REPÚBLICA BOLIVARIANA DE VENEZUELA
INSTITUTO UNIVERSITARIO POLITÉCNICO
“SANTIAGO MARIÑO”
EXTENSIÓN MATURÍN
CONTROLADORES
Autor: Julio Perez
C.I.:.: 22.720.795
Docente: Ing. Mariángela Pollonai
Maturín, julio de 2014
ÍNDICE
1.INTRODUCCIÓN.........................................................................................................................3
2.CONTROLADOR.........................................................................................................................4
3.COMPENSACIÓN DE ADELANTO...........................................................................................5
4.COMPENSACIÓN DE ATRASO................................................................................................5
5.TIPOS DE CONTROLADORES..................................................................................................6
6.ACCIONES DE CONTROL.........................................................................................................7
7.CONCLUSIÓN...........................................................................................................................10
1. INTRODUCCIÓN
Los sistemas controlados han estado evolucionando de forma acelerada los últimos días y hoy
en día pasan desapercibidos para mucha gente, pues presentan pocos o ningún problema, las
técnicas de control se han mejorado a través de los años, sin embargo es muy importante que
se conozca la teoría básica de control, debido a que esto ayuda a facilitar su comprensión en la
práctica.
El control automático desempeña una función vital en el avance de la ingeniería y la Ciencia, ya
que el control automático se ha vuelto una parte importante e integral de los procesos
modernos industriales y de manufactura. Por lo cuál la teoría de control es un tema de interés
para muchos científicos e ingenieros que desean dar nuevas ideas, para obtener un
desempeño óptimo de los sistemas dinámicos y disminuir tareas manuales o repetitivas.
2. CONTROLADOR
El controlador es una componente del sistema de control que detecta los desvíos existentes
entre el valor medido por un sensor y el valor deseado o “set point”, programado por un
operador; emitiendo una señal de corrección hacia el actuador como se observa en la figura 1.
Figura 1 Sistema de control de nivel sencillo
Un controlador es un bloque electrónico encargado de controlar uno o más procesos. Al
principio los controladores estaban formados exclusivamente por componentes discretos,
conforme la tecnología fue desarrollándose se emplearon procesadores rodeados de memorias,
circuitos de entrada y salida. Actualmente los controladores integran todos los dispositivos
mencionados en circuitos integrados que conocemos con el nombre de microcontroladores. Los
controladores son los instrumentos diseñados para detectar y corregir los errores producidos al
comparar y computar el valor de referencia o “Set point”, con el valor medido del parámetro más
importante a controlar en un proceso
La actuación puede ser de forma clásica de acuerdo al tamaño y tiempo de duración del error,
así como la razón de cambio existente entre ambos o aplicando sistemas expertos a través de
la lógica difusa y redes neuronales. Cada proceso tiene una dinámica propia, única, que lo
diferencia de todos los demás; es como la personalidad, la huella digital de cada persona, como
su ADN... Por lo tanto, cuando en un Lazo de control sintonizamos los algoritmos P
(Proporcional), I (Integral) y D (Derivativo) de un Controlador, debemos investigar, probar,
compenetrarnos con la ‘personalidad’ del proceso que deseamos controlar, debemos medir
calibrar y mantener todo tipo de variables de proceso, y sintonizar los parámetros de los
algoritmos de control. Por consiguiente, la sintonización de los parámetros P, I y D debe
realizarse en tal forma que calce en la forma más perfecta posible con la dinámica propia del
proceso en el cual hemos instalado un lazo de control, sea éste simple o complejo”. Los
conceptos de “Tiempo Muerto”, “Constante de Tiempo”, “Ganancia del Proceso”, “Ganancia
Última” y “Período Último”, nos da la idea de la diferencia entre los procesos, aunque sean del
Sensor
Señal Eléctrica
Controlador
Señal Eléctrica
Actuador
Transductror
Señal Neumática
Válvula Neumática
PROCESO
mismo tipo, La figura muestra un Lazo de Control en el que se aplica la estrategia de “Control
Realimentado”. Como sabemos, el concepto central de esta estrategia es medir en forma
continua el valor de aquella variable del proceso que nos interesa controlar y compararla con el
Valor Deseado(“Set Point”) de esa variable que hemos ajustado en el Controlador. Cualquier
diferencia entre ambos valores, el medido y el deseado, constituye un “error”, que será utilizado
por el controlador
3. COMPENSACIÓN DE ADELANTO
La compensación de adelanto produce, en esencia, un mejoramiento razonable en la respuesta
transitoria y un cambio pequeño en la precisión en estado estable.
Características de los compensadores de adelanto
Figura 2 Gráfico de Compensación en Adelanto
4. COMPENSACIÓN DE ATRASO
La compensación de atraso produce un mejoramiento notable en la precisión en estado estable
a costa de aumentar el tiempo de respuesta transitoria.
Características de los compensadores de atraso
Figura 3 Gráfico de Compensación en Atraso
5. TIPOS DE CONTROLADORES
Un controlador automático compara el valor real de la salida de una planta con la entrada de
referencia (el valor deseado), determina la desviación y produce una señal de control que
reducirá la desviación acero o a un valor pequeño. La manera en la cual el controlador
automático produce la señal de control se denomina acción de control.
Todos los modos descritos, tanto como el simple controlador On/Off, usan la misma señal de
error. Sin embargo, cada uno de ellos usa diferentes caminos:
• El modo de control On/Off usa información sobre la presencia del error.
• El modo proporcional usa información sobre la magnitud del error.
• El modo integral usa información sobre el error promedio en un período de tiempo.
• El modo derivativo usa información sobre la velocidad en el cambio del error.
En todos los casos, el objetivo es mantener a la variable controlada tan cerca al punto de
referencia como sea posible. La acción derivativa es generalmente usada en conjunto con una
acción proporcional e integral.
Este tipo de controlador resultante es llamado “controlador PID” denominado controlador
trimodo. Si se puede obtener el modelo matemático del proceso, entonces es posible aplicar
varias técnicas para determinar los parámetros de este cumpliendo con las especificaciones
transitorias y de estado estacionario del sistema de control de lazo cerrado. Sin embargo si el
proceso es tan complicado no encontrando su modelo matemático, es imposible el método
analítico de diseño de un controlador PID. Se debe recurrir a modelos experimentales para el
diseño de controladores PID. Este proceso se conoce como calibración o sintonía del
controlador. Zieger y Nichols sugirieron reglas para afinar controladores PID. Consideremos un
lazo de control de una entrada y una salida de un grado de libertad:
Figura 4 Diagrama en bloques
6. ACCIONES DE CONTROL
Los miembros de la familia de controladores PID, incluyen tres acciones: proporcional (P),
integral (I) y derivativa (D). Estos controladores son los denominados P, I, PI, PD y PID.
P: Acción de control proporcional, da una salida del controlador que es proporcional al error,
es decir: u(t)=Kp.e(t),que describe desde su función transferencia queda:
Cp(s) =K p
Donde Kp es una ganancia proporcional ajustable. Un controlador proporcional puede controlar
cualquier planta estable, pero posee desempeño limitado y error en régimen permanente (off-
set).
I: Acción de control integral, da una salida del controlador que es proporcional al error
acumulado, lo que implica que es un modo de controlar lento.
∫=
t
tdteKi
0
)(*)(U(t)
S
K
=(s)Cp
La señal de control u(t) tiene un valor diferente de cero cuando la señal de error e(t) es cero.
Por lo que se concluye que dada una referencia constante, o perturbaciones, el error en
régimen permanente es cero.
PI: acción de control proporcional-integral, se define mediante
∫+=
t
tdte
Ti
K
tKp
0
)(*)()(U(t)
donde Ti se denomina tiempo integral y es quien ajusta la acción integral.
La función de transferencia resulta:






+=
Tps
Kp
1
1Cpi(s)
Con un control proporcional, es necesario que exista error para tener una acción de control
distinta de cero. Con acción integral, un error pequeño positivo siempre nos daría una acción de
control creciente, y si fuera negativo la señal de control seria decreciente. Este razonamiento
sencillo nos muestra que el error en régimen permanente será siempre cero.
Muchos controladores industriales tienen solo acción PI. Se puede demostrar que un control PI
es adecuado para todos los procesos donde la dinámica es esencialmente de primer orden. Lo
que puede demostrarse en forma sencilla, por ejemplo, si aplicamos un control proporcional-
integral para controlar el posicionamiento de un brazo robot de una cadena de montaje, al
recibir una señal de error para desplazar el brazo un centímetro en el eje X, se produce un
desplazamiento brusco provocado por el control proporcional que lo acercará, con mayor o
menor precisión al punto deseado y, posteriormente, el control integral continuará con el control
del brazo hasta posicionarlo el punto exacto, momento en el que desaparecerá totalmente la
señal de error y, por tanto, eliminando totalmente el posible error remanente del sistema.
PD: acción de control proporcional-derivativa, se define:
dt
tde
TdKptKpe
)(
**)(U(t) +=
Donde Td es una constante de denominada tiempo derivativo. Esta acción tiene carácter de
previsión, lo que hace mas rápida la acción de control, aunque tiene la desventaja importante
que amplifica las señales de ruido y puede provocar saturación en el actuador. La acción de
control derivativa nunca se utiliza por sı sola, debido a que solo es eficaz durante periodos
transitorios. La función transferencia de un controlador PD resulta:
TdKpsKp **(s)CPD +=
Cuando una acción de control derivativa se agrega a un controlador proporcional, permite
obtener un controlador de alta sensibilidad, es decir que responde a la velocidad del cambio del
error y produce una corrección significativa antes de que la magnitud del error se vuelva
demasiado grande. Aunque el control derivativo no afecta en forma directa al error en estado
estacionario, añade amortiguamiento al sistema y, por tanto, permite un valor más grande que
la ganancia K, lo cual provoca una mejora en la precisión en estado estable.
Por ejemplo, si durante la conducción de un automóvil, de repente, se produce alguna situación
anómala (como un obstáculo imprevisto en la carretera, u otro vehículo que invade
parcialmente nuestra calzada), de forma involuntaria, el cerebro envía una respuesta casi
instantánea a las piernas y brazos, de forma que se corrija velocidad y dirección de nuestro
vehículo para sortear el obstáculo. Si el tiempo de actuación es muy corto, el cerebro tiene que
actuar muy rápidamente (control derivativo) y, por tanto, la precisión en la maniobra es muy
escasa, lo que derivará a efectuar movimientos muy bruscos de forma oscilatoria. Estos
movimientos bruscos pueden ser causa un accidente de tráfico. En este caso, el tiempo de
respuesta y la experiencia en la conducción (ajuste del controlador derivativo) harán que el
control derivativo producido por el cerebro del conductor sea o no efectivo.
PID: acción de control proporcional-integral-derivativa, esta acción combinada reúne las
ventajas de cada una de las tres acciones de control individuales. La ecuación de un
controlador con esta acción combinada se obtiene mediante:
dt
tde
TdKptdte
Ti
K
tKpe
t
)(
**)()()(U(t)
0
∫ ++=
y su función transferencia resulta:






++= Tds
Tis
Kp *
1
1(s)CPID
Como ejemplo de un sistema de control PID, podemos poner la conducción de un automóvil.
Cuando el cerebro da una orden de cambio de dirección, en una maniobra normal, la acción de
control predominante del sistema es la proporcional, que aproximará la dirección al punto
deseado de forma más o menos precisa. Una vez que la dirección esté cerca del punto
deseado, comenzará la acción integral que eliminará el posible error producido por el control
proporcional, hasta posicionar el volante en el punto preciso. Si la maniobra es lenta, la acción
derivativa no tendrá apenas efecto. Si la maniobra requiere mayor velocidad de actuación, la
acción de control derivativo adquirirá mayor importancia, aumentando la velocidad de respuesta
inicial del sistema y posteriormente actuará la acción proporcional y finalmente la integral. En el
caso de una maniobra muy brusca, el control derivativo tomará máxima relevancia, quedando
casi sin efecto la acción proporcional e integral, lo que provocará muy poca precisión en la
maniobra.
La forma en la cual el controlador automático produce la señal de control se llama “acción de
control”. Los controladores automáticos comparan el valor real de salida de la planta con la
entrada de referencia, lo cual determina la desviación con la que el controlador debe producir
una señal de control que reduzca la desviación.
En el siguiente ejemplo se muestra un diagrama de bloques con un sistema de control
automático general, formado por un controlador, un actuador, una planta y un sensor (Fig. 2).
En este diagrama el controlador detecta la señal de error, la amplifica y la envía al actuador que
produce la entrada a la planta: la salida de la planta es medida por un sensor que transforma la
señal y la envía al controlador, para que pueda ser comparada con la señal de referencia.
Figura 5, Diagrama de Bloques General de un Control Automático
7. CONCLUSIÓN
El control automático es de vital importancia en el mundo de la ingeniería. Además de resultar
imprescindible en sistemas robóticos o de procesos de manufactura moderna, entre otras
aplicaciones se ha vuelto esencial en operaciones industriales como el control de presión,
temperatura, humedad, viscosidad flujo en las industrias de transformación.
El sistema de control automático de proceso es una disciplina que se ha desarrollado a una
velocidad vertiginosa, dando las bases a lo que hoy algunos autores llaman la segunda
revolución industrial.
El controlador automático compara el valor real de la salida de una planta con la entrada de
referencia (el valor deseado), determina la desviación y produce una señal de control, que
reducirá la desviación a cero o a un valor pequeño.

Más contenido relacionado

DOC
Acciones de control
DOC
Teoria de control acciones de control
PDF
Controladores Automaticos - Millan Manuel
DOC
Control trab 4
DOC
Controladores
DOC
Trabajo hc
DOCX
PDF
Trabajo hc
Acciones de control
Teoria de control acciones de control
Controladores Automaticos - Millan Manuel
Control trab 4
Controladores
Trabajo hc
Trabajo hc

La actualidad más candente (20)

PDF
Teoría de control. ajuste de controladores industriales
DOCX
Controlador teoria de control
DOCX
Controladores
DOCX
Controladores - Teoria de control virtual
PPT
Controladores clásicos
DOCX
controladores Teoria de control
PDF
Clase 3 - Esquemas de Control
PPTX
Control derivativo
PDF
Controladores automaticos
DOCX
controladores teoria de control
DOCX
Controladores teoria de control
PPTX
Accciones basicas de control jose manuel
DOCX
Trabajo de controladores automaticos
DOCX
Teoria de control (Controladores y sistemas de control)
DOCX
Esquema de un sistema de control
DOCX
Teoria de control (controladores)
DOCX
Tipos de controlador
PPTX
Tipos de controladores
DOCX
Controladores
PDF
1 basicascontrol
Teoría de control. ajuste de controladores industriales
Controlador teoria de control
Controladores
Controladores - Teoria de control virtual
Controladores clásicos
controladores Teoria de control
Clase 3 - Esquemas de Control
Control derivativo
Controladores automaticos
controladores teoria de control
Controladores teoria de control
Accciones basicas de control jose manuel
Trabajo de controladores automaticos
Teoria de control (Controladores y sistemas de control)
Esquema de un sistema de control
Teoria de control (controladores)
Tipos de controlador
Tipos de controladores
Controladores
1 basicascontrol
Publicidad

Destacado (20)

PPTX
Acciones basicas de control
PPS
Definiciones de Control
DOCX
NOTICIAS
PPTX
Avances que marcaran tendencia en el 2014
DOCX
Si mi corazón no olvida que tampoco sienta rencor
PPTX
Exposicion caney alto
PPS
Fotos caiza
PPTX
Sistemas operativos android
PDF
Finale 2006c [titanic-medley - 009 klarnet altowy]
PPS
Joyeux noël
PPTX
La vida es un sueño
DOC
Trabajo de matematica (victor cardona) 3
PPTX
Nuevos pulmones para el mundo!! (1)
PPTX
futbol
PPTX
Discurso descriptivo
DOCX
José julián martí pérez
PDF
Atelier google + local Bocage Normand
PPTX
Les investissements russes au myanmar
PDF
Presentacio ps
DOCX
Mi hijo no valía plata.
Acciones basicas de control
Definiciones de Control
NOTICIAS
Avances que marcaran tendencia en el 2014
Si mi corazón no olvida que tampoco sienta rencor
Exposicion caney alto
Fotos caiza
Sistemas operativos android
Finale 2006c [titanic-medley - 009 klarnet altowy]
Joyeux noël
La vida es un sueño
Trabajo de matematica (victor cardona) 3
Nuevos pulmones para el mundo!! (1)
futbol
Discurso descriptivo
José julián martí pérez
Atelier google + local Bocage Normand
Les investissements russes au myanmar
Presentacio ps
Mi hijo no valía plata.
Publicidad

Similar a Controladores (20)

DOCX
República bolivariana de venezuela contralor
DOCX
Controladores (teoria de control)
DOCX
Tipos de contoladores
PDF
Esquema de un_sistema__de__control.
DOCX
Controles automáticos
DOCX
Controladores
DOCX
Acciones de control
DOCX
Controladores
DOCX
Esquema de un sistema de control.
DOCX
Controladores yorman godoy, teoria de control
DOCX
Teoria de control (controladores)
DOCX
Controladores automaticos
DOCX
Trabajo Wilmer Ruiz
PDF
Tarea 5. controladores antonio rodriguez
DOCX
Sistema de control - teoria de control
DOCX
Trabajo Controladores Bloque D
PPT
Unidad 1 - Introducción a los sistemas automáticos industriales.ppt
DOCX
Teoria de control
DOCX
Teoria de control
DOCX
Trabajo sobre sistemas de control (1)
República bolivariana de venezuela contralor
Controladores (teoria de control)
Tipos de contoladores
Esquema de un_sistema__de__control.
Controles automáticos
Controladores
Acciones de control
Controladores
Esquema de un sistema de control.
Controladores yorman godoy, teoria de control
Teoria de control (controladores)
Controladores automaticos
Trabajo Wilmer Ruiz
Tarea 5. controladores antonio rodriguez
Sistema de control - teoria de control
Trabajo Controladores Bloque D
Unidad 1 - Introducción a los sistemas automáticos industriales.ppt
Teoria de control
Teoria de control
Trabajo sobre sistemas de control (1)

Más de Julio Perez (6)

DOCX
trabajo.Error y estabilidad
DOCX
trabajo Error y estabilidad
DOCX
Respuesta transitoria teoria de control
DOC
diagrama de bloque
DOCX
Ejercicios de transformada de laplace
PPTX
Sistema de control julio
trabajo.Error y estabilidad
trabajo Error y estabilidad
Respuesta transitoria teoria de control
diagrama de bloque
Ejercicios de transformada de laplace
Sistema de control julio

Último (20)

PPTX
RESUMENES JULIO - QUIRÓFANO HOSPITAL GENERAL PUYO.pptx
PDF
ACERTIJO EL CONJURO DEL CAZAFANTASMAS MATEMÁTICO. Por JAVIER SOLIS NOYOLA
PDF
Los10 Mandamientos de la Actitud Mental Positiva Ccesa007.pdf
PDF
La lluvia sabe por qué: una historia sobre amistad, resiliencia y esperanza e...
DOCX
Fisiopatologia bdjdbd resumen de cierta parte
PPTX
PRESENTACIÓN SOBRE LA RELIGIÓN MUSULMANA Y LA FORMACIÓN DEL IMPERIO MUSULMAN
PDF
Ernst Cassirer - Antropologia Filosofica.pdf
PDF
La Inteligencia Emocional - Fabian Goleman TE4 Ccesa007.pdf
PDF
Introduccion a la Investigacion Cualitativa FLICK Ccesa007.pdf
PDF
El Genero y Nuestros Cerebros - Gina Ripon Ccesa007.pdf
PDF
Didáctica de las literaturas infantiles.
PDF
Manual del Gobierno Escolar -MINEDUC.pdf
PDF
Modelo Educativo SUB 2023versión final.pdf
PDF
Aprendizaje Emocionante - Begoña Ibarrola SM2 Ccesa007.pdf
PDF
APUNTES DE SISTEMAS PSICOLOGICOS CONTEMPORANEOS
PDF
Texto Digital Los Miserables - Victor Hugo Ccesa007.pdf
PDF
TALLER DE ESTADISTICA BASICA para principiantes y no tan basicos
PDF
Ficha de Atencion a Estudiantes RE Ccesa007.pdf
DOCX
TEXTO DE TRABAJO DE EDUCACION RELIGIOSA - CUARTO GRADO.docx
PDF
Cuaderno_Castellano_6°_grado.pdf 000000000000000001
RESUMENES JULIO - QUIRÓFANO HOSPITAL GENERAL PUYO.pptx
ACERTIJO EL CONJURO DEL CAZAFANTASMAS MATEMÁTICO. Por JAVIER SOLIS NOYOLA
Los10 Mandamientos de la Actitud Mental Positiva Ccesa007.pdf
La lluvia sabe por qué: una historia sobre amistad, resiliencia y esperanza e...
Fisiopatologia bdjdbd resumen de cierta parte
PRESENTACIÓN SOBRE LA RELIGIÓN MUSULMANA Y LA FORMACIÓN DEL IMPERIO MUSULMAN
Ernst Cassirer - Antropologia Filosofica.pdf
La Inteligencia Emocional - Fabian Goleman TE4 Ccesa007.pdf
Introduccion a la Investigacion Cualitativa FLICK Ccesa007.pdf
El Genero y Nuestros Cerebros - Gina Ripon Ccesa007.pdf
Didáctica de las literaturas infantiles.
Manual del Gobierno Escolar -MINEDUC.pdf
Modelo Educativo SUB 2023versión final.pdf
Aprendizaje Emocionante - Begoña Ibarrola SM2 Ccesa007.pdf
APUNTES DE SISTEMAS PSICOLOGICOS CONTEMPORANEOS
Texto Digital Los Miserables - Victor Hugo Ccesa007.pdf
TALLER DE ESTADISTICA BASICA para principiantes y no tan basicos
Ficha de Atencion a Estudiantes RE Ccesa007.pdf
TEXTO DE TRABAJO DE EDUCACION RELIGIOSA - CUARTO GRADO.docx
Cuaderno_Castellano_6°_grado.pdf 000000000000000001

Controladores

  • 1. REPÚBLICA BOLIVARIANA DE VENEZUELA INSTITUTO UNIVERSITARIO POLITÉCNICO “SANTIAGO MARIÑO” EXTENSIÓN MATURÍN CONTROLADORES Autor: Julio Perez C.I.:.: 22.720.795 Docente: Ing. Mariángela Pollonai Maturín, julio de 2014
  • 2. ÍNDICE 1.INTRODUCCIÓN.........................................................................................................................3 2.CONTROLADOR.........................................................................................................................4 3.COMPENSACIÓN DE ADELANTO...........................................................................................5 4.COMPENSACIÓN DE ATRASO................................................................................................5 5.TIPOS DE CONTROLADORES..................................................................................................6 6.ACCIONES DE CONTROL.........................................................................................................7 7.CONCLUSIÓN...........................................................................................................................10
  • 3. 1. INTRODUCCIÓN Los sistemas controlados han estado evolucionando de forma acelerada los últimos días y hoy en día pasan desapercibidos para mucha gente, pues presentan pocos o ningún problema, las técnicas de control se han mejorado a través de los años, sin embargo es muy importante que se conozca la teoría básica de control, debido a que esto ayuda a facilitar su comprensión en la práctica. El control automático desempeña una función vital en el avance de la ingeniería y la Ciencia, ya que el control automático se ha vuelto una parte importante e integral de los procesos modernos industriales y de manufactura. Por lo cuál la teoría de control es un tema de interés para muchos científicos e ingenieros que desean dar nuevas ideas, para obtener un desempeño óptimo de los sistemas dinámicos y disminuir tareas manuales o repetitivas.
  • 4. 2. CONTROLADOR El controlador es una componente del sistema de control que detecta los desvíos existentes entre el valor medido por un sensor y el valor deseado o “set point”, programado por un operador; emitiendo una señal de corrección hacia el actuador como se observa en la figura 1. Figura 1 Sistema de control de nivel sencillo Un controlador es un bloque electrónico encargado de controlar uno o más procesos. Al principio los controladores estaban formados exclusivamente por componentes discretos, conforme la tecnología fue desarrollándose se emplearon procesadores rodeados de memorias, circuitos de entrada y salida. Actualmente los controladores integran todos los dispositivos mencionados en circuitos integrados que conocemos con el nombre de microcontroladores. Los controladores son los instrumentos diseñados para detectar y corregir los errores producidos al comparar y computar el valor de referencia o “Set point”, con el valor medido del parámetro más importante a controlar en un proceso La actuación puede ser de forma clásica de acuerdo al tamaño y tiempo de duración del error, así como la razón de cambio existente entre ambos o aplicando sistemas expertos a través de la lógica difusa y redes neuronales. Cada proceso tiene una dinámica propia, única, que lo diferencia de todos los demás; es como la personalidad, la huella digital de cada persona, como su ADN... Por lo tanto, cuando en un Lazo de control sintonizamos los algoritmos P (Proporcional), I (Integral) y D (Derivativo) de un Controlador, debemos investigar, probar, compenetrarnos con la ‘personalidad’ del proceso que deseamos controlar, debemos medir calibrar y mantener todo tipo de variables de proceso, y sintonizar los parámetros de los algoritmos de control. Por consiguiente, la sintonización de los parámetros P, I y D debe realizarse en tal forma que calce en la forma más perfecta posible con la dinámica propia del proceso en el cual hemos instalado un lazo de control, sea éste simple o complejo”. Los conceptos de “Tiempo Muerto”, “Constante de Tiempo”, “Ganancia del Proceso”, “Ganancia Última” y “Período Último”, nos da la idea de la diferencia entre los procesos, aunque sean del Sensor Señal Eléctrica Controlador Señal Eléctrica Actuador Transductror Señal Neumática Válvula Neumática PROCESO
  • 5. mismo tipo, La figura muestra un Lazo de Control en el que se aplica la estrategia de “Control Realimentado”. Como sabemos, el concepto central de esta estrategia es medir en forma continua el valor de aquella variable del proceso que nos interesa controlar y compararla con el Valor Deseado(“Set Point”) de esa variable que hemos ajustado en el Controlador. Cualquier diferencia entre ambos valores, el medido y el deseado, constituye un “error”, que será utilizado por el controlador 3. COMPENSACIÓN DE ADELANTO La compensación de adelanto produce, en esencia, un mejoramiento razonable en la respuesta transitoria y un cambio pequeño en la precisión en estado estable. Características de los compensadores de adelanto Figura 2 Gráfico de Compensación en Adelanto 4. COMPENSACIÓN DE ATRASO La compensación de atraso produce un mejoramiento notable en la precisión en estado estable a costa de aumentar el tiempo de respuesta transitoria. Características de los compensadores de atraso
  • 6. Figura 3 Gráfico de Compensación en Atraso 5. TIPOS DE CONTROLADORES Un controlador automático compara el valor real de la salida de una planta con la entrada de referencia (el valor deseado), determina la desviación y produce una señal de control que reducirá la desviación acero o a un valor pequeño. La manera en la cual el controlador automático produce la señal de control se denomina acción de control. Todos los modos descritos, tanto como el simple controlador On/Off, usan la misma señal de error. Sin embargo, cada uno de ellos usa diferentes caminos: • El modo de control On/Off usa información sobre la presencia del error. • El modo proporcional usa información sobre la magnitud del error. • El modo integral usa información sobre el error promedio en un período de tiempo. • El modo derivativo usa información sobre la velocidad en el cambio del error. En todos los casos, el objetivo es mantener a la variable controlada tan cerca al punto de referencia como sea posible. La acción derivativa es generalmente usada en conjunto con una acción proporcional e integral. Este tipo de controlador resultante es llamado “controlador PID” denominado controlador trimodo. Si se puede obtener el modelo matemático del proceso, entonces es posible aplicar varias técnicas para determinar los parámetros de este cumpliendo con las especificaciones transitorias y de estado estacionario del sistema de control de lazo cerrado. Sin embargo si el proceso es tan complicado no encontrando su modelo matemático, es imposible el método analítico de diseño de un controlador PID. Se debe recurrir a modelos experimentales para el diseño de controladores PID. Este proceso se conoce como calibración o sintonía del controlador. Zieger y Nichols sugirieron reglas para afinar controladores PID. Consideremos un lazo de control de una entrada y una salida de un grado de libertad: Figura 4 Diagrama en bloques
  • 7. 6. ACCIONES DE CONTROL Los miembros de la familia de controladores PID, incluyen tres acciones: proporcional (P), integral (I) y derivativa (D). Estos controladores son los denominados P, I, PI, PD y PID. P: Acción de control proporcional, da una salida del controlador que es proporcional al error, es decir: u(t)=Kp.e(t),que describe desde su función transferencia queda: Cp(s) =K p Donde Kp es una ganancia proporcional ajustable. Un controlador proporcional puede controlar cualquier planta estable, pero posee desempeño limitado y error en régimen permanente (off- set). I: Acción de control integral, da una salida del controlador que es proporcional al error acumulado, lo que implica que es un modo de controlar lento. ∫= t tdteKi 0 )(*)(U(t) S K =(s)Cp La señal de control u(t) tiene un valor diferente de cero cuando la señal de error e(t) es cero. Por lo que se concluye que dada una referencia constante, o perturbaciones, el error en régimen permanente es cero. PI: acción de control proporcional-integral, se define mediante ∫+= t tdte Ti K tKp 0 )(*)()(U(t) donde Ti se denomina tiempo integral y es quien ajusta la acción integral. La función de transferencia resulta:       += Tps Kp 1 1Cpi(s) Con un control proporcional, es necesario que exista error para tener una acción de control distinta de cero. Con acción integral, un error pequeño positivo siempre nos daría una acción de control creciente, y si fuera negativo la señal de control seria decreciente. Este razonamiento sencillo nos muestra que el error en régimen permanente será siempre cero. Muchos controladores industriales tienen solo acción PI. Se puede demostrar que un control PI es adecuado para todos los procesos donde la dinámica es esencialmente de primer orden. Lo que puede demostrarse en forma sencilla, por ejemplo, si aplicamos un control proporcional- integral para controlar el posicionamiento de un brazo robot de una cadena de montaje, al recibir una señal de error para desplazar el brazo un centímetro en el eje X, se produce un desplazamiento brusco provocado por el control proporcional que lo acercará, con mayor o menor precisión al punto deseado y, posteriormente, el control integral continuará con el control
  • 8. del brazo hasta posicionarlo el punto exacto, momento en el que desaparecerá totalmente la señal de error y, por tanto, eliminando totalmente el posible error remanente del sistema. PD: acción de control proporcional-derivativa, se define: dt tde TdKptKpe )( **)(U(t) += Donde Td es una constante de denominada tiempo derivativo. Esta acción tiene carácter de previsión, lo que hace mas rápida la acción de control, aunque tiene la desventaja importante que amplifica las señales de ruido y puede provocar saturación en el actuador. La acción de control derivativa nunca se utiliza por sı sola, debido a que solo es eficaz durante periodos transitorios. La función transferencia de un controlador PD resulta: TdKpsKp **(s)CPD += Cuando una acción de control derivativa se agrega a un controlador proporcional, permite obtener un controlador de alta sensibilidad, es decir que responde a la velocidad del cambio del error y produce una corrección significativa antes de que la magnitud del error se vuelva demasiado grande. Aunque el control derivativo no afecta en forma directa al error en estado estacionario, añade amortiguamiento al sistema y, por tanto, permite un valor más grande que la ganancia K, lo cual provoca una mejora en la precisión en estado estable. Por ejemplo, si durante la conducción de un automóvil, de repente, se produce alguna situación anómala (como un obstáculo imprevisto en la carretera, u otro vehículo que invade parcialmente nuestra calzada), de forma involuntaria, el cerebro envía una respuesta casi instantánea a las piernas y brazos, de forma que se corrija velocidad y dirección de nuestro vehículo para sortear el obstáculo. Si el tiempo de actuación es muy corto, el cerebro tiene que actuar muy rápidamente (control derivativo) y, por tanto, la precisión en la maniobra es muy escasa, lo que derivará a efectuar movimientos muy bruscos de forma oscilatoria. Estos movimientos bruscos pueden ser causa un accidente de tráfico. En este caso, el tiempo de respuesta y la experiencia en la conducción (ajuste del controlador derivativo) harán que el control derivativo producido por el cerebro del conductor sea o no efectivo. PID: acción de control proporcional-integral-derivativa, esta acción combinada reúne las ventajas de cada una de las tres acciones de control individuales. La ecuación de un controlador con esta acción combinada se obtiene mediante: dt tde TdKptdte Ti K tKpe t )( **)()()(U(t) 0 ∫ ++= y su función transferencia resulta:       ++= Tds Tis Kp * 1 1(s)CPID
  • 9. Como ejemplo de un sistema de control PID, podemos poner la conducción de un automóvil. Cuando el cerebro da una orden de cambio de dirección, en una maniobra normal, la acción de control predominante del sistema es la proporcional, que aproximará la dirección al punto deseado de forma más o menos precisa. Una vez que la dirección esté cerca del punto deseado, comenzará la acción integral que eliminará el posible error producido por el control proporcional, hasta posicionar el volante en el punto preciso. Si la maniobra es lenta, la acción derivativa no tendrá apenas efecto. Si la maniobra requiere mayor velocidad de actuación, la acción de control derivativo adquirirá mayor importancia, aumentando la velocidad de respuesta inicial del sistema y posteriormente actuará la acción proporcional y finalmente la integral. En el caso de una maniobra muy brusca, el control derivativo tomará máxima relevancia, quedando casi sin efecto la acción proporcional e integral, lo que provocará muy poca precisión en la maniobra. La forma en la cual el controlador automático produce la señal de control se llama “acción de control”. Los controladores automáticos comparan el valor real de salida de la planta con la entrada de referencia, lo cual determina la desviación con la que el controlador debe producir una señal de control que reduzca la desviación. En el siguiente ejemplo se muestra un diagrama de bloques con un sistema de control automático general, formado por un controlador, un actuador, una planta y un sensor (Fig. 2). En este diagrama el controlador detecta la señal de error, la amplifica y la envía al actuador que produce la entrada a la planta: la salida de la planta es medida por un sensor que transforma la señal y la envía al controlador, para que pueda ser comparada con la señal de referencia. Figura 5, Diagrama de Bloques General de un Control Automático
  • 10. 7. CONCLUSIÓN El control automático es de vital importancia en el mundo de la ingeniería. Además de resultar imprescindible en sistemas robóticos o de procesos de manufactura moderna, entre otras aplicaciones se ha vuelto esencial en operaciones industriales como el control de presión, temperatura, humedad, viscosidad flujo en las industrias de transformación. El sistema de control automático de proceso es una disciplina que se ha desarrollado a una velocidad vertiginosa, dando las bases a lo que hoy algunos autores llaman la segunda revolución industrial. El controlador automático compara el valor real de la salida de una planta con la entrada de referencia (el valor deseado), determina la desviación y produce una señal de control, que reducirá la desviación a cero o a un valor pequeño.