones
Gravilladoras
Compresores de pistón
Bombas de pistón
Transportadoras de tornillo
Transportadores de sacudidas
Maquinaria de aserraderos
Maquinaria textil
Elevadores de cangilones
Maquinaria para hacer ladrillos
Batidoras para fábricas de papel
1'4 - 1'6
Machacadoras de mandíbulas
Machacadoras de rodillos
Machacadoras de cono
Molinos de bolas
Molinos de tubos
Molinos de barras
montacargas
1'6 - 1'8
• Para servicios continuos de 24 h aumentar 0'2 al factor
Si la transmisión ha de funcionar mojada aumentar 0'2 al factor
Si se usan poleas tensoras, aumentar 0'2 al factor
Para funcionamiento intermitente restar 0'2 al factor
Tabla 9.- Coeficiente de corrección de sobrecargas
en función del equipo accionado
El número de correas precisas para cada
instalación se calcula dividiendo la potencia
necesaria entre la potencia transmitida por cada
correa con el método de cálculo hasta aquí
expuesto.
El ábaco siguiente es un prontuario indicativo
de las condiciones óptimas de utilización de cada
tipo de correa.
Potencia (CV)V.
polea
peq.
(r.p.m.)
1 2 3 4 71/2 10 15 20 30 50 75 100 150 200 250
500 o más
4000
3500
3000
2500
2000
1750
1500
1250
1000
900
800
700
600
500
400
300
200
100
_ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ A
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ B
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ C
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ D
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
E
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
F
Figura 7.- Ábaco para elección de correas
CORREAS DENTADAS. CARACTERÍSTICAS Y
CÁLCULO
Constituyen las correas dentadas un sistema
moderno de transmisión de potencia que reúne la
práctica totalidad de los ventajas de las correas
planas y trapeciales y elimina sus inconvenientes.
Entre los nombres con los que se
comercializan se les llama correas de
sincronización que es bastante definitorio de una
de sus más importantes cualidades.
Sus elementos de tracción usuales son cables
de acero y es por lo que estiran muy poco bajo
carga y servicio y soportan grandes esfuerzos.
Su tensión inicial puede ser muy baja, lo que
origina una reducida carga en los cojinetes y no
precisa (aunque no son desechables) elementos
tensores.
Se construyen a base de neopreno al que se le
coloca una cubierta exterior de nylon.
Como las poleas que requieren se tallan con
dientes la transmisión que realizan es
sincronizada lo que en muchos casos además de
útil es necesario.
Tienen un funcionamiento silencioso, no
precisan lubricación. Para su cálculo es preciso
tener en cuenta que, según indica la experiencia,
debe haber un mínimo de seis dientes en
contacto.
La relación de transmisión de estas correas
viene dada por la expresión:
2p1p nd=nd 21 ⋅⋅
62
Siendo:
dp1 y dp2 los diámetros primitivos de las
poleas
n1 y n2 el número de revoluciones de
ambas poleas.
Por una fórmula básica en engranajes y que
veremos más adelante se tiene que:
1p Zp=d 1 ⋅⋅π
Siendo:
p = paso
Z1 = nº de dientes de la polea 1
Despejando en la ecuación anterior se tiene:
1p Z
p
=d 1 ⋅
π
Y llamando módulo a:
π
p
=m
Como:
2
2
1
1
Z
dp
Z
dpp
==
π
Se tiene que:
1p m.Z=d 1
Y por tanto:
2p m.Z=d 2
Sustituyendo dp1 y dp2 se tiene que la relación
de transmisión también puede expresarse por:
2211 n•Z=nZ ⋅
El número mínimo de dientes en contacto entre
la polea más pequeña y la correa se calcula por la
fórmula:
1c Z
360
=Z ⋅
β
Ecuación en la que:
Zc = número de dientes en contacto.
β = ángulo de contacto polea-correa.
Z1 = número de dientes de la polea.
En este tipo de correas se denomina Potencia
base a la potencia transmitida por cada cm de
anchura de correa.
Estas correas se agrupan comercialmente en
los tipos XL, L, H, XH, y XXH.
Sus características de paso se presentan en la
siguiente tabla.
Tipo Paso
XL
L
H
XH
XXH
5'080 mm (1/5")
9'525 mm (3/8")
12'700 mm (1/2")
22'225 mm (7/8")
31'750 mm (1 1/4")
Tabla 10.- Tipos de correas dentadas y pasos
correspondientes.
Los fabricantes ofrecen catálogos en los que
aportan la potencia base de los distintos modelos
de correas. En la tabla siguiente se presenta la
potencia base de una correa del tipo L para
diferentes valores del diámetro primitivo y para
diferentes regímenes de giro de la polea más
pequeña usada en la transmisión.
63
Nº dientes de la
polea menor
14 15 16 18 20 22 24 26 28 30 32 36 40 48 50
Dp (cm) 42'4 45'5 48'5 54'6 60'6 66'7 72'8 78'8 84'9 90'9 97'0 109'1 121'3 145'5
100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
3000
3100
3200
3300
3400
3500
3600
3700
3800
4000
4200
4400
4600
4800
5000
5200
5400
5600
5800
6000
0'02 0'03 0'03 0'03 0'04 0'05 0'05 0'06 0'06 0'06 0'06 0'07 0'08 0'10
0'06 0'06 0'06 0'07 0'08 0'09 0'10 0'10 0'11 0'12 0'13 0'15 0'16 0'19
0'08 0'09 0'09 0'11 0'12 0'13 0'15 0'16 0'17 0'18 0'19 0'22 0'25 0'29
0'11 0'12 0'13 0'15 0'16 0'18 0'19 0'21 0'23 0'24 0'26 0'29 0'32 0'39
0'14 0'15 0'16 0'18 0'20 0'22 0'24 0'26 0'28 0'30 0'32 0'37 0'41 0'48
0'17 0'18 0'19 0'22 0'24 0'27 0'29 0'32 0'34 0'37 0'39 0'44 0'49 0'58
0'20 0'21 0'22 0'26 0'28 0'31 0'34 0'37 0'40 0'43 0'45 0'51 0'57 0'68
0'23 0'24 0'26 0'29 0'32 0'36 0'39 0'42 0'45 0'48 0'52 0'58 0'65 0'77
0'26 0'27 0'29 0'33 0'37 0'40 0'44 0'47 0'51 0'55 0'58 0'65 0'73 0'88
0'28 0'30 0'32 0'37 0'41 0'45 0'49 0'53 0'57 0'61 0'65 0'73 0'80 0'96
0'31 0'33 0'36 0'40 0'44 0'49 0'53 0'58 0'63 0'67 0'71 0'80 0'88 1'05
0'34 0'37 0'39 0'44 0'48 0'53 0'58 0'63 0'68 0'73 0'77 0'87 0'96 1'14
0'37 0'39 0'42 0'47 0'52 0'58 0'63 0'68 0'73 0'78 0'84 0'94 1'03 1'23
0'40 0'42 0'45 0'51 0'57 0'62 0'68 0'73 0'79 0'84 0'90 1'00 1'11 1'31
0'43 0'45 0'48 0'55 0'61 0'67 0'73 0'78 0'84 0'90 0'96 1'07 1'18 1'39
0'45 0'48 0'52 0'58 0'65 0'71 0'77 0'84 0'90 0'96 1'02 1'14 1'26 1'78
0'48 0'51 0'55 0'62 0'69 0'75 0'82 0'89 0'95 1'02 1'08 1'21 1'33 1'56
0'51 0'54 0'58 0'65 0'73 0'80 0'87 0'94 1'00 1'07 1'14 1'27 1'40 1'54
0'54 0'57 0'61 0'69 0'77 0'84 0'91 0'98 1'06 1'13 1'20 1'33 1'47 1'71
0'57 0'61 0'65 0'72 0'80 0'88 0'96 1'03 1'11 1'18 1'25 1'40 1'53 1'78
0'60 0'64 0'68 0'76 0'84 0'93 1'01 1'08 1'16 1'24 1'31 1'46 1'60 1'86
0'63 0'67 0'71 0'80 0'88 0'97 1'05 1'13 1'21 1'29 1'37 1'52 1'66 1'92
0'65 0'70 0'74 0'83 0'92 1'01 1'09 1'17 1'26 1'34 1'43 1'58 1'73 2'00
0'68 0'72 0'77 0'87 0'96 1'05 1'14 1'22 1'31 1'40 1'48 1'64 1'79 2'05
0'71 0'75 0'80 0'90 1'00 1'09 1'18 1'27 1'36 1'45 1'53 1'69 1'85 2'10
0'73 0'78 0'83 0'93 1'03 1'13 1'23 1'32 1'41 1'50 1'59 1'75 1'90 2'16
0'76 0'81 0'87 0'97 1'07 1'18 1'27 1'37 1'46 1'55 1'64 1'80 1'96 2'21
0'79 0'84 0'90 1'00 1'11 1'21 1'31 1'41 1'51 1'60 1'60 1'85 2'01 2'25
0'82 0'87 0'93 1'04 1'15 1'25 1'35 1'46 1'55 1'64 1'74 1'90 2'06 2'30
0'84 0'90 0'96 1'07 1'18 1'29 1'39 1'50 1'60 1'69 1'79 1'95 2'11 2'34
0'87 0'93 0'99 1'11 1'22 1'33 1'44 1'54 1'64 1'74 1'83 2'00 2'15 2'37
0'90 0'96 1'02 1'14 1'25 1'37 1'48 1'59 1'69 1'79 1'88 2'05 2'19 2'40
0'92 0'98 1'05 1'17 1'29 1'41 1'52 1'63 1'73 1'83 1'92 2'09 2'23 2'43
0'95 1'01 1'08 1'21 1'32 1'45 1'56 1'67 1'77 1'87 1'97 2'14 2'27 2'45
0'98 1'04 1'11 1'24 1'36 1'48 1'60 1'71 1'81 1'91 2'01 2'18 2'31 2'47
1'00 1'07 1'14 1'27 1'39 1'52 1'64 1'75 1'86 1'95 2'05 2'21 2'34 2'48
1'03 1'10 1'17 1'30 1'43 1'56 1'67 1'79 1'90 1'99 2'09 2'24 2'37 2'49
1'06 1'12 1'19 1'34 1'47 1'59 1'71 1'83 1'94 2'03 2'13 2'28 2'40 2'49
1'11 1'18 1'26 1'40 1'53 1'66 1'79 1'90 2'01 2'10 2'19 2'34 2'44 2'48
1'24 1'31 1'46 1'60 1'73 1'86 1'97 2'08 2'17 2'26 2'39 2'47 2'45
1'30 1'37 1'52 1'66 1'80 1'93 2'04 2'14 2'24 2'32 2'43 2'49 2'40
1'34 1'43 1'58 1'72 1'86 1'99 2'10 2'20 2'29 2'37 2'46 2'50 2'32
1'39 1'48 1'64 1'79 1'93 2'05 2'16 2'25 2'34 2'41 2'49 2'48 2'21
1'44 1'54 1'69 1'84 1'98 2'11 2'23 2'31 2'38 2'44 2'49 2'46 2'08
1'50 1'58 1'75 1'89 2'04 2'16 2'27 2'35 2'42 2'47 2'49 2'42 1'93
1'54 1'64 1'81 1'95 2'09 2'21 2'31 2'39 2'45 2'49 2'49 2'36 1'75
1'59 1'69 1'86 2'00 2'14 2'26 2'35 2'43 2'47 2'50 2'46 2'29 1'53
1'64 1'74 1'90 2'05 2'19 2'30 2'39 2'45 2'49 2'50 2'42 2'21 1'28
1'69 1'79 1'95 2'10 2'24 2'33 2'42 2'47 2'50 2'49 2'36 2'10 1'01
Tabla 10.- Potencia base de correas dentadas tipo L (C.V./cm).
r.p.m.
64
La potencia de cálculo o potencia corregida Pc
se obtiene afectando a la potencia a transmitir (P)
de los correspondientes coeficientes de corrección
según la fórmula:
)C+C+(C•P=P 321c
Siendo:
C1 = coeficiente de corrección debido a
sobrecargas en la transmisión.
C2 = coeficiente de corrección debido a la
multiplicación y se obtiene según el
número de dientes de contacto de la
correa con las poleas.
Si Z1 es el número de dientes de la polea
motora y Z2 es el número de dientes de la polea
arrastrada
Si 0=C1
Z
Z
2
2
1
⇒≤
Si 1>
Z
Z
2
1
se asigna a C2 el valor ofrecido por
la tabla 12.
C3 = coeficiente de corrección debido al tiempo
continuado de funcionamiento.
Este coeficiente se obtiene de la tabla 11.
La tabla siguiente ofrece los valores de C1
según el tipo de instalación en la que se apliquen
correas dentadas.
Aplicación
Agitador mezclador:
Para líquidos
Para semilíquidos
1'4 - 1'8
1'5 - 1'9
Aspiradores y ventiladores:
Centrífugos
Helicoidales, insufladores
para minería
1'6 - 2'0
1'8 - 2'2
Centrifugadoras 1'7 - 1'9
Compresores:
Centrífugos o rotativos
a pistones
1'6 - 1'8
2'0 - 2'4
Elevadores 1'6 - 2'0
Trituradoras:
Cilindros y martillos 2'2 - 2'5
Grupos generadores y
excitadores 1'6 - 2'0
Líneas de ejes
(árboles de transmisión) 1'5 - 1'9
Máquinas industriales
Agitadores, calandrias
secadores, bobinadores,
batidores, bombas,
trituradoras, refinadores
1'4 - 1'8
1'7 - 2'1
Máquinas industria
cerámica:
Cortadoras, dosificadoras,
trefilas
1'5 - 1'9
1'8 - 2'2
Aplicación
Máquinas para lavanderías
Lavadoras, secadoras 1'6 - 2'0
Máquinas para elaboración
goma: 1'6 - 2'0
Máquina elaboración madera:
Tornos, sierras de cinta,
cortadoras, sierras circulares,
cepilladoras
1'3 - 1'4
1'4 - 1'6
Máquinas elaboración pan
Amasadoras, mezcladoras 1'4 - 1'8
Máquinas de imprenta
Rotativas, offset, plegadoras
guillotinas, linotipias
prensas de impresión 1'4 - 1'8
Máquina textil
Urdidores, bobinadores,
retorcedoras, telares,
hiladoras
1'5
1'6 - 2'0
Máquinas herramientas
Taladradoras, tornos
roscadoras, entalladoras
fresadoras, cepilladoras,
rectificadoras
1'4 - 1'8
1'5 - 1'9
Molinos de grano 1'7 - 2'1
Bombas:
Centrífugas, rotativas,
de engranajes,
de pistones
1'5 - 1'9
2'0 - 2'4
Tamices:
Rotativos a tambor o
cónicos
vibratorios
1'4 - 1'5
1'5 - 1'7
Transportadores:
Con banda de caucho
(material ligero)
con banda de caucho
(material pesado)
elevadores, montacargas
a rosca
1'3 - 1'7
1'6 - 1'8
1'7 - 1'9
1'7 -2'0
Tabla 11.- Valores de C1 según el tipo de instalación
La tabla siguiente ofrece los valores de C2 y C3.
Coeficiente por multiplicación
Relación transmisión i- C2
De 1 a 1'24
De 1'25 a 1'74
De 1'75 a 2'49
De 2'50 a 3'50
Más de 3'50
-
+ 0'10
+ 0'20
+ 0'30
+ 0'40
Coeficiente por funcionamiento
Tipo de
funcionamiento
C3
8 - 10 horas día -
Continuo 10 - 16 " " + 0'10
16 - 24 " " + 0'20
Intermitente
estacional
- 0'10
Con poleas tensoras + 0'10
Tabla 12.- Coeficientes de corrección C2 y C3
Una vez conocida la potencia corregida Pc y la
potencia base que puede transmitir una
determinada correa Pb se obtiene la anchura de
correa necesaria por el cociente de ambas, o sea:
65
cm
P
P
=b
b
c
Una vez calculado b se escoge en catálogo el
ancho comercial inmediatamente superior.
Los anchos comerciales de las correas
dentadas son los que se presentan en las
siguientes tablas.
Tipo XL
Designación Pulgadas mm
25
31
37
1/4
5/16
3/8
6'3
7'9
9'4
Tabla 13.- Anchos normalizados correas tipo XL.
Tipo L
Designación Pulgadas mm
50
75
100
1/2
3/4
1
12'7
19'1
25'4
Tabla 14.- Anchos normalizados correas tipo L.
Tipo H
Designación Pulgadas mm
75
100
150
200
300
3/4
1
11/2
2
3
19'1
25'4
38'1
50'8
76'2
Tabla 15.- Anchos normalizados correas tipo H.
Tipo XH
Designación Pulgadas mm
200
300
400
2
3
4
50'8
76'2
101'6
Tabla 16.- Anchos normalizados correas tipo XH.
Tipo XXH
Designación Pulgadas mm
200
300
400
500
2
3
4
5
50'8
76'2
101'6
127'0
Tabla 17.- Anchos normalizados correas tipo XXH.
POLEAS
Las poleas que se usan para transmisiones con
correas se fabrican con distintos materiales,
siendo los más comunes fundición de hierro, acero
y aleaciones ligeras. A veces se encuentran
poleas de madera (muy antiguas) y de plástico.
Hoy las dimensiones de las poleas están
normalizadas.
Las poleas para correas planas se construyen
con llanta (superficie de contacto correa-polea)
plana o ligeramente abombada según se presenta
en la figura siguiente. El objeto de esta
conformación es el de estabilizar la correa
evitando con ello que se salga por el lateral.
b
h
Figura 8.- Polea para correa plana
La flecha h tiene una dimensión de b
3
1 a
b
2
1 .
La fijación de las poleas a los árboles se realiza
mediante chavetas, o mediante el denominado
cubo partido, elemento de gran utilidad cuyo
esquema es el representado en la figura siguiente.
1.- Cubo partido.
2.- Placa de fijación.
1
2
Figura 9.- Cubo partido
El funcionamiento del cubo partido es tan
simple como apretar la placa de fijación contra la
polea mediante tornillos. En la polea se ha
conformado previamente un contracono en el que
ajusta el cubo partido.
Las poleas para correas trapeciales son
acanaladas y cuando son pequeñas se construyen
de una sola pieza, en cambio para grandes
transmisiones es frecuente usar varias poleas
unidas mediante tornillos.
66
Figura 10.- Polea para correa trapecial
Las características dimensionales de estas
poleas están normalizadas y, para los distintos
tipos de correas, ya han sido presentadas.
Es importante destacar que el acabado de los
caras laterales debe ser lo más fino y uniforme
posible para evitar el prematuro desgaste por
abrasión.
Las poleas para correas dentadas parecen
engranajes de gran paso.
Para un funcionamiento continuado y sin
problemas es muy importante que las aristas de
los dientes se redondeen.
La figura siguiente presenta un detalle de una
polea dentada con su correa.
de
dp
2
3 1
1.- Correa dentada.
2.- Polea dentada.
3.- Paso.
dp.- Diámetro primitivo.
de.- Diámetro exterior.
Figura 11.- Polea y correa dentadas.
A veces, y esto es frecuente, cuando la
transmisión soporta movimientos bruscos, se
construyen las poleas con guías laterales como se
presentan en la siguiente figura que evitan que se
salga la correa de su zona de contacto con la
polea.
Figura 11.- Sección de polea dentada con guías laterales.

Más contenido relacionado

PDF
Catálogo BANDO en castellano
PDF
Polea y Correas
DOCX
Informe de soldadura 01
PDF
dibujo-tecnico-rodamientos-elemen-tos-de-proteccion-y-seguridad-soportes-engr...
PDF
5. rodamientos
PPTX
Cap i. pernos, tornillos.
PDF
Teoría Rodamientos
Catálogo BANDO en castellano
Polea y Correas
Informe de soldadura 01
dibujo-tecnico-rodamientos-elemen-tos-de-proteccion-y-seguridad-soportes-engr...
5. rodamientos
Cap i. pernos, tornillos.
Teoría Rodamientos

La actualidad más candente (20)

PDF
problemas-resueltos engranajes rectos helicoidales
PDF
Maquinas --el-torno
PDF
PPT
Diseño 3 diseño de chaveta
DOCX
Diseño de un tecle tipo portico para el area de Mantenimiento
PPTX
Tren de fuerza principios y componentes
PPTX
Clasificacion y partes de una bomba centrifuga
PDF
Manual simbolos-hidraulicos-simbologia-150611045116-lva1-app6892
PDF
Ejes Y Arboles - Manual De Diseño - UIS
DOC
Circuitos electroneumaticos
PDF
Manual transmisiones-hidraulicas-maquinaria-pesada-diagnostico-mantenimiento-...
PDF
MANUAL DE POLEAS EN V INTERMEC
PDF
Ficha tecnica-de-maquinaria
PDF
Ejercicios de ejes
PPTX
PDF
Transmision de cadenas
PPTX
Fundamentos básicos de sistemas hidráulicos
PDF
Cadenas
PDF
Manual motores-tipos-componentes-sistemas-aire-refrigeracion-distribucion-lub...
PDF
Ejercicios de tolerancias
problemas-resueltos engranajes rectos helicoidales
Maquinas --el-torno
Diseño 3 diseño de chaveta
Diseño de un tecle tipo portico para el area de Mantenimiento
Tren de fuerza principios y componentes
Clasificacion y partes de una bomba centrifuga
Manual simbolos-hidraulicos-simbologia-150611045116-lva1-app6892
Ejes Y Arboles - Manual De Diseño - UIS
Circuitos electroneumaticos
Manual transmisiones-hidraulicas-maquinaria-pesada-diagnostico-mantenimiento-...
MANUAL DE POLEAS EN V INTERMEC
Ficha tecnica-de-maquinaria
Ejercicios de ejes
Transmision de cadenas
Fundamentos básicos de sistemas hidráulicos
Cadenas
Manual motores-tipos-componentes-sistemas-aire-refrigeracion-distribucion-lub...
Ejercicios de tolerancias
Publicidad

Similar a Calculo de fajas (20)

PPTX
Tema 5 - Correas y poleas componentes de maquinas
PPT
Correas.ppt
PDF
TEMA 6 - Correas.pdf
DOCX
Tutorial nº 121.poleas
PDF
Apunte de correas v 2014
PDF
Elementos de máquinas. correas y poleas. transmisiones mecánicas.
PPTX
SELECCION DE FAJAS DE ACUERDO DE ACUERDO AL USO
PPTX
trTransmisionporcorreaycadena
DOC
Correas en v 2013
PDF
Fajas clase 1
PPTX
Correas de Transmisión
DOCX
Correa De TransmisióN
DOC
Correas planas 2013
PDF
Correasindustriales
PDF
Elementos de transmisión de potencia 2012
PDF
Elementos de transmisión de potencia 2012.pdf
DOC
Correas eslabonadas 2013
DOC
Correas eslabonadas 2013
PDF
Texto correas
PDF
Capitulo15 121021143217-phpapp02
Tema 5 - Correas y poleas componentes de maquinas
Correas.ppt
TEMA 6 - Correas.pdf
Tutorial nº 121.poleas
Apunte de correas v 2014
Elementos de máquinas. correas y poleas. transmisiones mecánicas.
SELECCION DE FAJAS DE ACUERDO DE ACUERDO AL USO
trTransmisionporcorreaycadena
Correas en v 2013
Fajas clase 1
Correas de Transmisión
Correa De TransmisióN
Correas planas 2013
Correasindustriales
Elementos de transmisión de potencia 2012
Elementos de transmisión de potencia 2012.pdf
Correas eslabonadas 2013
Correas eslabonadas 2013
Texto correas
Capitulo15 121021143217-phpapp02
Publicidad

Último (20)

PDF
Fundamentos_Educacion_a_Distancia_ABC.pdf
PPTX
AGENTES PATÓGENOS Y LAS PRINCIPAL ENFERMEAD.pptx
PDF
Crear o Morir - Andres Oppenheimer Ccesa007.pdf
DOCX
V UNIDAD - SEGUNDO GRADO. del mes de agosto
PDF
IDH_Guatemala_2.pdfnjjjkeioooe ,l dkdldp ekooe
PDF
DI, TEA, TDAH.pdf guía se secuencias didacticas
PDF
Gasista de unidades unifuncionales - pagina 23 en adelante.pdf
PDF
La Evaluacion Formativa en Nuevos Escenarios de Aprendizaje UGEL03 Ccesa007.pdf
PDF
Tomo 1 de biologia gratis ultra plusenmas
PDF
TRAUMA_Y_RECUPERACION consecuencias de la violencia JUDITH HERMAN
PDF
Habitos de Ricos - Juan Diego Gomez Ccesa007.pdf
PDF
Romper el Circulo de la Creatividad - Colleen Hoover Ccesa007.pdf
PDF
Híper Mega Repaso Histológico Bloque 3.pdf
PDF
el - LIBRO-PACTO-EDUCATIVO-GLOBAL-OIEC.pdf
PDF
PFB-MANUAL-PRUEBA-FUNCIONES-BASICAS-pdf.pdf
PDF
Metodologías Activas con herramientas IAG
PDF
OK OK UNIDAD DE APRENDIZAJE 5TO Y 6TO CORRESPONDIENTE AL MES DE AGOSTO 2025.pdf
PDF
Punto Critico - Brian Tracy Ccesa007.pdf
DOCX
Tarea De El Colegio Coding For Kids 1 y 2
PDF
Escuela de Negocios - Robert kiyosaki Ccesa007.pdf
Fundamentos_Educacion_a_Distancia_ABC.pdf
AGENTES PATÓGENOS Y LAS PRINCIPAL ENFERMEAD.pptx
Crear o Morir - Andres Oppenheimer Ccesa007.pdf
V UNIDAD - SEGUNDO GRADO. del mes de agosto
IDH_Guatemala_2.pdfnjjjkeioooe ,l dkdldp ekooe
DI, TEA, TDAH.pdf guía se secuencias didacticas
Gasista de unidades unifuncionales - pagina 23 en adelante.pdf
La Evaluacion Formativa en Nuevos Escenarios de Aprendizaje UGEL03 Ccesa007.pdf
Tomo 1 de biologia gratis ultra plusenmas
TRAUMA_Y_RECUPERACION consecuencias de la violencia JUDITH HERMAN
Habitos de Ricos - Juan Diego Gomez Ccesa007.pdf
Romper el Circulo de la Creatividad - Colleen Hoover Ccesa007.pdf
Híper Mega Repaso Histológico Bloque 3.pdf
el - LIBRO-PACTO-EDUCATIVO-GLOBAL-OIEC.pdf
PFB-MANUAL-PRUEBA-FUNCIONES-BASICAS-pdf.pdf
Metodologías Activas con herramientas IAG
OK OK UNIDAD DE APRENDIZAJE 5TO Y 6TO CORRESPONDIENTE AL MES DE AGOSTO 2025.pdf
Punto Critico - Brian Tracy Ccesa007.pdf
Tarea De El Colegio Coding For Kids 1 y 2
Escuela de Negocios - Robert kiyosaki Ccesa007.pdf

Calculo de fajas

  • 1. 54 TEMA 5.- CORREAS INTRODUCCIÓN Las correas se utilizan para transmitir, mediante un movimiento de rotación, potencia entre árboles normalmente paralelos, entre los cuales no es preciso mantener una relación de transmisión exacta y constante. El hecho de no poder exigir una relación de transmisión exacta y constante se debe a que en estas transmisiones hay pérdidas debido al deslizamiento de las correas sobre las poleas. Dicho deslizamiento no es constante sino que varía en función de las condiciones de trabajo, es decir, de los valores de par transmitido y de la velocidad de la correa. Las transmisiones por medio de correas son denominadas de tipo flexible pues absorben vibraciones y choques de los que sólo tienden a transmitir un mínimo al eje arrastrado. Son estas transmisiones adecuadas para distancias entre ejes relativamente grandes, actuando bajo condiciones adversas de trabajo (polvo, humedad, calor, etc.), son además silenciosas y tienen una larga vida útil sin averías ni problemas de funcionamiento. CORREAS PLANAS. CARACTERÍSTICAS Y CÁLCULO Las correas del tipo plano están constituidas por una banda continua cuya sección transversal es rectangular, fabricadas de distintos materiales siendo los más empleados: • Cuero de 4 a 6 mm. de espesor. Para bandas de más espesor se unen capas sucesivas de cuero mediante adhesivos, construyéndose bandas de dos capas y bandas de tres capas. Según su capacidad se pueden clasificar en tres grupos: - Clase I: - σpermisible = 25 Kp/cm2 y velocidad máxima de hasta 12 m/s. - Clase II: - σpermisible = 29 Kp/cm2 y velocidad máxima de hasta 24 m/s. - Clase III: - σpermisible = 33 Kp/cm2 y velocidad máxima de hasta 45 m/s. • Tejido de algodón o banda de nylon. Se construye con varias capas de tejido, normalmente recubiertas de caucho o plástico para su protección y mayor duración. Su tensión permisible varía entre los 125 y 250 Kg/cm2 y su velocidad lineal máxima es de hasta unos 40 m/sg. Hay un concepto muy utilizado en las transmisiones por correa, es el de relación de transmisión. Sea d1 el diámetro de la polea motriz y d2 el de la polea arrastrada: d d1 2 Figura 1.- Transmisión por correa Es evidente que por ser la correa una banda continua la velocidad lineal en cualquiera de sus puntos tiene el mismo módulo. Por tanto si V es la velocidad lineal se cumplirá (despreciando el deslizamiento) que: 2211 r=r=V ⋅⋅ ωω Como: 2211 r=r ⋅⋅ ωω Se tiene que: 1 2 2 1 2211 n n = d d dn=dn ⇒⋅⋅ La relación: 2 1 d d =r arrastradapoleadiametro motrizpoleadiametro = se denomina relación de transmisión.
  • 2. 55 Si se considera un elemento de correa, como se presenta en la figura siguiente, de longitud dL se tiene que: dL dS F+dF F T F d F d 2 d 2 dN R 2 1 θ θ θ θ Figura 2.- Cálculo de la relación entre F1 y F2 Si T es la fuerza que debido a la tensión de la correa tiende a unir las dos poleas, debido al giro de la polea en un ramal de la correa habrá una fuerza F1 mayor que la fuerza resultante en el otro ramal F2. F1 - F2 es la diferencia entre el ramal cargado y descargado. Vamos a demostrar que: µθ e= F F 2 1 Siendo: µ = coeficiente de rozamiento correa-polea θ = ángulo de contacto correa-polea Si dN es la fuerza que actúa entre la correa y la polea y dS es la fuerza centrífuga del elemento de correa considerado, se tendrá que como la fuerza resultante normal es cero: ∑ 0=Fn ⇒ 2 d dF)sen+(F- 2 d senF-dS+dN=0 θθ ⋅ Como dθ es muy pequeño 2 d = 2 d sen θθ ⇒ ( ) 2 d •dF+F- 2 d •F-dS+dN=0 θθ Despreciando: 2 d dF θ ⋅ Se tiene: θdF-dS+dN=0 ⋅ ⇒ Sd-F.d=Nd θ Si se supone que no hay deslizamiento de la correa sobre la polea, se tiene que: ∑ 0=Ft 2 d cosF)d+(F- 2 d cosF+Nd=0 θθ µ ⋅ Siendo: µ = coeficiente de rozamiento correa-polea. Como dθ es pequeño 1 2 d cos →⇒ θ por lo que: Fd-Nd=0 ⋅µ Como: dN = F dθ - dS dF-dS)-d(F=0 θµ ⋅ o bien: dF-dS-dF=0 ⋅⋅⋅ µθµ Si la masa del elemento dL de correa es dm, si V es la velocidad lineal de la correa se tiene que: R V dm=dS 2 ⋅ Si γ es el peso específico de la correa: γb.h.dL.=dm Siendo b = anchura de la correa h = espesor de la correa Como: θθ R.dd 2 h +R=dL ≈⋅      Siendo R = radio de la polea Se tiene que: θγ .R.db.h.=dm Con lo que:
  • 3. 56 θγ d•)R(V.R.b.h.=dS 2 Si se hace: KV••b•h 2 =γ ⇒ θK.d=dS Con lo que: dF-d•K•-d•F=0 θµθµ ⋅ Despejando se tiene: K-F dF =d•dF=d•K)-(F• θµθµ ⇒ Integrando se tiene que: ∫∫ = − θ θµ 0 F F d• KF dF1 2 ( )[ ] KF KF •L•KF•L• 2 1F F 1 2 − − =⇒−= θµθµ θµ 2 1 e= K-F K-F Como: 2 Vhb=K ⋅⋅⋅ γ Si V = 0 se tiene que K = 0 ⇒ θµ 2 1 e= F F (I) Ecuación que será de gran utilidad en el cálculo de frenos. De forma inexacta, como los valores de K son pequeños, es frecuente encontrar en el cálculo de transmisiones por correa la fórmula (I) obtenida anteriormente. El coeficiente de rozamiento µ entre polea y correa está muy estudiado, habiendo tablas como la) siguiente que ofrecen valores de µ. Material del cuerpo rozante µ0 (rozamiento de partida) µ (rozamiento en movimiento) Acero sobre acero Acero sobre bronce Madera sobre madera Cuero sobre metal Cuero sobre fundición Cuero sobre madera 0'15 0'2 0'65 0'6 0'5-0'6 0'47 0'1 0'16 0'25 0'25 0'28 0'27 Tabla 1.- Coeficientes de rozamiento En el caso del cuero sobre poleas de acero hay una fórmula empírica que ofrece el valor de µ ligado a la velocidad lineal de la correa. 0'012.V+0'22=µ Siendo V = velocidad lineal de la correa en m/s Un aspecto necesario para el uso de las transmisiones por correa es el del cálculo de la longitud de la correa en función de los diámetros de la polea motriz y arrastrada. Para ello usando el esquema de la figura siguiente se tiene: A D C B OO r l r R-r 1 2 α α α π-2α π-2α Figura 3.- Cálculo de la longitud de correa De la figura se obtiene que: α.cosOO=l 21 Siendo: O1 O2 = distancia entre centros de las poleas 21 21 OO r-R =sen R)2+(=BC;)2-(r=AD cosOO=l=CD=AB DA+CD+BC+AB=L α απαπ α ⋅⋅ 21OO r-R arcsen=α ααπαπ cosO2O+2R+R+2r-r=L 21 ααπ cosO2O+r)-(R2+r)+(R=L 21 El cálculo de la sección transversal de la correa se calcula con la fórmula que ofrece la tensión o esfuerzo en el ramal más cargado, o sea el sometido a la carga F1: A F = 1 σ Como σ ≤ σpermisible ⇒ Área mínima de la sección vendrá dada por:
  • 4. 57 permisible 1F =A σ Como el área A es una sección rectangular, si b es la anchura de la correa se tendrá que el espesor mínimo necesario en la correa es a, dado por: A=a.b ⇒ b A =a La velocidad de la correa, como se desprende del estudio realizado, incide de manera notable en su comportamiento, ya que la fuerza centrífuga crece rápidamente con la velocidad y puede llegar a valores a los que la capacidad de transmisión de potencia se anula. En la práctica no se aconsejan velocidades mayores de 30 m/s, ya que las flexiones a las que se somete la correa al pasar sobre las poleas actúan sobre la vida útil y a más velocidad lineal mayor es el número de flexiones a las que se somete la correa por unidad de tiempo y menor, lógicamente, será su vida útil. Un aspecto de gran importancia en el cálculo de transmisiones con correas planas es el del diámetro mínimo aconsejable de poleas. Esta es una medida empírica cuyos valores usuales son los siguientes: Diámetro de polea (cm) Velocidad lineal m/s espesor de correa pequeño<7mm espesor medio 7-9 mm espesor grande 9-14 mm V<12 12<V<20 20<V<30 6-10 7-11 9-13 10-20 11-22 13-25 20-50 22-55 25-60 Tabla 2.-Diámetros mínimos aconsejables de poleas Para poder transmitir potencia la correa debe tener una tracción inicial, la denominada tracción de reposo. Se recomiendan unos 125 N/cm de anchura de correa. Cuanto más tensa esté la correa más potencia se puede transmitir sin deslizamiento excesivo, pero por contra mayor y más rápido es el deterioro. Como ocurre que con el servicio las correas se alargan haciéndose necesario el tensado periódico, se recurre a sistemas de ajuste bien por basculamiento bien por desplazamiento o bien, y esta es una solución muy racional, por polea de tensión que no sólo permite regular la tensión sino que posibilita un mayor contacto de la correa con la polea. CORREAS TRAPECIALES. CARACTERÍSTICAS Y CÁLCULO Las correas trapeciales o en V son las más ampliamente usadas en este tipo de transmisiones. Se construyen de caucho en cuyo interior se colocan elementos resistentes a la tracción. El esquema de una correa es el siguiente: A D B C Figura 4.- Detalles constructivos de una correa trapecial Los componentes que forman una correa trapecial son: - A: Funda exterior de tejido vulcanizado - B: Elementos que soportan la carga - C: Cojín resistente de caucho - D: Capa de flexión Las poleas con garganta acanalada afectan a la capacidad de transmisión ya que el denominado efecto cuña da lugar a una fuerza normal de la correa sobre la polea muy superior a la de las correas planas. El efecto cuña favorece también el uso de correas aplicadas a poleas con reducida distancia entre sus centros, y grandes diferencias entre los diámetros. Es frecuente encontrar transmisiones con correas trapeciales múltiples, con la única condición de que se usen correas especialmente próximas en longitud, es decir, de estrecha tolerancia en su fabricación, pues, en caso contrario, la correa más corta trabaja en exceso y se romperá demasiado pronto. La ecuación µθ e= K-F K-F 2 1 obtenida para correas planas es igualmente útil si se sustituye µ por µ/sen φ, siendo 2 φ el ángulo de la garganta que es próximo a 35º.
  • 5. 58 b a correa polea N N/2·sen N/2·sen 2 φ φ φ φ φ Figura 5.- Sección transversal de correa trapecial y acanaladura de polea Para determinar la relación de transmisión es preciso definir el diámetro primitivo dp, que es el que corresponde en la polea a la fibra neutra de la correa. Se denomina fibra neutra a aquella fibra cuya longitud no cambia cuando la correa se dobla perpendicularmente a su base. La relación de transmisión de las transmisiones en correas trapeciales viene dada por: 2p1p nd=nd 21 ⋅⋅ Las correas trapeciales, en función de sus dimensiones, se agrupan según la norma UNE 18006-93 en siete tipos básicos según su sección transversal, a saber, Y, Z, A, B, C, D y E. En la tabla siguiente se presentan los valores característicos de los siete tipos de correas comerciales: bp: Ancho primitivo normal.b: Ancho aproximado de la base superior. h: Altura aproximada.α: Ángulo de los flancos. Sección Y Z A B C D E bp (mm) 5,3 8,5 11 14 19 27 32 b (mm) 6 10 13 17 22 32 38 h (mm) 4 6 8 11 14 19 25 α 40º Tabla 3.- Dimensiones normalizadas de correas trapeciales. Además de las dimensiones señaladas para cada tipo de sección, la norma UNE 18006-93 indica los desarrollo primitivos y las tolerancias de fabricación, aspecto este último de suma importancia para lograr un trabajo correcto en las transmisiones de correas múltiples. En referencia a los aspectos más importantes de la poleas de garganta para correas trapeciales estan recogidos en la norma UNE 18164-88. Los ángulos de garganta que se utilizan para la construcción de éstas son ligeramente inferiores a los ángulos de los flancos de la correas que van a alojar, en concreto se fabrican poleas con valores de 32º, 34º, 36º y 38º. El esquema de una polea con acanaladuras trapeciales es el que se presenta en la figura siguiente: f polea correa e α wd bmin hmin dp Figura 6.- Sección acotada de correa Las dimensiones de poleas según la Norma UNE 18164-85 son las que se presentan en la tabla siguiente: Sección de garganta wp bmín hmín e f Y 5,3 1,6 4,7 8 7 Z 8,5 2 7 12 8 A 11 2,75 8,7 15 10 B 14 3,5 10,8 19 12,5 C 19 4,8 14,3 25,5 17 D 27 8,1 19,9 37 24 E 32 9,6 23,4 44,5 29 Tabla 4.- Dimensiones normalizadas de poleas con acanaladuras para correa trapecial. Igualmente se establecen un número de diámetros de referencia limitados para cada tipo de sección de garganta, estableciendose unos valores recomendados (para las condiciones medias de funcionamiento) y unos valores mínimos, que se indican en la siguiente tabla: Diámetro primitivo de polea Perfil Recomendado (mm) Mínimo (mm) Y 60 20 Z 80 50 A 118 75 B 190 125 C 315 200 D 475 355 E 600 500 Tabla 5.- Diámetro primitivo mínimo de las poleas trapeciales b bp α h
  • 6. 59 Existe mucha más normativa referida a las correas trapeciales que la citada y que abarca aspectos tales como las tolerancias de fabricación y montaje de los elementos de una transmisión, las comprobaciones que se deben realizar sobre cada uno de los componentes, tipos especiales de correas trapeciales y otros muchos aspectos. El uso de correas trapeciales aconseja no utilizarlas para velocidades lineales mayores de 25 m/s, pues, aunque se sabe la velocidad lineal incide notablemente en la potencia a transmitir, la fuerza centrífuga reduce el contacto correa-polea y limita la capacidad de transmisión de potencia. La velocidad se puede variar eligiendo de forma adecuada el diámetro de la polea, si bien condiciones variadas de montaje o de diseño pueden obligar a usar transmisiones con correas múltiples. Antes de finalizar este apartado se van a enumerar una serie de ventajas e inconvenientes que presentan las correas trapeciales. Entre las ventajas se pueden enunciar: - La distancia entre ejes puede ser tan pequeña como permitan las poleas. - La relación de diámetros entre poleas puede ser muy grande, llegando hasta 12/1. - Las correas trapeciales trabajan en cualquier posición. - Pueden usarse correas múltiples. - Requieren gracias al efecto cuña muy poca tensión inicial. - Soporta muy bien las temperaturas extremas. - No atacan a los cojinetes de soporte de las poleas por tensión excesiva. - Resisten la intemperie. - Hay modelos especiales SPA, SPB... que soportan condiciones muy adversas y agresivas. Entre los inconvenientes es preciso tener en cuenta que: - Las grasas, aceites, gasolinas y gas-oil las atacan. - Su longitud crece con el uso. - El deslizamiento las destruye rápidamente. Para concluir indicar que las correas trapeciales deben trabajar siempre en un plano, si bien hay ocasiones en las que pueden montarse con transmisiones tan diversas que resulta hasta espectacular. POTENCIA TRANSMITIDA POR UNA CORREA La potencia transmitida por una correa es función de la diferencia entre las tensiones de sus ramas y de su velocidad lineal, ya que como se observa en la siguiente figura, el par transmitido viene dado por: F F r 1 2 Figura 7.- Fuerzas en una correa. ( ) r•FFM 21 −= Siendo: M = par motor. F1 = fuerza en el ramal más cargado. F2 = fuerza en el ramal menos cargado. r = radio de la polea. Y como entre las expresiones de la potencia se tiene que: n•MN = Siendo: N = potencia. M = par motor. n = régimen de giro. Sustituyendo la primera expresión en la segunda se tiene: ( ) r•n•FFN 21 −= Y como: n·r = velocidad lineal de la correa se tiene: ( ) v•FFN 21 −= Siendo: N = potencia transmitida. F1 - F2 = diferencia de carga entre los ramales de la correa v = velocidad lineal de la correa.
  • 7. 60 El cálculo de instalaciones de transmisión de potencia con correas trapeciales podría hacerse con una metodología semejante a la desarrollada. Hoy, la amplia oferta comercial existente ofrece al técnico tablas y ábacos que permiten un cálculo rápido y preciso de este tipo de transmisiones. De esta forma la tabla siguiente aporta la potencia teórica que puede transmitir una correa en función de su velocidad lineal, trabajando en condiciones normales. Velocidad periférica en m/s Sección Z 10×6 Sección A 13×8 Sección B 17×11 4'0 4'5 5'0 5'5 6'0 6'5 7'0 7'5 8'0 8'5 9'0 9'5 10'0 10'5 11'0 11'5 12'0 12'5 13'0 13'5 14'0 14'5 15'0 15'5 16'0 16'5 17'0 17'5 18'0 18'5 19'0 19'5 20'0 20'5 21'0 21'5 22'0 22'5 23'0 23'5 24'0 24'5 25'0 0'25 0'28 0'30 0'33 0'36 0'39 0'42 0'45 0'48 0'51 0'54 0'57 0'60 0'63 0'66 0'69 0'72 0'75 0'78 0'81 0'84 0'87 0'90 0'91 0'92 0'94 0'95 0'96 0'97 0'97 0'98 0'99 1'00 1'02 1'04 1'06 1'08 1'10 1'10 1'10 1'10 1'10 1'10 0'8 0'8 0'9 1'0 1'0 1'1 1'2 1'3 1'4 1'5 1'6 1'7 1'8 1'8 1'9 1'9 2'0 2'1 2'2 2'3 2'3 2'4 2'5 2'5 2'6 2'6 2'6 2'7 2'7 2'8 2'8 2'9 2'9 2'9 2'9 3'0 3'0 3'0 3'0 3'0 3'1 3'1 3'1 1'1 1'2 1'3 1'4 1'5 1'6 1'7 1'8 1'9 2'0 2'2 2'4 2'5 2'6 2'6 2'7 2'9 3'0 3'1 3'2 3'3 3'4 3'5 3'6 3'6 3'7 3'7 3'8 3'9 4'0 4'1 4'2 4'2 4'2 4'3 4'3 4'3 4'4 4'4 4'4 4'4 4'5 4'5 Velocidad periférica en m/s Sección C 22×14 Sección D 32×19 Sección E 38×25 4'0 4'5 5'0 5'5 6'0 6'5 7'0 7'5 8'0 8'5 9'0 2'4 2'6 3'0 3'2 3'4 3'6 3'9 4'2 4'5 4'8 5'2 4'7 5'0 5'5 6'1 6'7 7'3 7'9 8'5 9'0 9'5 10'0 6'5 7'1 7'9 8'7 9'4 10'2 10'9 11'6 12'3 13'0 13'7 Velocidad periférica en m/s Sección C 22×14 Sección D 32×19 Sección E 38×25 9'5 10'0 10'5 11'0 11'5 12'0 12'5 13'0 13'5 14'0 14'5 15'0 15'5 16'0 16'5 17'0 17'5 18'0 18'5 19'0 19'5 20'0 20'5 21'0 21'5 22'0 22'5 23'0 23'5 24'0 24'5 25'0 5'5 5'8 6'0 6´2 6'4 6'7 6'9 7'1 7'3 7'5 7'7 7'9 8'1 8'3 8'5 8'7 8'9 9'0 9'1 9'2 9'3 9'4 9'5 9'6 9'6 9'7 9'7 9'8 9'8 9'9 9'9 10'0 10'5 11'0 11'4 11'8 12'2 12'6 13'0 13'4 13'8 14'2 14'6 15'0 15'3 15'5 15'7 15'9 16'1 16'3 16'4 16'6 16'8 17'0 17'1 17'3 17'4 17'5 17'6 17'7 17'8 17'9 18'0 18'0 14'3 15'0 15'7 16'3 16'9 17'5 18'1 18'7 19'3 19'8 20'5 21'0 21'3 21'7 22'2 22'6 23'0 23'4 23'8 24'2 24'6 25'0 25'3 25'6 25'8 26'0 26'2 26'3 26'5 26'7 26'9 27'0 Tabla 6.- Potencia teórica transmitida por las correas trapeciales (C.V.) Cuando las condiciones son adversas se aplica la fórmula empírica: 2 31 teóricareal C CC N=N ⋅ ⋅ Siendo: C1 = coeficiente de corrección del ángulo de contacto correa-polea C2 = coeficiente de corrección debido a sobrecargas en la transmisión C3 = coeficiente de corrección debido a la utilización de diámetros menores que los mínimos permisibles 18164UNEnormalaporaconsejadomínimodiámetro elegidousodediámetro =C3 La tabla siguiente ofrece los valores de C1 según el ángulo de contacto. Ángulo de contacto 180º 170º 160º 150º 140º 130º C1 1 0'98 0'95 0'92 0'89 0'86 Ángulo de contacto 120º 110º 100º 90º 80º 70º C1 0'82 0'78 0'73 0'68 0'63 0'58 Tabla 7.- Coeficiente de corrección por contacto El coeficiente de corrección de sobrecargas se ofrece en sendas tablas.
  • 8. 61 La tabla siguiente ofrece los valores de C2 en función del % de sobrecarga y la tabla 8 ofrece C2 en función del tipo de la transmisión. Sobrecarga instantánea en % 0 25% 50% 100% 150% C2 1 1'1 1'2 1'4 1'6 Tabla 8.- Coeficiente de corrección en función del % de sobrecarga Clase de máquina Coeficiente de corrección Ventiladores pequeños hasta 10CV Bombas centrífugas Agitadores de líquidos Compresores centrífugos Soplantes 1'1 -1'2 Cintas transportadoras Árboles de transmisión Generadores Punzonadoras Cizallas y prensas Troquetes Ventiladores Máquinas herramientas Maquinaria de imprenta 1'2 - 1'4 Martillos pilones Gravilladoras Compresores de pistón Bombas de pistón Transportadoras de tornillo Transportadores de sacudidas Maquinaria de aserraderos Maquinaria textil Elevadores de cangilones Maquinaria para hacer ladrillos Batidoras para fábricas de papel 1'4 - 1'6 Machacadoras de mandíbulas Machacadoras de rodillos Machacadoras de cono Molinos de bolas Molinos de tubos Molinos de barras montacargas 1'6 - 1'8 • Para servicios continuos de 24 h aumentar 0'2 al factor Si la transmisión ha de funcionar mojada aumentar 0'2 al factor Si se usan poleas tensoras, aumentar 0'2 al factor Para funcionamiento intermitente restar 0'2 al factor Tabla 9.- Coeficiente de corrección de sobrecargas en función del equipo accionado El número de correas precisas para cada instalación se calcula dividiendo la potencia necesaria entre la potencia transmitida por cada correa con el método de cálculo hasta aquí expuesto. El ábaco siguiente es un prontuario indicativo de las condiciones óptimas de utilización de cada tipo de correa. Potencia (CV)V. polea peq. (r.p.m.) 1 2 3 4 71/2 10 15 20 30 50 75 100 150 200 250 500 o más 4000 3500 3000 2500 2000 1750 1500 1250 1000 900 800 700 600 500 400 300 200 100 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ A _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ B _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ C _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ D _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ E _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ F Figura 7.- Ábaco para elección de correas CORREAS DENTADAS. CARACTERÍSTICAS Y CÁLCULO Constituyen las correas dentadas un sistema moderno de transmisión de potencia que reúne la práctica totalidad de los ventajas de las correas planas y trapeciales y elimina sus inconvenientes. Entre los nombres con los que se comercializan se les llama correas de sincronización que es bastante definitorio de una de sus más importantes cualidades. Sus elementos de tracción usuales son cables de acero y es por lo que estiran muy poco bajo carga y servicio y soportan grandes esfuerzos. Su tensión inicial puede ser muy baja, lo que origina una reducida carga en los cojinetes y no precisa (aunque no son desechables) elementos tensores. Se construyen a base de neopreno al que se le coloca una cubierta exterior de nylon. Como las poleas que requieren se tallan con dientes la transmisión que realizan es sincronizada lo que en muchos casos además de útil es necesario. Tienen un funcionamiento silencioso, no precisan lubricación. Para su cálculo es preciso tener en cuenta que, según indica la experiencia, debe haber un mínimo de seis dientes en contacto. La relación de transmisión de estas correas viene dada por la expresión: 2p1p nd=nd 21 ⋅⋅
  • 9. 62 Siendo: dp1 y dp2 los diámetros primitivos de las poleas n1 y n2 el número de revoluciones de ambas poleas. Por una fórmula básica en engranajes y que veremos más adelante se tiene que: 1p Zp=d 1 ⋅⋅π Siendo: p = paso Z1 = nº de dientes de la polea 1 Despejando en la ecuación anterior se tiene: 1p Z p =d 1 ⋅ π Y llamando módulo a: π p =m Como: 2 2 1 1 Z dp Z dpp == π Se tiene que: 1p m.Z=d 1 Y por tanto: 2p m.Z=d 2 Sustituyendo dp1 y dp2 se tiene que la relación de transmisión también puede expresarse por: 2211 n•Z=nZ ⋅ El número mínimo de dientes en contacto entre la polea más pequeña y la correa se calcula por la fórmula: 1c Z 360 =Z ⋅ β Ecuación en la que: Zc = número de dientes en contacto. β = ángulo de contacto polea-correa. Z1 = número de dientes de la polea. En este tipo de correas se denomina Potencia base a la potencia transmitida por cada cm de anchura de correa. Estas correas se agrupan comercialmente en los tipos XL, L, H, XH, y XXH. Sus características de paso se presentan en la siguiente tabla. Tipo Paso XL L H XH XXH 5'080 mm (1/5") 9'525 mm (3/8") 12'700 mm (1/2") 22'225 mm (7/8") 31'750 mm (1 1/4") Tabla 10.- Tipos de correas dentadas y pasos correspondientes. Los fabricantes ofrecen catálogos en los que aportan la potencia base de los distintos modelos de correas. En la tabla siguiente se presenta la potencia base de una correa del tipo L para diferentes valores del diámetro primitivo y para diferentes regímenes de giro de la polea más pequeña usada en la transmisión.
  • 10. 63 Nº dientes de la polea menor 14 15 16 18 20 22 24 26 28 30 32 36 40 48 50 Dp (cm) 42'4 45'5 48'5 54'6 60'6 66'7 72'8 78'8 84'9 90'9 97'0 109'1 121'3 145'5 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000 3100 3200 3300 3400 3500 3600 3700 3800 4000 4200 4400 4600 4800 5000 5200 5400 5600 5800 6000 0'02 0'03 0'03 0'03 0'04 0'05 0'05 0'06 0'06 0'06 0'06 0'07 0'08 0'10 0'06 0'06 0'06 0'07 0'08 0'09 0'10 0'10 0'11 0'12 0'13 0'15 0'16 0'19 0'08 0'09 0'09 0'11 0'12 0'13 0'15 0'16 0'17 0'18 0'19 0'22 0'25 0'29 0'11 0'12 0'13 0'15 0'16 0'18 0'19 0'21 0'23 0'24 0'26 0'29 0'32 0'39 0'14 0'15 0'16 0'18 0'20 0'22 0'24 0'26 0'28 0'30 0'32 0'37 0'41 0'48 0'17 0'18 0'19 0'22 0'24 0'27 0'29 0'32 0'34 0'37 0'39 0'44 0'49 0'58 0'20 0'21 0'22 0'26 0'28 0'31 0'34 0'37 0'40 0'43 0'45 0'51 0'57 0'68 0'23 0'24 0'26 0'29 0'32 0'36 0'39 0'42 0'45 0'48 0'52 0'58 0'65 0'77 0'26 0'27 0'29 0'33 0'37 0'40 0'44 0'47 0'51 0'55 0'58 0'65 0'73 0'88 0'28 0'30 0'32 0'37 0'41 0'45 0'49 0'53 0'57 0'61 0'65 0'73 0'80 0'96 0'31 0'33 0'36 0'40 0'44 0'49 0'53 0'58 0'63 0'67 0'71 0'80 0'88 1'05 0'34 0'37 0'39 0'44 0'48 0'53 0'58 0'63 0'68 0'73 0'77 0'87 0'96 1'14 0'37 0'39 0'42 0'47 0'52 0'58 0'63 0'68 0'73 0'78 0'84 0'94 1'03 1'23 0'40 0'42 0'45 0'51 0'57 0'62 0'68 0'73 0'79 0'84 0'90 1'00 1'11 1'31 0'43 0'45 0'48 0'55 0'61 0'67 0'73 0'78 0'84 0'90 0'96 1'07 1'18 1'39 0'45 0'48 0'52 0'58 0'65 0'71 0'77 0'84 0'90 0'96 1'02 1'14 1'26 1'78 0'48 0'51 0'55 0'62 0'69 0'75 0'82 0'89 0'95 1'02 1'08 1'21 1'33 1'56 0'51 0'54 0'58 0'65 0'73 0'80 0'87 0'94 1'00 1'07 1'14 1'27 1'40 1'54 0'54 0'57 0'61 0'69 0'77 0'84 0'91 0'98 1'06 1'13 1'20 1'33 1'47 1'71 0'57 0'61 0'65 0'72 0'80 0'88 0'96 1'03 1'11 1'18 1'25 1'40 1'53 1'78 0'60 0'64 0'68 0'76 0'84 0'93 1'01 1'08 1'16 1'24 1'31 1'46 1'60 1'86 0'63 0'67 0'71 0'80 0'88 0'97 1'05 1'13 1'21 1'29 1'37 1'52 1'66 1'92 0'65 0'70 0'74 0'83 0'92 1'01 1'09 1'17 1'26 1'34 1'43 1'58 1'73 2'00 0'68 0'72 0'77 0'87 0'96 1'05 1'14 1'22 1'31 1'40 1'48 1'64 1'79 2'05 0'71 0'75 0'80 0'90 1'00 1'09 1'18 1'27 1'36 1'45 1'53 1'69 1'85 2'10 0'73 0'78 0'83 0'93 1'03 1'13 1'23 1'32 1'41 1'50 1'59 1'75 1'90 2'16 0'76 0'81 0'87 0'97 1'07 1'18 1'27 1'37 1'46 1'55 1'64 1'80 1'96 2'21 0'79 0'84 0'90 1'00 1'11 1'21 1'31 1'41 1'51 1'60 1'60 1'85 2'01 2'25 0'82 0'87 0'93 1'04 1'15 1'25 1'35 1'46 1'55 1'64 1'74 1'90 2'06 2'30 0'84 0'90 0'96 1'07 1'18 1'29 1'39 1'50 1'60 1'69 1'79 1'95 2'11 2'34 0'87 0'93 0'99 1'11 1'22 1'33 1'44 1'54 1'64 1'74 1'83 2'00 2'15 2'37 0'90 0'96 1'02 1'14 1'25 1'37 1'48 1'59 1'69 1'79 1'88 2'05 2'19 2'40 0'92 0'98 1'05 1'17 1'29 1'41 1'52 1'63 1'73 1'83 1'92 2'09 2'23 2'43 0'95 1'01 1'08 1'21 1'32 1'45 1'56 1'67 1'77 1'87 1'97 2'14 2'27 2'45 0'98 1'04 1'11 1'24 1'36 1'48 1'60 1'71 1'81 1'91 2'01 2'18 2'31 2'47 1'00 1'07 1'14 1'27 1'39 1'52 1'64 1'75 1'86 1'95 2'05 2'21 2'34 2'48 1'03 1'10 1'17 1'30 1'43 1'56 1'67 1'79 1'90 1'99 2'09 2'24 2'37 2'49 1'06 1'12 1'19 1'34 1'47 1'59 1'71 1'83 1'94 2'03 2'13 2'28 2'40 2'49 1'11 1'18 1'26 1'40 1'53 1'66 1'79 1'90 2'01 2'10 2'19 2'34 2'44 2'48 1'24 1'31 1'46 1'60 1'73 1'86 1'97 2'08 2'17 2'26 2'39 2'47 2'45 1'30 1'37 1'52 1'66 1'80 1'93 2'04 2'14 2'24 2'32 2'43 2'49 2'40 1'34 1'43 1'58 1'72 1'86 1'99 2'10 2'20 2'29 2'37 2'46 2'50 2'32 1'39 1'48 1'64 1'79 1'93 2'05 2'16 2'25 2'34 2'41 2'49 2'48 2'21 1'44 1'54 1'69 1'84 1'98 2'11 2'23 2'31 2'38 2'44 2'49 2'46 2'08 1'50 1'58 1'75 1'89 2'04 2'16 2'27 2'35 2'42 2'47 2'49 2'42 1'93 1'54 1'64 1'81 1'95 2'09 2'21 2'31 2'39 2'45 2'49 2'49 2'36 1'75 1'59 1'69 1'86 2'00 2'14 2'26 2'35 2'43 2'47 2'50 2'46 2'29 1'53 1'64 1'74 1'90 2'05 2'19 2'30 2'39 2'45 2'49 2'50 2'42 2'21 1'28 1'69 1'79 1'95 2'10 2'24 2'33 2'42 2'47 2'50 2'49 2'36 2'10 1'01 Tabla 10.- Potencia base de correas dentadas tipo L (C.V./cm). r.p.m.
  • 11. 64 La potencia de cálculo o potencia corregida Pc se obtiene afectando a la potencia a transmitir (P) de los correspondientes coeficientes de corrección según la fórmula: )C+C+(C•P=P 321c Siendo: C1 = coeficiente de corrección debido a sobrecargas en la transmisión. C2 = coeficiente de corrección debido a la multiplicación y se obtiene según el número de dientes de contacto de la correa con las poleas. Si Z1 es el número de dientes de la polea motora y Z2 es el número de dientes de la polea arrastrada Si 0=C1 Z Z 2 2 1 ⇒≤ Si 1> Z Z 2 1 se asigna a C2 el valor ofrecido por la tabla 12. C3 = coeficiente de corrección debido al tiempo continuado de funcionamiento. Este coeficiente se obtiene de la tabla 11. La tabla siguiente ofrece los valores de C1 según el tipo de instalación en la que se apliquen correas dentadas. Aplicación Agitador mezclador: Para líquidos Para semilíquidos 1'4 - 1'8 1'5 - 1'9 Aspiradores y ventiladores: Centrífugos Helicoidales, insufladores para minería 1'6 - 2'0 1'8 - 2'2 Centrifugadoras 1'7 - 1'9 Compresores: Centrífugos o rotativos a pistones 1'6 - 1'8 2'0 - 2'4 Elevadores 1'6 - 2'0 Trituradoras: Cilindros y martillos 2'2 - 2'5 Grupos generadores y excitadores 1'6 - 2'0 Líneas de ejes (árboles de transmisión) 1'5 - 1'9 Máquinas industriales Agitadores, calandrias secadores, bobinadores, batidores, bombas, trituradoras, refinadores 1'4 - 1'8 1'7 - 2'1 Máquinas industria cerámica: Cortadoras, dosificadoras, trefilas 1'5 - 1'9 1'8 - 2'2 Aplicación Máquinas para lavanderías Lavadoras, secadoras 1'6 - 2'0 Máquinas para elaboración goma: 1'6 - 2'0 Máquina elaboración madera: Tornos, sierras de cinta, cortadoras, sierras circulares, cepilladoras 1'3 - 1'4 1'4 - 1'6 Máquinas elaboración pan Amasadoras, mezcladoras 1'4 - 1'8 Máquinas de imprenta Rotativas, offset, plegadoras guillotinas, linotipias prensas de impresión 1'4 - 1'8 Máquina textil Urdidores, bobinadores, retorcedoras, telares, hiladoras 1'5 1'6 - 2'0 Máquinas herramientas Taladradoras, tornos roscadoras, entalladoras fresadoras, cepilladoras, rectificadoras 1'4 - 1'8 1'5 - 1'9 Molinos de grano 1'7 - 2'1 Bombas: Centrífugas, rotativas, de engranajes, de pistones 1'5 - 1'9 2'0 - 2'4 Tamices: Rotativos a tambor o cónicos vibratorios 1'4 - 1'5 1'5 - 1'7 Transportadores: Con banda de caucho (material ligero) con banda de caucho (material pesado) elevadores, montacargas a rosca 1'3 - 1'7 1'6 - 1'8 1'7 - 1'9 1'7 -2'0 Tabla 11.- Valores de C1 según el tipo de instalación La tabla siguiente ofrece los valores de C2 y C3. Coeficiente por multiplicación Relación transmisión i- C2 De 1 a 1'24 De 1'25 a 1'74 De 1'75 a 2'49 De 2'50 a 3'50 Más de 3'50 - + 0'10 + 0'20 + 0'30 + 0'40 Coeficiente por funcionamiento Tipo de funcionamiento C3 8 - 10 horas día - Continuo 10 - 16 " " + 0'10 16 - 24 " " + 0'20 Intermitente estacional - 0'10 Con poleas tensoras + 0'10 Tabla 12.- Coeficientes de corrección C2 y C3 Una vez conocida la potencia corregida Pc y la potencia base que puede transmitir una determinada correa Pb se obtiene la anchura de correa necesaria por el cociente de ambas, o sea:
  • 12. 65 cm P P =b b c Una vez calculado b se escoge en catálogo el ancho comercial inmediatamente superior. Los anchos comerciales de las correas dentadas son los que se presentan en las siguientes tablas. Tipo XL Designación Pulgadas mm 25 31 37 1/4 5/16 3/8 6'3 7'9 9'4 Tabla 13.- Anchos normalizados correas tipo XL. Tipo L Designación Pulgadas mm 50 75 100 1/2 3/4 1 12'7 19'1 25'4 Tabla 14.- Anchos normalizados correas tipo L. Tipo H Designación Pulgadas mm 75 100 150 200 300 3/4 1 11/2 2 3 19'1 25'4 38'1 50'8 76'2 Tabla 15.- Anchos normalizados correas tipo H. Tipo XH Designación Pulgadas mm 200 300 400 2 3 4 50'8 76'2 101'6 Tabla 16.- Anchos normalizados correas tipo XH. Tipo XXH Designación Pulgadas mm 200 300 400 500 2 3 4 5 50'8 76'2 101'6 127'0 Tabla 17.- Anchos normalizados correas tipo XXH. POLEAS Las poleas que se usan para transmisiones con correas se fabrican con distintos materiales, siendo los más comunes fundición de hierro, acero y aleaciones ligeras. A veces se encuentran poleas de madera (muy antiguas) y de plástico. Hoy las dimensiones de las poleas están normalizadas. Las poleas para correas planas se construyen con llanta (superficie de contacto correa-polea) plana o ligeramente abombada según se presenta en la figura siguiente. El objeto de esta conformación es el de estabilizar la correa evitando con ello que se salga por el lateral. b h Figura 8.- Polea para correa plana La flecha h tiene una dimensión de b 3 1 a b 2 1 . La fijación de las poleas a los árboles se realiza mediante chavetas, o mediante el denominado cubo partido, elemento de gran utilidad cuyo esquema es el representado en la figura siguiente. 1.- Cubo partido. 2.- Placa de fijación. 1 2 Figura 9.- Cubo partido El funcionamiento del cubo partido es tan simple como apretar la placa de fijación contra la polea mediante tornillos. En la polea se ha conformado previamente un contracono en el que ajusta el cubo partido. Las poleas para correas trapeciales son acanaladas y cuando son pequeñas se construyen de una sola pieza, en cambio para grandes transmisiones es frecuente usar varias poleas unidas mediante tornillos.
  • 13. 66 Figura 10.- Polea para correa trapecial Las características dimensionales de estas poleas están normalizadas y, para los distintos tipos de correas, ya han sido presentadas. Es importante destacar que el acabado de los caras laterales debe ser lo más fino y uniforme posible para evitar el prematuro desgaste por abrasión. Las poleas para correas dentadas parecen engranajes de gran paso. Para un funcionamiento continuado y sin problemas es muy importante que las aristas de los dientes se redondeen. La figura siguiente presenta un detalle de una polea dentada con su correa. de dp 2 3 1 1.- Correa dentada. 2.- Polea dentada. 3.- Paso. dp.- Diámetro primitivo. de.- Diámetro exterior. Figura 11.- Polea y correa dentadas. A veces, y esto es frecuente, cuando la transmisión soporta movimientos bruscos, se construyen las poleas con guías laterales como se presentan en la siguiente figura que evitan que se salga la correa de su zona de contacto con la polea. Figura 11.- Sección de polea dentada con guías laterales.