SlideShare una empresa de Scribd logo
Universidad Nacional Experimental
“Francisco de Miranda”
Área de Tecnología
Programa Ingeniería
U.C. Matemática IV
Ecuaciones Diferenciales por
Separación de Variables
A continuación, resolveremos ED
por Separación de Variables
Aplicando diversos procedimientos
para su solución (Integración
Inmediata, Cambio de Variables,
ILATE, Fracciones Parciales)
ED por Separación de Variables
3𝑦´ + 8𝑥3 = 2
3𝑦´ = 2 − 8𝑥3
𝑦´ =
2 − 8𝑥3
3
𝑑𝑦
𝑑𝑥
=
2 − 8𝑥3
3
𝒜
ED por Separación de Variables
𝑑𝑦 =
2 −8𝑥3
3
𝑑𝑥
∫ 𝑑𝑦 = ∫
2 −8𝑥3
3
𝑑𝑥
∫ 𝑑𝑦 =
2
3
∫ 𝑑𝑥 −
8
3
∫ 𝑥3 𝑑𝑥
Podemos
Aplicar:
INTEGRACIÓN
INMEDIATA
𝑦 + 𝑐1 =
2
3
𝑥 + 𝑐2 −
8
3
.
𝑥4
4
+ 𝑐3
𝑦 = −
2
3
𝑥4
+
2
3
𝑥 + 𝑐2 + 𝑐3 − 𝑐1
ED por Separación de Variables
𝑦 = −
2
3
𝑥4
+
2
3
𝑥 + 𝑐
Pero => 𝒞 = 𝑐2 + 𝑐3 − 𝑐1
ED por Separación de Variables
𝟗𝒚´ + 𝑺𝒆𝒏 𝒙 + 𝟐 = 𝟎
y´ = -
𝑆𝑒𝑛 (𝑥+2)
9
𝑑𝑦
𝑑𝑥
= -
𝑆𝑒𝑛 (𝑥+2)
9
𝒹𝓍
𝒹𝑦= -
𝑆𝑒𝑛 (𝑥+2)
9
𝒹𝓍
ℬ
ED por Separación de Variables
∫ 𝒹𝑦= ∫ -
𝑆𝑒𝑛 (𝑥+2)
9
𝒹𝓍
y + c 1= -
1
9
∫ 𝑆𝑒𝑛 (𝑥 + 2)𝒹𝓍
y + c 1= -
1
9
∫ 𝑆𝑒𝑛 (𝑢)𝒹𝓍
Aplicamos:
CAMBIO DE
VARIABLE
𝓊 = 𝓍 + 2
𝒹𝓊 = 𝒹𝓍
y + c 1= -
1
9
𝐶𝑜𝑠 (𝑢)𝒹𝑢
Devolvemos el
CAMBIO
ED por Separación de Variables
y + c 1= -
1
9
𝐶𝑜𝑠 𝑥 + 2 + 𝑐2
Pero => 𝒞 = c 1 - 𝑐2
y = -
1
9
𝐶𝑜𝑠 𝑥 + 2 + 𝑐
ED por Separación de Variables
𝒅𝒚
𝒅𝒙
= 𝒙 𝟐 𝓵𝓷 𝔁
𝓭𝒚 = 𝒙 𝟐 𝓵𝓷 𝔁 𝓭𝒙
∫ 𝓭𝒚 = ∫ 𝒙 𝟐
𝓵𝓷 𝔁 𝓭𝒙
𝒞
ED por Separación de Variables
𝒚 + 𝒄1 = ∫ 𝒙 𝟐
𝓵𝓷 𝔁 𝓭𝒙 Aplicamos:
ILATE
𝓊. 𝑣 − ∫ 𝑣. 𝑑𝑢
∫ 𝒙 𝟐 𝓵𝓷 𝔁 𝓭𝒙
𝓊 = ln 𝑥
𝑑𝑢 =
𝑑𝑥
𝑥
∫ 𝒹𝑣 = ∫ 𝑥2
𝑑𝑥
𝑣 =
𝑥3
3
𝑥3
3
. ln 𝑥 - ∫
𝑥3
3
.
𝑑𝑥
𝑥
∫ 𝒙 𝟐 𝓵𝓷 𝔁 𝓭𝒙 =
ED por Separación de Variables
𝑥3
3
. ln 𝑥 - ∫
𝑥3
3𝑥
. 𝒹𝑥∫ 𝒙 𝟐
𝓵𝓷 𝔁 𝓭𝒙 =
𝑥3
3
. ln 𝑥 -
1
3
.
𝑥3
3
+ 𝒞2∫ 𝒙 𝟐 𝓵𝓷 𝔁 𝓭𝒙 =
𝑥3
3
. ln 𝑥 -
1
9
. 𝑥3 + 𝒞2∫ 𝒙 𝟐
𝓵𝓷 𝔁 𝓭𝒙 =
ED por Separación de Variables
𝒚 + 𝒄1 =
𝑥3
3
. ln 𝑥 -
1
9
. 𝑥3 + 𝑐2
𝒚 =
𝑥3
3
(ln 𝑥 -
1
3
) + 𝑐
Factor
Común
𝒚 =
𝑥3
3
. ln 𝑥 -
1
9
. 𝑥3 + 𝑐
Pero => 𝒞 = c 1 - 𝑐2
𝒟 𝑑𝑦
𝑑𝑥
=
5𝑥 + 2
3𝑥2 + 5𝑥 + 2
𝑑𝑦 =
5𝑥 + 2
3𝑥2 + 5𝑥 + 2
𝑑𝑥
∫ 𝑑𝑦 = ∫
5𝑥 + 2
3𝑥2 + 5𝑥 + 2
𝑑𝑥
y + 𝑐1 = ∫
5𝑥 + 2
3𝑥2 + 5𝑥 + 2
𝑑𝑥
ED por Separación de Variables
y + 𝑐1 = ∫
5𝑥 + 2
3𝑥2 + 5𝑥 + 2
𝑑𝑥
Apliquemos:
FRACCIONES
PARCIALES
∫
5𝑥 + 2
3𝑥2 + 5𝑥 + 2
𝑑𝑥
Debemos aplicar La RESOLVENTE
−𝑏 ± 𝑏2 − 4𝑎𝑐
2𝑎
𝑎 = 3, b = 5, c = 2
−5 ± 52 − 4(3)(2)
2.3
ED por Separación de Variables
−5 ± 25 − 24
6
𝑥1 =
−5 + 1
6
𝑥2 =
−5 − 1
6
𝑥1 =
−2
3
𝑥2 = −1
3𝑥 + 2 = 0 𝑥 + 1 = 0
∫
5𝑥 + 2
3𝑥2 + 5𝑥 + 2
𝑑𝑥 = ∫
5𝑥 + 2
(3𝑥 + 2)(𝑥 + 1)
𝑑𝑥
ED por Separación de Variables
∫
𝐴
3𝑥 + 2
𝑑𝑥 + ∫
𝐵
𝑥 + 1
𝑑𝑥
∫
5𝑥 + 2
3𝑥2 + 5𝑥 + 2
𝑑𝑥 = ∫
5𝑥 + 2
(3𝑥 + 2)(𝑥 + 1)
𝑑𝑥
Separamos
𝐴
3𝑥 + 2
+
𝐵
𝑥 + 1
𝐴 𝑥 + 1 + 𝐵(3𝑥 + 2)
(3𝑥 + 2)(𝑥 + 1)
∫
5𝑥 + 2
3𝑥 + 2 𝑥 + 1
𝑑𝑥 =
∫
5𝑥 + 2
3𝑥 + 2 𝑥 + 1
𝑑𝑥 =
∫
5𝑥 + 2
3𝑥 + 2 𝑥 + 1
𝑑𝑥 =
ED por Separación de Variables
𝐴𝑥 + 𝐴 + 3𝐵𝑥2𝐵
(3𝑥 + 2)(𝑥 + 1)
∫
5𝑥 + 2
3𝑥 + 2 𝑥 + 1
𝑑𝑥 =
𝐴 + 3𝐵 𝑥 + (𝐴 + 2𝐵)
(3𝑥 + 2)(𝑥 + 1)
∫
5𝑥 + 2
3𝑥 + 2 𝑥 + 1
𝑑𝑥 =
Ahora,
Resolvemos:
A + 3B = 5 (1)
(-1) A + 2B = 2 (2)
A + 3B = 5
-A - 2B = -2
B = 3
A + 2B = 2
A = 2 - 2B
A = 2 – 2(3)
A = -4
ED por Separación de Variables
Sustituimos EN:
-4∫
𝑑𝑥
3𝑥+2
+ 3∫
𝑑𝑥
𝑥+1
Integramos:
−
4
3
ln 3𝑥 + 2 + 3 ln 𝑥 + 1 + 𝑐2
Sustituimos EN ORIGINAL:
∫
5𝑥 + 2
3𝑥2 + 5𝑥 + 2
𝑑𝑥 =
∫
5𝑥 + 2
3𝑥2 + 5𝑥 + 2
𝑑𝑥 =
y + 𝑐1 = −
4
3
ln 3𝑥 + 2 + 3 ln 𝑥 + 1 + 𝑐2
Pero => 𝑐3 = 𝑐2 − 𝑐1
𝑐3 = ln 𝑐
ED por Separación de Variables
y = −
4
3
ln 3𝑥 + 2 + 3 ln 𝑥 + 1 + ln 𝑐
𝑦 = ln 3𝑥 + 2 −
4
3 + ln(𝑥 + 1)3 + ln 𝑐
𝑦 = ln[ c. 3𝑥 + 2 −
4
3 . ln( 𝑥 + 1)3
]
ED por Separación de Variables

Más contenido relacionado

PDF
integral calculation form
PDF
Integral calculus
PDF
Folletodeecuacionesdiferenciales1erparcial 101017161544-phpapp02
PDF
Derivadas de funciones logaritmicas
PDF
Guia edlos mat_iv_uca_01_2015
DOCX
Examen individual on line i 2017 ii (2)
PDF
Folleto de ecuaciones diferenciales (1er parcial)
PDF
Metodos integracion
integral calculation form
Integral calculus
Folletodeecuacionesdiferenciales1erparcial 101017161544-phpapp02
Derivadas de funciones logaritmicas
Guia edlos mat_iv_uca_01_2015
Examen individual on line i 2017 ii (2)
Folleto de ecuaciones diferenciales (1er parcial)
Metodos integracion

La actualidad más candente (19)

PDF
Folleto de ecuaciones diferenciales (2do parcial)
PDF
Extraordinarios de Sexto Semestre 2015-A
DOCX
Trabajo de calculo UNY
PPTX
4°inecuaciones..
PDF
Sistema ecuaciones
PDF
Tecnicas de integracion
PDF
Extraordinarios de Quinto Semestre 2014-B
PPS
Matrizinvers Awil
PPTX
Integrales de expresiones algebraicas
DOCX
Practica de analisis
DOCX
INECUACIONES SEGUNDO GRADO - GAMBOA
PPTX
Sistema de ecuaciones
PDF
Integral calculus
DOCX
Mata calculo integral
DOCX
Resolver la siguiente integral
PDF
Solución de ecuaciones diferenciales mediante transformada de laplace
 
PDF
Javier nava 14120321 trabajo 2 algebra lineal
DOCX
IntegracónPorFraccionesParciales
Folleto de ecuaciones diferenciales (2do parcial)
Extraordinarios de Sexto Semestre 2015-A
Trabajo de calculo UNY
4°inecuaciones..
Sistema ecuaciones
Tecnicas de integracion
Extraordinarios de Quinto Semestre 2014-B
Matrizinvers Awil
Integrales de expresiones algebraicas
Practica de analisis
INECUACIONES SEGUNDO GRADO - GAMBOA
Sistema de ecuaciones
Integral calculus
Mata calculo integral
Resolver la siguiente integral
Solución de ecuaciones diferenciales mediante transformada de laplace
 
Javier nava 14120321 trabajo 2 algebra lineal
IntegracónPorFraccionesParciales
Publicidad

Similar a Ejercicios de separación de variables (20)

PDF
Ecuaciones diferenciales aplicaciones
DOCX
Calculo integralfase2
DOCX
Calculo integralfase2
PDF
S02 -Exacta, FIntegrante, lineal, Bernoulli-EEDD-2023-I.pdf
PPTX
EXACTAS Y REDUCIBLES EN BLANCO 2023.pptx
PDF
metodo de trapecio.pdf
PDF
Presentación de matemáticas 3, ecuaciones
PPTX
2023_1_CALCULO II_CLASE 2_1.pptx
PDF
DOCX
Ecuaciones lineales de dos incognitas.docx
PDF
Fase 2 - final grupal + link de diapositivas.pdf
PDF
Derivada de funciones trigonometricas
PDF
Ecuaciones Diferenciales ESPOL -Erick conde 2do parcial
PPTX
Edo tercer parcial (2)
DOCX
Trabajo terminado-monografias (2)
PDF
ECUACIONESpdf
PDF
4 guia integración de potencias trigonométricas
PDF
Ecuaciones diferenciales
PDF
Solución de ecuaciones diferenciales mediante transformada de laplace
DOCX
Formulas de integracion con problemas
Ecuaciones diferenciales aplicaciones
Calculo integralfase2
Calculo integralfase2
S02 -Exacta, FIntegrante, lineal, Bernoulli-EEDD-2023-I.pdf
EXACTAS Y REDUCIBLES EN BLANCO 2023.pptx
metodo de trapecio.pdf
Presentación de matemáticas 3, ecuaciones
2023_1_CALCULO II_CLASE 2_1.pptx
Ecuaciones lineales de dos incognitas.docx
Fase 2 - final grupal + link de diapositivas.pdf
Derivada de funciones trigonometricas
Ecuaciones Diferenciales ESPOL -Erick conde 2do parcial
Edo tercer parcial (2)
Trabajo terminado-monografias (2)
ECUACIONESpdf
4 guia integración de potencias trigonométricas
Ecuaciones diferenciales
Solución de ecuaciones diferenciales mediante transformada de laplace
Formulas de integracion con problemas
Publicidad

Más de eymavarez (6)

PPTX
Ecuaciones homogéneas
PDF
Guía homogeneas
PPTX
Ejercicios de separación de variables
PPTX
Guía ejercicios
PDF
Ecuaciones diferenciales por separación de variables
PDF
Ecuaciones diferencias
Ecuaciones homogéneas
Guía homogeneas
Ejercicios de separación de variables
Guía ejercicios
Ecuaciones diferenciales por separación de variables
Ecuaciones diferencias

Último (20)

PDF
1. Intrdoduccion y criterios de seleccion de Farm 2024.pdf
DOC
Manual de Convivencia 2025 actualizado a las normas vigentes
PDF
Cronograma de clases de Práctica Profesional 2 2025 UDE.pdf
PDF
Los10 Mandamientos de la Actitud Mental Positiva Ccesa007.pdf
PDF
Texto Digital Los Miserables - Victor Hugo Ccesa007.pdf
PDF
Como usar el Cerebro en las Aulas SG2 NARCEA Ccesa007.pdf
DOC
4°_GRADO_-_SESIONES_DEL_11_AL_15_DE_AGOSTO.doc
PDF
Integrando la Inteligencia Artificial Generativa (IAG) en el Aula
PDF
MATERIAL DIDÁCTICO 2023 SELECCIÓN 1_REFORZAMIENTO 1° BIMESTRE_COM.pdf
PDF
Ernst Cassirer - Antropologia Filosofica.pdf
PPTX
Historia-Clinica-de-Emergencia-Obstetrica 1.10.pptx
PDF
Tomo 1 de biologia gratis ultra plusenmas
PPTX
T2 Desarrollo del SNC, envejecimiento y anatomia.pptx
PDF
La Inteligencia Emocional - Fabian Goleman TE4 Ccesa007.pdf
PDF
5°-UNIDAD 5 - 2025.pdf aprendizaje 5tooo
DOCX
PLAN DE AREA DE CIENCIAS SOCIALES TODOS LOS GRUPOS
PDF
Escuelas Desarmando una mirada subjetiva a la educación
PDF
ACERTIJO EL CONJURO DEL CAZAFANTASMAS MATEMÁTICO. Por JAVIER SOLIS NOYOLA
PDF
Los hombres son de Marte - Las mujeres de Venus Ccesa007.pdf
PDF
ACERTIJO Súper Círculo y la clave contra el Malvado Señor de las Formas. Por ...
1. Intrdoduccion y criterios de seleccion de Farm 2024.pdf
Manual de Convivencia 2025 actualizado a las normas vigentes
Cronograma de clases de Práctica Profesional 2 2025 UDE.pdf
Los10 Mandamientos de la Actitud Mental Positiva Ccesa007.pdf
Texto Digital Los Miserables - Victor Hugo Ccesa007.pdf
Como usar el Cerebro en las Aulas SG2 NARCEA Ccesa007.pdf
4°_GRADO_-_SESIONES_DEL_11_AL_15_DE_AGOSTO.doc
Integrando la Inteligencia Artificial Generativa (IAG) en el Aula
MATERIAL DIDÁCTICO 2023 SELECCIÓN 1_REFORZAMIENTO 1° BIMESTRE_COM.pdf
Ernst Cassirer - Antropologia Filosofica.pdf
Historia-Clinica-de-Emergencia-Obstetrica 1.10.pptx
Tomo 1 de biologia gratis ultra plusenmas
T2 Desarrollo del SNC, envejecimiento y anatomia.pptx
La Inteligencia Emocional - Fabian Goleman TE4 Ccesa007.pdf
5°-UNIDAD 5 - 2025.pdf aprendizaje 5tooo
PLAN DE AREA DE CIENCIAS SOCIALES TODOS LOS GRUPOS
Escuelas Desarmando una mirada subjetiva a la educación
ACERTIJO EL CONJURO DEL CAZAFANTASMAS MATEMÁTICO. Por JAVIER SOLIS NOYOLA
Los hombres son de Marte - Las mujeres de Venus Ccesa007.pdf
ACERTIJO Súper Círculo y la clave contra el Malvado Señor de las Formas. Por ...

Ejercicios de separación de variables

  • 1. Universidad Nacional Experimental “Francisco de Miranda” Área de Tecnología Programa Ingeniería U.C. Matemática IV Ecuaciones Diferenciales por Separación de Variables
  • 2. A continuación, resolveremos ED por Separación de Variables Aplicando diversos procedimientos para su solución (Integración Inmediata, Cambio de Variables, ILATE, Fracciones Parciales) ED por Separación de Variables 3𝑦´ + 8𝑥3 = 2 3𝑦´ = 2 − 8𝑥3 𝑦´ = 2 − 8𝑥3 3 𝑑𝑦 𝑑𝑥 = 2 − 8𝑥3 3 𝒜
  • 3. ED por Separación de Variables 𝑑𝑦 = 2 −8𝑥3 3 𝑑𝑥 ∫ 𝑑𝑦 = ∫ 2 −8𝑥3 3 𝑑𝑥 ∫ 𝑑𝑦 = 2 3 ∫ 𝑑𝑥 − 8 3 ∫ 𝑥3 𝑑𝑥 Podemos Aplicar: INTEGRACIÓN INMEDIATA 𝑦 + 𝑐1 = 2 3 𝑥 + 𝑐2 − 8 3 . 𝑥4 4 + 𝑐3
  • 4. 𝑦 = − 2 3 𝑥4 + 2 3 𝑥 + 𝑐2 + 𝑐3 − 𝑐1 ED por Separación de Variables 𝑦 = − 2 3 𝑥4 + 2 3 𝑥 + 𝑐 Pero => 𝒞 = 𝑐2 + 𝑐3 − 𝑐1
  • 5. ED por Separación de Variables 𝟗𝒚´ + 𝑺𝒆𝒏 𝒙 + 𝟐 = 𝟎 y´ = - 𝑆𝑒𝑛 (𝑥+2) 9 𝑑𝑦 𝑑𝑥 = - 𝑆𝑒𝑛 (𝑥+2) 9 𝒹𝓍 𝒹𝑦= - 𝑆𝑒𝑛 (𝑥+2) 9 𝒹𝓍 ℬ
  • 6. ED por Separación de Variables ∫ 𝒹𝑦= ∫ - 𝑆𝑒𝑛 (𝑥+2) 9 𝒹𝓍 y + c 1= - 1 9 ∫ 𝑆𝑒𝑛 (𝑥 + 2)𝒹𝓍 y + c 1= - 1 9 ∫ 𝑆𝑒𝑛 (𝑢)𝒹𝓍 Aplicamos: CAMBIO DE VARIABLE 𝓊 = 𝓍 + 2 𝒹𝓊 = 𝒹𝓍 y + c 1= - 1 9 𝐶𝑜𝑠 (𝑢)𝒹𝑢 Devolvemos el CAMBIO
  • 7. ED por Separación de Variables y + c 1= - 1 9 𝐶𝑜𝑠 𝑥 + 2 + 𝑐2 Pero => 𝒞 = c 1 - 𝑐2 y = - 1 9 𝐶𝑜𝑠 𝑥 + 2 + 𝑐
  • 8. ED por Separación de Variables 𝒅𝒚 𝒅𝒙 = 𝒙 𝟐 𝓵𝓷 𝔁 𝓭𝒚 = 𝒙 𝟐 𝓵𝓷 𝔁 𝓭𝒙 ∫ 𝓭𝒚 = ∫ 𝒙 𝟐 𝓵𝓷 𝔁 𝓭𝒙 𝒞
  • 9. ED por Separación de Variables 𝒚 + 𝒄1 = ∫ 𝒙 𝟐 𝓵𝓷 𝔁 𝓭𝒙 Aplicamos: ILATE 𝓊. 𝑣 − ∫ 𝑣. 𝑑𝑢 ∫ 𝒙 𝟐 𝓵𝓷 𝔁 𝓭𝒙 𝓊 = ln 𝑥 𝑑𝑢 = 𝑑𝑥 𝑥 ∫ 𝒹𝑣 = ∫ 𝑥2 𝑑𝑥 𝑣 = 𝑥3 3 𝑥3 3 . ln 𝑥 - ∫ 𝑥3 3 . 𝑑𝑥 𝑥 ∫ 𝒙 𝟐 𝓵𝓷 𝔁 𝓭𝒙 =
  • 10. ED por Separación de Variables 𝑥3 3 . ln 𝑥 - ∫ 𝑥3 3𝑥 . 𝒹𝑥∫ 𝒙 𝟐 𝓵𝓷 𝔁 𝓭𝒙 = 𝑥3 3 . ln 𝑥 - 1 3 . 𝑥3 3 + 𝒞2∫ 𝒙 𝟐 𝓵𝓷 𝔁 𝓭𝒙 = 𝑥3 3 . ln 𝑥 - 1 9 . 𝑥3 + 𝒞2∫ 𝒙 𝟐 𝓵𝓷 𝔁 𝓭𝒙 =
  • 11. ED por Separación de Variables 𝒚 + 𝒄1 = 𝑥3 3 . ln 𝑥 - 1 9 . 𝑥3 + 𝑐2 𝒚 = 𝑥3 3 (ln 𝑥 - 1 3 ) + 𝑐 Factor Común 𝒚 = 𝑥3 3 . ln 𝑥 - 1 9 . 𝑥3 + 𝑐 Pero => 𝒞 = c 1 - 𝑐2
  • 12. 𝒟 𝑑𝑦 𝑑𝑥 = 5𝑥 + 2 3𝑥2 + 5𝑥 + 2 𝑑𝑦 = 5𝑥 + 2 3𝑥2 + 5𝑥 + 2 𝑑𝑥 ∫ 𝑑𝑦 = ∫ 5𝑥 + 2 3𝑥2 + 5𝑥 + 2 𝑑𝑥 y + 𝑐1 = ∫ 5𝑥 + 2 3𝑥2 + 5𝑥 + 2 𝑑𝑥 ED por Separación de Variables
  • 13. y + 𝑐1 = ∫ 5𝑥 + 2 3𝑥2 + 5𝑥 + 2 𝑑𝑥 Apliquemos: FRACCIONES PARCIALES ∫ 5𝑥 + 2 3𝑥2 + 5𝑥 + 2 𝑑𝑥 Debemos aplicar La RESOLVENTE −𝑏 ± 𝑏2 − 4𝑎𝑐 2𝑎 𝑎 = 3, b = 5, c = 2 −5 ± 52 − 4(3)(2) 2.3 ED por Separación de Variables
  • 14. −5 ± 25 − 24 6 𝑥1 = −5 + 1 6 𝑥2 = −5 − 1 6 𝑥1 = −2 3 𝑥2 = −1 3𝑥 + 2 = 0 𝑥 + 1 = 0 ∫ 5𝑥 + 2 3𝑥2 + 5𝑥 + 2 𝑑𝑥 = ∫ 5𝑥 + 2 (3𝑥 + 2)(𝑥 + 1) 𝑑𝑥 ED por Separación de Variables
  • 15. ∫ 𝐴 3𝑥 + 2 𝑑𝑥 + ∫ 𝐵 𝑥 + 1 𝑑𝑥 ∫ 5𝑥 + 2 3𝑥2 + 5𝑥 + 2 𝑑𝑥 = ∫ 5𝑥 + 2 (3𝑥 + 2)(𝑥 + 1) 𝑑𝑥 Separamos 𝐴 3𝑥 + 2 + 𝐵 𝑥 + 1 𝐴 𝑥 + 1 + 𝐵(3𝑥 + 2) (3𝑥 + 2)(𝑥 + 1) ∫ 5𝑥 + 2 3𝑥 + 2 𝑥 + 1 𝑑𝑥 = ∫ 5𝑥 + 2 3𝑥 + 2 𝑥 + 1 𝑑𝑥 = ∫ 5𝑥 + 2 3𝑥 + 2 𝑥 + 1 𝑑𝑥 = ED por Separación de Variables
  • 16. 𝐴𝑥 + 𝐴 + 3𝐵𝑥2𝐵 (3𝑥 + 2)(𝑥 + 1) ∫ 5𝑥 + 2 3𝑥 + 2 𝑥 + 1 𝑑𝑥 = 𝐴 + 3𝐵 𝑥 + (𝐴 + 2𝐵) (3𝑥 + 2)(𝑥 + 1) ∫ 5𝑥 + 2 3𝑥 + 2 𝑥 + 1 𝑑𝑥 = Ahora, Resolvemos: A + 3B = 5 (1) (-1) A + 2B = 2 (2) A + 3B = 5 -A - 2B = -2 B = 3 A + 2B = 2 A = 2 - 2B A = 2 – 2(3) A = -4 ED por Separación de Variables
  • 17. Sustituimos EN: -4∫ 𝑑𝑥 3𝑥+2 + 3∫ 𝑑𝑥 𝑥+1 Integramos: − 4 3 ln 3𝑥 + 2 + 3 ln 𝑥 + 1 + 𝑐2 Sustituimos EN ORIGINAL: ∫ 5𝑥 + 2 3𝑥2 + 5𝑥 + 2 𝑑𝑥 = ∫ 5𝑥 + 2 3𝑥2 + 5𝑥 + 2 𝑑𝑥 = y + 𝑐1 = − 4 3 ln 3𝑥 + 2 + 3 ln 𝑥 + 1 + 𝑐2 Pero => 𝑐3 = 𝑐2 − 𝑐1 𝑐3 = ln 𝑐 ED por Separación de Variables
  • 18. y = − 4 3 ln 3𝑥 + 2 + 3 ln 𝑥 + 1 + ln 𝑐 𝑦 = ln 3𝑥 + 2 − 4 3 + ln(𝑥 + 1)3 + ln 𝑐 𝑦 = ln[ c. 3𝑥 + 2 − 4 3 . ln( 𝑥 + 1)3 ] ED por Separación de Variables