Empieza en 9136 las practicas
Nos dan la siguiente dirección IP, con su correspondiente máscara de subred.
192.160.26.109/20
1º PASO
La máscara de red es / 20, con lo que tendremos que saber cuántos bits utiliza
para hosts. Entonces sabiendo que la dirección IP tiene un total de 32 bits, haremos una
resta:
32 – 20 = 12, 12 serán los bits que utiliza para hosts.
2º PASO
Tenemos que pasar a binario la IP que nos han dado
para poder saber hasta donde tenemos los bits que
corresponden a red y hasta dónde los bits que
corresponden a los hosts.
1º octeto 2º octeto 3º octeto 4º octeto
192 160 26 109
11000000 10100000 00011010 01101101
Cogeremos 12 bits de derecha a izquierda, que serán todos del 4º octeto + 4
bits del 3º octeto.
– Para saber la dirección de red, pondremos los 12 bits de hosts a
cero.
– Para saber la dirección del 1º host disponible será la siguiente
dirección ip a partir de la de red.
– Para saber la dirección de broadcast pondremos los 12 bits de host
a uno.
– La dirección del último host disponible será la anterior a la de
broadcast.
11000000 10100000 00011010 01101101 IP DADA
11000000 10100000 00010000 0000000 RED
11000000 10100000 00010000 00000001 1º HOST
11000000 10100000 00011111 11111110 ÚLTIMO HOST
11000000 10100000 00011111 11111111 BROADCAST
3º PASO
Pasar a decimal las direcciones que acabamos de transformar:
192 160 16 0
11000000 10100000 00010000 00000000
192 160 16 1
11000000 10100000 00010000 00000001
192 160 31 254
11000000 10100000 00011111 11111110
192 160 31 255
11000000 10100000 00011111 11111111
Máscaras de red
En la configuración TCP/IP, los PCs deben tener una IP y una máscara de red. La máscara de
red determina el rango de la red, es decir, el número de direcciones de la red. Dada una IP y
una máscara, podemos, mediante unos “sencillos” cálculos, averiguar el rango de la red,
la primera dirección IP que corresponde con la dirección de red, última dirección IP que
corresponde con ladirección de difusión o dirección broadcast y el número de IPs del rango.
La máscara, es un valor que si le pasamos a binario, solamente contiene ‘unos’ y ‘ceros’
consecutivos, es decir, que los ‘unos’ están todos juntos y luego los ‘ceros’ están todos juntos.
Los únicos posibles valores de las máscaras son:
Tabla de máscaras
En la primera columna de la tabla anterior, vemos los posibles valores de las máscaras en
sistema binario.
En la segunda columna, vemos los valores de las máscaras en decimal.
En la tercera columna, vemos los valores de las máscaras en notación
simplificada indicando el número de ‘unos’ de la máscara. Cuando queremos decir que un PC
tiene configurada la dirección IP 192.168.0.213 y máscara 255.255.255.0, normalmente se dice
que tiene la IP 192.168.0.213/24.
En la cuarta columna vemos las direcciones totales incluida la dirección de red y la dirección
de broadcast. Para calcular el número de direcciones asignables a PCs, debemos restar dos
unidades a ese número ya que ni la primera IP (dirección de red) ni la última (dirección de
broadcast) son asignables a PCs. El resto sí, aunque acaben en cero, aunque si sobran, se
recomienda no usar las que acaben en cero. Ejemplo, si tenemos la máscara 255.0.0.0, el
número máximo de PCs será:
16.777.216 – 2 = 16.777.214
El número total de direcciones IP de la red se obtiene con la fórmula: 2(nº de ceros de la máscara)
. Si se
trata de una máscara /26, significa que la máscara tiene 6 ceros, por tanto 26
=64. Como la
primera y la última IP no se pueden utilizar, tenemos que el máximo son 64 – 2 = 62 PCs.
Pasar la máscara de binario a decimal
Hay que convertir byte a byte de binario a decimal, teniendo en cuenta que el bit más
significativo está a la izquierda. Ejemplo, supongamos que el último byte de la máscara es
11100000, su valor será 224 porque:
También se puede hacer con Excel, mediante las fórmulas BIN.A.DEC() y DEC.A.BIN()
Averiguar la máscara, dado el número de direcciones IP totales del
rango
La máscara de subred es un valor directamente ligado al número de direcciones totales de la
red, es decir, dado un número de direcciones, obtenemos la máscara y dada una máscara,
obtenemos el número total de direcciones. Si nos dicen que el rango es de X direcciones,
podemos consultar la tabla de máscaras y averiguar directamente la máscara de red.
• Ejemplo: si el rango son 64 direcciones, la máscara ha de ser: 255.255.255.192
• Ejemplo: si el rango son 512 direcciones, la máscara ha de ser: 255.255.254.0
Recordar que si el rango son 64 direcciones, solamente se pueden usar 62 para asignar a los
PCs y si el rango son 512 direcciones, solamente se pueden utilizar 510 para asignar a PCs.
Hay que restar 2 ya que ni la primera ni la última dirección son utilizables porque están
reservadas.
Hay que tener en cuenta que el número de direcciones de un rango ha de ser una potencia de
2. Si nos preguntan qué máscara utilizar si necesitamos 200 PCs, usaremos la máscara
255.255.255.0 que admite hasta 256 direcciones. Para no complicarse, lo mejor es utilizar
siempre la máscara 255.255.255.0 aunque el número de PCs de la red sea muy pequeño, total,
lo que nos sobran son direcciones IP, así que no merece la pena andar utilizando máscaras
'raras'. Si nuestra red tiene solo 5 PCs, lo normal es utilizar el rango 192.168.0.X con máscara
255.255.255.0.
Averiguar direcciones de red y de broadcast dada una IP y una
máscara
Si nos dan una IP y una máscara, podemos, mediante unos sencillos cálculos, averiguar el
rango de la red, la primera dirección IP (que corresponde con la dirección de red), la última
dirección de red (que corresponde con la dirección de broadcast) y el número de IPs del rango.
Si nos dan una IP y nos dan la máscara, es fácil averiguar la dirección de red y la dirección de
broadcast si conocemos elsistema binario y sabemos realizar operaciones lógicas.
Debemos pasar la IP y la máscara a binario y hacer dos operaciones lógicas.
Para calcular la dirección de red, debemos hacer una operación lógica Y (AND) bit a bit entre
la IP y la máscara.
Para obtener la dirección de broadcast, debemos hacemos una operación lógica O (OR) bit a
bit entre la IP y el inverso de la máscara.
Debemos recordar que en una operación AND entre dos bits, el resultado es 1 si los dos bits
son 1 y si no, el resultado es 0. En una operación OR, el resultado es 1 si cualquiera de los dos
bits son 1 y si los dos son 0, el resultado es 0. Más
información:»http://es.wikipedia.org/wiki/AND
Ejemplo: supongamos que nuestro PC tiene la IP 192.168.1.100/26, es decir, máscara
255.255.255.192 (ver tabla de máscaras). ¿Cuáles serán las direcciones de red y de
broadcast?
Dirección de red
Dirección de broadcast
Averiguar la máscara a partir de las direcciones de red y de
broadcast
Un método seguro para calcular la máscara de red partiendo de la dirección de red y de la
dirección de broadcast, es pasar los valores a binario y luego compararlos bit a bit. Los bits que
coincidan (sean iguales en la dirección de red y en la dirección de broadcast), corresponden a
'unos' en la máscara y los bits que difieran, corresponden a 'ceros' en la máscara, es lo que en
lógica se conoce como operación lógica de equivalencia (operación XNOR) así pues:
Vemos que solo cambian los 8 últimos bits, lo que nos da la máscara. Para calcular la máscara,
las posiciones que no cambian, son unos en la máscara y las que cambian, son ceros en la
máscara.
Supernetting
Hacer supernetting consiste en utilizar un grupo de redes contiguas como si fueran una única
red. Existe la posibilidad de utilizar varias redes de clase C (256 direcciones) contiguas para
formar redes mayores. Ejemplo, si dispongo de dos clases C, 192.168.0.0/24 y 192.168.1.0/24,
puedo formar una red 192.168.0.0/23 de forma que el espacio de direcciones pasa a ser de
512. Si dispongo de 256 clases C, podría formar una clase B y tendría la red 192.168.0.0/16 de
forma que utilizando máscara 255.255.0.0 tendré 65536 IPs en la misma red.
Método para el cálculo de subredes:
Antes de comenzar con la tareas usted debe tener 2 datos básicos:
• Cuál es el número total de subredes que se requieren, incluyendo la consideración del
posible crecimiento de la red.
• Cuál es el número de nodos que se preven en cada subred, teniendo en cuenta
también en este caso las consideraciones de expansión y crecimiento.
A partir de aquí, responda estas 6 preguntas básicas:
1. ¿Cuántas subredes?
2. ¿Cuántos nodos por subred?
3. ¿Cuáles son los números reservados de subred?
4. ¿Cuáles son las direcciones reservadas de broadcast?
5. ¿Cuál es la primera dirección de nodo válida?
6. ¿Cuál es la última direccion de nodo válida?
Con lo que debe obtener 6 respuetas:
Ejemplo: red 192.168.1.0 máscara 255.255.255.224
1. La cantidad de subredes utilizables se calcula tomando como base la cantidad de bits de la
porción del nodo que se toman para generar subredes, y aplicando la fórmula siguiente:
2[bits de subred]
– 2 = subredes utilizables
ejemplo:
23
– 2 = 6
2. La cantidad de direcciones de nodo útiles que soporta cada subred, surge de la aplicación se la
siguiente fórmula que toma como base la cantidad de bits que quedan para identificar los nodos:
2[bits de nodo]
– 2 = nodos
ejemplo:
25
– 2 = 30
3. La dirección reservada de la primera subred útil surge de restar a 256 el valor decimal de la
porción de la máscara de subred en la que se define el límite entre subred y nodo:
256 – [máscara] = [primera subred útil y rango de nodos]
Las direcciones de las subredes siguientes surgen de seguir sumando la misma cifra.
ejemplo:
256 – 224 = 32
192.168.1.0 subred 0
192.168.1.32 subred 1 - primer subred útil
+ 32 192.168.1.64 subred 2
+ 32 192.168.1.96 subred 3
+ 32 192.168.1.128 subred 4
+ 32 … … …
4. Las direcciones reservadas de broadcast se obtienen restando 1 a la dirección reservada de
subred de la subred siguiente:
ejemplo:
32 – 1 = 31 192.168.1.31 subred 0
64 – 1 = 63 192.168.1.63 subred 1
96 – 1 = 95 192.168.1.95 subred 2
128 – 1 = 127 192.168.1.127 subred 3
… … …
5. La dirección IP del primer nodo útil de cada subred se obtiene sumando uno a la dirección
reservada de subred:
reservada de subred + 1 = primer nodo utilizable
ejemplo:
32 + 1 = 33 192.168.1.33 primer nodo subred 1
64 + 1 = 65 192.168.1.65 primer nodo subred 2
96 + 1 = 97 192.168.1.97 primer nodo subred 3
128 + 1 = 129 192.168.1.129 primer nodo subred 4
… … …
6. La dirección IP del último nodo útil de cada subred se obtiene restando 1 a la dirección
reservada de broadcast:
63 – 1= 62 192.168.1.62 último nodo subred 1
95 – 1 = 94 192.168.1.94 último nodo subred 2
127 – 1 = 126 192.168.1.126 último nodo subred 3
… … …
Sintetizando:
Con esa máscara de subred se obtienen 6 subredes útiles, cada una de ellas con una capacidad
máxima de 30 nodos (32 direcciones IP):
# Subred Primer nodo útil Último nodo útil Broadcast
0 192.168.1.0
1 192.168.1.32 192.168.1.33 192.168.1.62 192.168.1.63
2 192.168.1.64 192.168.1.65 192.168.1.94 192.168.1.95
3 192.168.1.96 192.168.1.97 192.168.1.126 192.168.1.127
4 192.168.1.128 192.168.1.129 … … ... … … …
Ejercicios de subneteo - 1
23 de Septiembre, 2005
Por oagero @ 23 de Septiembre, 2005 en Subredes
1. Utilizando la dirección de clase C 192.168.21.0, necesita generar 28 subredes. ¿Qué
máscara de subred deberá utilizar?
A. 255.255.0.28
B. 255.255.255.0
C. 255.255.255.28
D. 255.255.255.248
E. 255.255.255.252
2. A Ud. le ha sido asignada una dirección de red clase C. Su Director le ha solicitado crear 30
subredes con al menos 5 nodos por subred para los diferentes departamentos en su
organización. ¿Cuál es la máscara de subred que le permitirá crear esas 30 subredes?
3. Dada la dirección
IP
195.106.14.0/24,
¿cuál es el número total de redes y el número total de nodos por red que se obtiene?
A. 1 red con 254 nodos.
B. 2 redes con 128 nodos.
C. 4 redes con 64 nodos.
D. 6 redes con 30 nodos.
4. Utilizando una dirección de red clase C, Ud. necesita 5 subredes con un máximo de 17
nodos en cada una de esas subredes. ¿Qué máscara de subred deberá utilizar?
A. 255.255.255.192
B. 255.255.255.224
C. 255.255.255.240
D. 255.255.255.248
5. Partiendo de la red 192.141.27.0/28, identifique las direcciones de nodo válidas (elija 3).
A. 192.141.27.33
B. 192.141.27.112
C. 192.141.27.119
D. 192.141.27.126
E. 192.141.27.175
F. 192.141.27.208
6. Utilizando la dirección 192.64.10.0/28, ¿cuántas subredes y cuántos nodos por subred
están
disponibles?
A. 62 subredes y 2 nodos
. . .
B. 6 subredes y 30 nodos
C. 8 subredes y 32 nodos
D. 16 subredes y 16 nodos
E. 14 subredes y 14 nodos
7. ¿Cuál es una dirección de difusión perteneciente a la red 192.57.78.0/27?
A. 192.157.78.33
B. 192.57.78.64
C. 192.57.78.87
D. 192.57.78.97
E. 192.57.78.159
F. 192.57.78.254
8. ¿Cuál es el patrón de bits para el primer octeto de una dirección de red clase B como
129.107.0.0?
A. 0xxxxxxx
B. 10xxxxxx
C. 110xxxxx
D. 1110xxxx
E. 11110xxx
9. Dirección IP: 172.20.7.160
Máscara de subred: 255.255.255.192
Ud. está configurando una impresora de red. Desea utilizar la última dirección IP de su
subred para esta impresora.
Ud. ha corrido un ipconfig en su terminal de trabajo y ha recibido la información que tiene
más arriba.
Basándose en la dirección IP y la máscara de subred de su terminal de trabajo, ¿cuál es la
última dirección IP disponible en su subred?
A. 172.20.7.255
B. 172.20.7.197
C. 172.20.7.190
D. 172.20.7.129
E. 172.20.255.255
10. Asumiendo que nuestra red está utilizando una versión antigua de UNIX, ¿cuál es el
número máximo de subredes que pueden ser asignadas a la red cuando utiliza la dirección
131.107.0.0 con una máscara de subred de 255.255.240.0?
A. 16
B. 32
C. 30
D. 14
11. ¿Cuál de las siguientes es la dirección de difusión para una ID de red Clase B que utiliza
la máscara de subred por defecto?
A. 172.16.10.255
B. 172.16.255.255
C. 172.255.255.254
D. 255.255.255.255
12. ¿Cuál de los siguientes es el rango de nodo válido para la dirección IP 192.168.168.188
255.255.255.192?
A. 192.168.168.129-190
B. 192.168.168.129-191
C. 192.168.168.128-190
D. 192.168.168.128-192
13. ¿Cuál es el rango de nodo válido del cual es parte la dirección IP 172.16.10.22 /
255.255.255.240?
A. 172.16.10.20 a 172.16.10.22
B. 172.16.10.1 a 172.16.10.255
C. 172.16.1.16 a 172.16.10.23
D. 172.16.10.17 a 172.16.10.31
E. 172.16.10.17 a 172.16.10.30
14. ¿Cuál es la dirección de broadcast de la dirección de subred 192.168.99.20 /
255.255.255.252?
A. 192.168.99.127
B. 192.168.99.63
C. 192.168.99.23
D. 192.168.99.31
I
B. 32
C. 30
D. 14
11. ¿Cuál de las siguientes es la dirección de difusión para una ID de red Clase B que utiliza
la máscara de subred por defecto?
A. 172.16.10.255
B. 172.16.255.255
C. 172.255.255.254
D. 255.255.255.255
12. ¿Cuál de los siguientes es el rango de nodo válido para la dirección IP 192.168.168.188
255.255.255.192?
A. 192.168.168.129-190
B. 192.168.168.129-191
C. 192.168.168.128-190
D. 192.168.168.128-192
13. ¿Cuál es el rango de nodo válido del cual es parte la dirección IP 172.16.10.22 /
255.255.255.240?
A. 172.16.10.20 a 172.16.10.22
B. 172.16.10.1 a 172.16.10.255
C. 172.16.1.16 a 172.16.10.23
D. 172.16.10.17 a 172.16.10.31
E. 172.16.10.17 a 172.16.10.30
14. ¿Cuál es la dirección de broadcast de la dirección de subred 192.168.99.20 /
255.255.255.252?
A. 192.168.99.127
B. 192.168.99.63
C. 192.168.99.23
D. 192.168.99.31
I

Más contenido relacionado

DOC
ejercicios de subnetting
PPT
Direccionamiento ip
PPTX
DIRECCIONES Y CLASES IP
ODP
Presentación tcp y udp
PDF
CÁLCULO DE SUB-REDES DE FORMA PRÁTICA
DOCX
Ejercicios de subnetting
DOCX
SUBNETTING
ejercicios de subnetting
Direccionamiento ip
DIRECCIONES Y CLASES IP
Presentación tcp y udp
CÁLCULO DE SUB-REDES DE FORMA PRÁTICA
Ejercicios de subnetting
SUBNETTING

La actualidad más candente (20)

PPTX
direcciones ip no validas
PPTX
VLSM y CIDR (características, implementación torres gamarra
PDF
Protocolos de red
PPSX
Clases de direcciones IP
PDF
DOC
Direccion ip
TXT
Rfc2460 es
PPTX
Ejercicio de subneteo vlsm y cidr
DOCX
55784943 practicas-ospf
PDF
Lenguaje ensamblador basico
PDF
Diagramas Analisis
PPTX
PPT
Protocolo TCP/IP
DOC
Ejercicios de-subneteo-14
DOCX
Ejercicios redes
PDF
Luận văn: Truyền hình băng thông rộng trong mạng HFC, HAY
PDF
Creación de VLANs (subredes) desde Cisco Packet Tracer Student
PPTX
2. Frontera de internet. Redes de acceso
PPTX
ASP.NET WEB API
PDF
Rangos de IPs Públicas y Privadas
direcciones ip no validas
VLSM y CIDR (características, implementación torres gamarra
Protocolos de red
Clases de direcciones IP
Direccion ip
Rfc2460 es
Ejercicio de subneteo vlsm y cidr
55784943 practicas-ospf
Lenguaje ensamblador basico
Diagramas Analisis
Protocolo TCP/IP
Ejercicios de-subneteo-14
Ejercicios redes
Luận văn: Truyền hình băng thông rộng trong mạng HFC, HAY
Creación de VLANs (subredes) desde Cisco Packet Tracer Student
2. Frontera de internet. Redes de acceso
ASP.NET WEB API
Rangos de IPs Públicas y Privadas
Publicidad

Destacado (8)

PPT
Subredes
DOCX
PDF
Direccionamiento Ip Y Subredes Ejercicios Resueltos
PDF
Direccionamiento ip v 4
DOCX
Calculo y diseño de redes ip
PDF
Calculo de sub redes
PDF
Fundamentos de redes: 6.3 Direccionamiento de red IPv4
PPTX
Cálculo VLSM y subredes
Subredes
Direccionamiento Ip Y Subredes Ejercicios Resueltos
Direccionamiento ip v 4
Calculo y diseño de redes ip
Calculo de sub redes
Fundamentos de redes: 6.3 Direccionamiento de red IPv4
Cálculo VLSM y subredes
Publicidad

Similar a Documents.tips metodo para-el-calculo-de-subredes (20)

PPTX
Direccionamiento ip y subredes
PPT
Ud6 2 subnetting
DOCX
Subneteo
PDF
subneteo.pdf. .
PPTX
programacion_redes_informaticas_clase_5_03052024.pptx
PPT
Subnetting
PPTX
Subneteo de redes
PDF
redes-direccionamiento-ipv4[2].pdf
PDF
Redes direccionamiento y subredes ipv4 2024 .pdf
PPTX
MASCARA DE SUBRED Y SUBREDES
PDF
Direccionamiento - Ejercicios - Explicacion - Clases A-B-C
PDF
SUBNETEO DE REDES
PPT
PPTX
Subneteo de redes
DOCX
Evaluacion 4 periodo
PDF
Cálculo de subredes
PPT
Subnetting
PPTX
Subneteo de redes
Direccionamiento ip y subredes
Ud6 2 subnetting
Subneteo
subneteo.pdf. .
programacion_redes_informaticas_clase_5_03052024.pptx
Subnetting
Subneteo de redes
redes-direccionamiento-ipv4[2].pdf
Redes direccionamiento y subredes ipv4 2024 .pdf
MASCARA DE SUBRED Y SUBREDES
Direccionamiento - Ejercicios - Explicacion - Clases A-B-C
SUBNETEO DE REDES
Subneteo de redes
Evaluacion 4 periodo
Cálculo de subredes
Subnetting
Subneteo de redes

Último (20)

PDF
Presentacion_Resolver_CEM_Hospitales_v2.pdf
PPTX
PROCESOS DE REGULACION DE CRECIMIENTO.pptx
PPTX
376060032-Diapositivas-de-Ingenieria-ESTRUCTURAL.pptx
PPTX
DEBL Presentación PG 23.pptx [Autoguardado].pptx
PDF
MODULO 1 Base Legal Nacional y sus aplicaciones.pdf
PPTX
Cómo Elaborar e Implementar el IPERC_ 2023.pptx
PDF
TRABAJO DE ANÁLISIS DE RIESGOS EN PROYECTOS
PDF
manual-sap-gratuito _ para induccion de inicio a SAP
PPTX
PPT PE 7 ASOCIACIONES HUAMANGA_TALLER DE SENSIBILIZACIÓN_20.04.025.pptx
PPTX
Investigacioncientificaytecnologica.pptx
PDF
FUNCION CUADRATICA FUNCIONES RAIZ CUADRADA
PPTX
EQUIPOS DE PROTECCION PERSONAL - LEY LABORAL.pptx
PDF
Matriz_Seguimiento_Estu_Consult_2024_ACT.pdf
PPTX
Expo petroelo 2do ciclo.psssssssssssssptx
PDF
Diseño y Utiliación del HVAC Aire Acondicionado
PPTX
MANEJO DE QUIMICOS Y SGA GRUPO Mnsr Aleman.pptx
PPTX
Riesgo eléctrico 5 REGLAS DE ORO PARA TRABAJOS CON TENSION
PDF
BROCHURE SERVICIOS CONSULTORIA ISOTEMPO 2025
PPTX
TOPOGRAFÍA - INGENIERÍA CIVIL - PRESENTACIÓN
PDF
UD3 -Producción, distribución del aire MA.pdf
Presentacion_Resolver_CEM_Hospitales_v2.pdf
PROCESOS DE REGULACION DE CRECIMIENTO.pptx
376060032-Diapositivas-de-Ingenieria-ESTRUCTURAL.pptx
DEBL Presentación PG 23.pptx [Autoguardado].pptx
MODULO 1 Base Legal Nacional y sus aplicaciones.pdf
Cómo Elaborar e Implementar el IPERC_ 2023.pptx
TRABAJO DE ANÁLISIS DE RIESGOS EN PROYECTOS
manual-sap-gratuito _ para induccion de inicio a SAP
PPT PE 7 ASOCIACIONES HUAMANGA_TALLER DE SENSIBILIZACIÓN_20.04.025.pptx
Investigacioncientificaytecnologica.pptx
FUNCION CUADRATICA FUNCIONES RAIZ CUADRADA
EQUIPOS DE PROTECCION PERSONAL - LEY LABORAL.pptx
Matriz_Seguimiento_Estu_Consult_2024_ACT.pdf
Expo petroelo 2do ciclo.psssssssssssssptx
Diseño y Utiliación del HVAC Aire Acondicionado
MANEJO DE QUIMICOS Y SGA GRUPO Mnsr Aleman.pptx
Riesgo eléctrico 5 REGLAS DE ORO PARA TRABAJOS CON TENSION
BROCHURE SERVICIOS CONSULTORIA ISOTEMPO 2025
TOPOGRAFÍA - INGENIERÍA CIVIL - PRESENTACIÓN
UD3 -Producción, distribución del aire MA.pdf

Documents.tips metodo para-el-calculo-de-subredes

  • 1. Empieza en 9136 las practicas Nos dan la siguiente dirección IP, con su correspondiente máscara de subred. 192.160.26.109/20 1º PASO La máscara de red es / 20, con lo que tendremos que saber cuántos bits utiliza para hosts. Entonces sabiendo que la dirección IP tiene un total de 32 bits, haremos una resta: 32 – 20 = 12, 12 serán los bits que utiliza para hosts. 2º PASO Tenemos que pasar a binario la IP que nos han dado para poder saber hasta donde tenemos los bits que corresponden a red y hasta dónde los bits que corresponden a los hosts. 1º octeto 2º octeto 3º octeto 4º octeto 192 160 26 109 11000000 10100000 00011010 01101101 Cogeremos 12 bits de derecha a izquierda, que serán todos del 4º octeto + 4 bits del 3º octeto. – Para saber la dirección de red, pondremos los 12 bits de hosts a cero. – Para saber la dirección del 1º host disponible será la siguiente dirección ip a partir de la de red. – Para saber la dirección de broadcast pondremos los 12 bits de host a uno. – La dirección del último host disponible será la anterior a la de broadcast. 11000000 10100000 00011010 01101101 IP DADA 11000000 10100000 00010000 0000000 RED 11000000 10100000 00010000 00000001 1º HOST 11000000 10100000 00011111 11111110 ÚLTIMO HOST
  • 2. 11000000 10100000 00011111 11111111 BROADCAST 3º PASO Pasar a decimal las direcciones que acabamos de transformar: 192 160 16 0 11000000 10100000 00010000 00000000 192 160 16 1 11000000 10100000 00010000 00000001 192 160 31 254 11000000 10100000 00011111 11111110 192 160 31 255 11000000 10100000 00011111 11111111 Máscaras de red En la configuración TCP/IP, los PCs deben tener una IP y una máscara de red. La máscara de red determina el rango de la red, es decir, el número de direcciones de la red. Dada una IP y una máscara, podemos, mediante unos “sencillos” cálculos, averiguar el rango de la red, la primera dirección IP que corresponde con la dirección de red, última dirección IP que corresponde con ladirección de difusión o dirección broadcast y el número de IPs del rango. La máscara, es un valor que si le pasamos a binario, solamente contiene ‘unos’ y ‘ceros’ consecutivos, es decir, que los ‘unos’ están todos juntos y luego los ‘ceros’ están todos juntos. Los únicos posibles valores de las máscaras son:
  • 3. Tabla de máscaras En la primera columna de la tabla anterior, vemos los posibles valores de las máscaras en sistema binario. En la segunda columna, vemos los valores de las máscaras en decimal. En la tercera columna, vemos los valores de las máscaras en notación simplificada indicando el número de ‘unos’ de la máscara. Cuando queremos decir que un PC tiene configurada la dirección IP 192.168.0.213 y máscara 255.255.255.0, normalmente se dice que tiene la IP 192.168.0.213/24. En la cuarta columna vemos las direcciones totales incluida la dirección de red y la dirección de broadcast. Para calcular el número de direcciones asignables a PCs, debemos restar dos unidades a ese número ya que ni la primera IP (dirección de red) ni la última (dirección de broadcast) son asignables a PCs. El resto sí, aunque acaben en cero, aunque si sobran, se recomienda no usar las que acaben en cero. Ejemplo, si tenemos la máscara 255.0.0.0, el número máximo de PCs será: 16.777.216 – 2 = 16.777.214 El número total de direcciones IP de la red se obtiene con la fórmula: 2(nº de ceros de la máscara) . Si se trata de una máscara /26, significa que la máscara tiene 6 ceros, por tanto 26 =64. Como la primera y la última IP no se pueden utilizar, tenemos que el máximo son 64 – 2 = 62 PCs. Pasar la máscara de binario a decimal Hay que convertir byte a byte de binario a decimal, teniendo en cuenta que el bit más significativo está a la izquierda. Ejemplo, supongamos que el último byte de la máscara es 11100000, su valor será 224 porque:
  • 4. También se puede hacer con Excel, mediante las fórmulas BIN.A.DEC() y DEC.A.BIN() Averiguar la máscara, dado el número de direcciones IP totales del rango La máscara de subred es un valor directamente ligado al número de direcciones totales de la red, es decir, dado un número de direcciones, obtenemos la máscara y dada una máscara, obtenemos el número total de direcciones. Si nos dicen que el rango es de X direcciones, podemos consultar la tabla de máscaras y averiguar directamente la máscara de red. • Ejemplo: si el rango son 64 direcciones, la máscara ha de ser: 255.255.255.192 • Ejemplo: si el rango son 512 direcciones, la máscara ha de ser: 255.255.254.0 Recordar que si el rango son 64 direcciones, solamente se pueden usar 62 para asignar a los PCs y si el rango son 512 direcciones, solamente se pueden utilizar 510 para asignar a PCs. Hay que restar 2 ya que ni la primera ni la última dirección son utilizables porque están reservadas. Hay que tener en cuenta que el número de direcciones de un rango ha de ser una potencia de 2. Si nos preguntan qué máscara utilizar si necesitamos 200 PCs, usaremos la máscara 255.255.255.0 que admite hasta 256 direcciones. Para no complicarse, lo mejor es utilizar siempre la máscara 255.255.255.0 aunque el número de PCs de la red sea muy pequeño, total, lo que nos sobran son direcciones IP, así que no merece la pena andar utilizando máscaras 'raras'. Si nuestra red tiene solo 5 PCs, lo normal es utilizar el rango 192.168.0.X con máscara 255.255.255.0. Averiguar direcciones de red y de broadcast dada una IP y una máscara Si nos dan una IP y una máscara, podemos, mediante unos sencillos cálculos, averiguar el rango de la red, la primera dirección IP (que corresponde con la dirección de red), la última dirección de red (que corresponde con la dirección de broadcast) y el número de IPs del rango. Si nos dan una IP y nos dan la máscara, es fácil averiguar la dirección de red y la dirección de broadcast si conocemos elsistema binario y sabemos realizar operaciones lógicas. Debemos pasar la IP y la máscara a binario y hacer dos operaciones lógicas. Para calcular la dirección de red, debemos hacer una operación lógica Y (AND) bit a bit entre la IP y la máscara. Para obtener la dirección de broadcast, debemos hacemos una operación lógica O (OR) bit a bit entre la IP y el inverso de la máscara. Debemos recordar que en una operación AND entre dos bits, el resultado es 1 si los dos bits son 1 y si no, el resultado es 0. En una operación OR, el resultado es 1 si cualquiera de los dos bits son 1 y si los dos son 0, el resultado es 0. Más información:»http://es.wikipedia.org/wiki/AND Ejemplo: supongamos que nuestro PC tiene la IP 192.168.1.100/26, es decir, máscara 255.255.255.192 (ver tabla de máscaras). ¿Cuáles serán las direcciones de red y de broadcast? Dirección de red
  • 5. Dirección de broadcast Averiguar la máscara a partir de las direcciones de red y de broadcast Un método seguro para calcular la máscara de red partiendo de la dirección de red y de la dirección de broadcast, es pasar los valores a binario y luego compararlos bit a bit. Los bits que coincidan (sean iguales en la dirección de red y en la dirección de broadcast), corresponden a 'unos' en la máscara y los bits que difieran, corresponden a 'ceros' en la máscara, es lo que en lógica se conoce como operación lógica de equivalencia (operación XNOR) así pues: Vemos que solo cambian los 8 últimos bits, lo que nos da la máscara. Para calcular la máscara, las posiciones que no cambian, son unos en la máscara y las que cambian, son ceros en la máscara. Supernetting Hacer supernetting consiste en utilizar un grupo de redes contiguas como si fueran una única red. Existe la posibilidad de utilizar varias redes de clase C (256 direcciones) contiguas para formar redes mayores. Ejemplo, si dispongo de dos clases C, 192.168.0.0/24 y 192.168.1.0/24, puedo formar una red 192.168.0.0/23 de forma que el espacio de direcciones pasa a ser de 512. Si dispongo de 256 clases C, podría formar una clase B y tendría la red 192.168.0.0/16 de forma que utilizando máscara 255.255.0.0 tendré 65536 IPs en la misma red. Método para el cálculo de subredes: Antes de comenzar con la tareas usted debe tener 2 datos básicos: • Cuál es el número total de subredes que se requieren, incluyendo la consideración del posible crecimiento de la red. • Cuál es el número de nodos que se preven en cada subred, teniendo en cuenta también en este caso las consideraciones de expansión y crecimiento. A partir de aquí, responda estas 6 preguntas básicas: 1. ¿Cuántas subredes? 2. ¿Cuántos nodos por subred?
  • 6. 3. ¿Cuáles son los números reservados de subred? 4. ¿Cuáles son las direcciones reservadas de broadcast? 5. ¿Cuál es la primera dirección de nodo válida? 6. ¿Cuál es la última direccion de nodo válida? Con lo que debe obtener 6 respuetas: Ejemplo: red 192.168.1.0 máscara 255.255.255.224 1. La cantidad de subredes utilizables se calcula tomando como base la cantidad de bits de la porción del nodo que se toman para generar subredes, y aplicando la fórmula siguiente: 2[bits de subred] – 2 = subredes utilizables ejemplo: 23 – 2 = 6 2. La cantidad de direcciones de nodo útiles que soporta cada subred, surge de la aplicación se la siguiente fórmula que toma como base la cantidad de bits que quedan para identificar los nodos: 2[bits de nodo] – 2 = nodos ejemplo: 25 – 2 = 30 3. La dirección reservada de la primera subred útil surge de restar a 256 el valor decimal de la porción de la máscara de subred en la que se define el límite entre subred y nodo: 256 – [máscara] = [primera subred útil y rango de nodos] Las direcciones de las subredes siguientes surgen de seguir sumando la misma cifra. ejemplo: 256 – 224 = 32 192.168.1.0 subred 0 192.168.1.32 subred 1 - primer subred útil + 32 192.168.1.64 subred 2 + 32 192.168.1.96 subred 3 + 32 192.168.1.128 subred 4 + 32 … … … 4. Las direcciones reservadas de broadcast se obtienen restando 1 a la dirección reservada de subred de la subred siguiente: ejemplo: 32 – 1 = 31 192.168.1.31 subred 0 64 – 1 = 63 192.168.1.63 subred 1 96 – 1 = 95 192.168.1.95 subred 2 128 – 1 = 127 192.168.1.127 subred 3 … … … 5. La dirección IP del primer nodo útil de cada subred se obtiene sumando uno a la dirección reservada de subred: reservada de subred + 1 = primer nodo utilizable ejemplo: 32 + 1 = 33 192.168.1.33 primer nodo subred 1 64 + 1 = 65 192.168.1.65 primer nodo subred 2 96 + 1 = 97 192.168.1.97 primer nodo subred 3 128 + 1 = 129 192.168.1.129 primer nodo subred 4 … … … 6. La dirección IP del último nodo útil de cada subred se obtiene restando 1 a la dirección reservada de broadcast: 63 – 1= 62 192.168.1.62 último nodo subred 1 95 – 1 = 94 192.168.1.94 último nodo subred 2 127 – 1 = 126 192.168.1.126 último nodo subred 3 … … … Sintetizando: Con esa máscara de subred se obtienen 6 subredes útiles, cada una de ellas con una capacidad máxima de 30 nodos (32 direcciones IP): # Subred Primer nodo útil Último nodo útil Broadcast 0 192.168.1.0 1 192.168.1.32 192.168.1.33 192.168.1.62 192.168.1.63 2 192.168.1.64 192.168.1.65 192.168.1.94 192.168.1.95 3 192.168.1.96 192.168.1.97 192.168.1.126 192.168.1.127 4 192.168.1.128 192.168.1.129 … … ... … … …
  • 7. Ejercicios de subneteo - 1 23 de Septiembre, 2005 Por oagero @ 23 de Septiembre, 2005 en Subredes 1. Utilizando la dirección de clase C 192.168.21.0, necesita generar 28 subredes. ¿Qué máscara de subred deberá utilizar? A. 255.255.0.28 B. 255.255.255.0 C. 255.255.255.28 D. 255.255.255.248 E. 255.255.255.252 2. A Ud. le ha sido asignada una dirección de red clase C. Su Director le ha solicitado crear 30 subredes con al menos 5 nodos por subred para los diferentes departamentos en su organización. ¿Cuál es la máscara de subred que le permitirá crear esas 30 subredes? 3. Dada la dirección IP 195.106.14.0/24, ¿cuál es el número total de redes y el número total de nodos por red que se obtiene? A. 1 red con 254 nodos. B. 2 redes con 128 nodos. C. 4 redes con 64 nodos. D. 6 redes con 30 nodos. 4. Utilizando una dirección de red clase C, Ud. necesita 5 subredes con un máximo de 17 nodos en cada una de esas subredes. ¿Qué máscara de subred deberá utilizar? A. 255.255.255.192 B. 255.255.255.224 C. 255.255.255.240 D. 255.255.255.248 5. Partiendo de la red 192.141.27.0/28, identifique las direcciones de nodo válidas (elija 3). A. 192.141.27.33 B. 192.141.27.112 C. 192.141.27.119 D. 192.141.27.126 E. 192.141.27.175 F. 192.141.27.208 6. Utilizando la dirección 192.64.10.0/28, ¿cuántas subredes y cuántos nodos por subred están disponibles? A. 62 subredes y 2 nodos . . .
  • 8. B. 6 subredes y 30 nodos C. 8 subredes y 32 nodos D. 16 subredes y 16 nodos E. 14 subredes y 14 nodos 7. ¿Cuál es una dirección de difusión perteneciente a la red 192.57.78.0/27? A. 192.157.78.33 B. 192.57.78.64 C. 192.57.78.87 D. 192.57.78.97 E. 192.57.78.159 F. 192.57.78.254 8. ¿Cuál es el patrón de bits para el primer octeto de una dirección de red clase B como 129.107.0.0? A. 0xxxxxxx B. 10xxxxxx C. 110xxxxx D. 1110xxxx E. 11110xxx 9. Dirección IP: 172.20.7.160 Máscara de subred: 255.255.255.192 Ud. está configurando una impresora de red. Desea utilizar la última dirección IP de su subred para esta impresora. Ud. ha corrido un ipconfig en su terminal de trabajo y ha recibido la información que tiene más arriba. Basándose en la dirección IP y la máscara de subred de su terminal de trabajo, ¿cuál es la última dirección IP disponible en su subred? A. 172.20.7.255 B. 172.20.7.197 C. 172.20.7.190 D. 172.20.7.129 E. 172.20.255.255 10. Asumiendo que nuestra red está utilizando una versión antigua de UNIX, ¿cuál es el número máximo de subredes que pueden ser asignadas a la red cuando utiliza la dirección 131.107.0.0 con una máscara de subred de 255.255.240.0? A. 16
  • 9. B. 32 C. 30 D. 14 11. ¿Cuál de las siguientes es la dirección de difusión para una ID de red Clase B que utiliza la máscara de subred por defecto? A. 172.16.10.255 B. 172.16.255.255 C. 172.255.255.254 D. 255.255.255.255 12. ¿Cuál de los siguientes es el rango de nodo válido para la dirección IP 192.168.168.188 255.255.255.192? A. 192.168.168.129-190 B. 192.168.168.129-191 C. 192.168.168.128-190 D. 192.168.168.128-192 13. ¿Cuál es el rango de nodo válido del cual es parte la dirección IP 172.16.10.22 / 255.255.255.240? A. 172.16.10.20 a 172.16.10.22 B. 172.16.10.1 a 172.16.10.255 C. 172.16.1.16 a 172.16.10.23 D. 172.16.10.17 a 172.16.10.31 E. 172.16.10.17 a 172.16.10.30 14. ¿Cuál es la dirección de broadcast de la dirección de subred 192.168.99.20 / 255.255.255.252? A. 192.168.99.127 B. 192.168.99.63 C. 192.168.99.23 D. 192.168.99.31 I
  • 10. B. 32 C. 30 D. 14 11. ¿Cuál de las siguientes es la dirección de difusión para una ID de red Clase B que utiliza la máscara de subred por defecto? A. 172.16.10.255 B. 172.16.255.255 C. 172.255.255.254 D. 255.255.255.255 12. ¿Cuál de los siguientes es el rango de nodo válido para la dirección IP 192.168.168.188 255.255.255.192? A. 192.168.168.129-190 B. 192.168.168.129-191 C. 192.168.168.128-190 D. 192.168.168.128-192 13. ¿Cuál es el rango de nodo válido del cual es parte la dirección IP 172.16.10.22 / 255.255.255.240? A. 172.16.10.20 a 172.16.10.22 B. 172.16.10.1 a 172.16.10.255 C. 172.16.1.16 a 172.16.10.23 D. 172.16.10.17 a 172.16.10.31 E. 172.16.10.17 a 172.16.10.30 14. ¿Cuál es la dirección de broadcast de la dirección de subred 192.168.99.20 / 255.255.255.252? A. 192.168.99.127 B. 192.168.99.63 C. 192.168.99.23 D. 192.168.99.31 I