SlideShare una empresa de Scribd logo
FUNCIONES
FUNCIÓN
 Definición:
 Sean A y B conjuntos no vacíos. Una función de A en B es una
relación que asigna a cada elemento x del conjunto A uno y solo
un elemento y del conjunto B.
Se expresa como: f: A B
x f(x) = y
Se dice que y es la imagen de x mediante f, y que x es la pre-
imagen de f(x) = y
FUNCIÓN
 Conceptos:
 Dominio: es el conjunto de todos los valores para los cuales
está definida la función y se denota Dom f.
 Rango : es el conjunto de todos los valores que toma la
variable dependiente (Y), y se denota Ran f.
 Función Creciente: es aquella que al aumentar la variable
independiente, también aumenta la variable
dependiente.
 Función Decreciente: es aquella que al aumentar la variable
independiente, la variable dependiente disminuye.
FUNCIÓN
 Conceptos Fundamentales:
 Si tenemos una relación f entre dos conjuntos A y B, f se dirá
función si a cada valor del conjunto de partida A le corresponde
uno y sólo un valor en el conjunto de llegada B.
f(x)
A B
f
a
x
b = f(a)
f(x)
 Conceptos Fundamentales:
 La variable x corresponde a la variable independiente y la
variable cuyo valor viene determinado por el que toma x, se
llama variable independiente. Se designa generalmente por y o
f(x) [se lee “f de x”]. Decir que “y” es función de “x” equivale a
decir que “y” depende de “x”.
A B
f
a
x
b = f(a)
f(x)
FUNCIÓN
o Conceptos Fundamentales
Se dirá:
 f : A B
 b € B es la imagen de a € A bajo la función f y se denota por
b= f(a)
 Dom f =A
 Si (x, y) € f ^ (x, z) € f y = z (Unívoca)
Toda función es relación, pero no toda relación es
función.
FUNCIÓN
 Rango o Recorrido de f:
Es aquel subconjunto del codominio en el cual todos sus
elementos son imagen de alguna preimagen del dominio o
conjunto de partida. Se denota por Rec f.
1
2
3
4
5
6
7
Se puede ver que para todo elemento de A, existe sólo una
imagen en B.
a
b
c
d
e
1
2
3
4
5
6
7
A B
f
FUNCIÓN
 Luego para la función f denotada:
 Dominio de f = Dom f = A = {a, b, c, d, e}
 Codominio = B = {1, 2, 3, 4, 5, 6, 7}
 Rango o Recorrido de f = Rec f = {1, 2, 3, 4, 7}
a
b
c
d
e
1
2
3
4
5
6
7
A B
f
Los elementos {5, 6} no son imagen de ninguna
preimagen en A, luego no pertenecen al rango de f .
CLASIFICACIÓN
 a) Función Inyectiva: Una inyección de A en B es toda f de A en B,
de modo que a elementos distintos del dominio A le corresponden
imágenes distintas en el codominio B.
Cada elemento de A tiene una única imagen en B (y sólo una), de tal
forma que se verifica que # A ≤ # B.
Como se ve, 4 € B y no es imagen de ningún elemento de A
a
b
c
d
1
2
3
4
5
A B
f
 b) Función Epiyectiva o Sobreyectiva: Una epiyección o
sobreyección de A en B, de modo que todo elemento del codominio
B es imagen de, al meno, un elemento del dominio A. Cada
elemento de B es imagen de por lo menos un elemento de A. Se
verifica que # A ≥ # B. Es decir, que en este caso el codominio es
igual al recorrido.
a
b
c
d
1
2
A B
f
 c) Función Biyectiva: una función f es biyectiva de A en B si y sólo
si la función f es tanto Inyectiva como Epiyectiva a la vez, por lo que
se verifica que #A = #B y que a cada elemento de A le corresponde
una única imagen en B y que cada imagen de B le corresponde una
preimagen en A.
a
b
c
1
2
3
A B
f
FUNCIÓN
La Respuesta correcta es B
FUNCIÓN
La Respuesta correcta es D
FUNCIÓN
La Respuesta correcta es E
I. FUNCIÓN LINEAL
 Es de la forma f(x) = mx + n
con m : Pendiente
n : Ordenada del punto de intersección entre la recta y el
eje Y (coeficiente de posición).
Ejemplo:
La función f(x) = 5x – 3, tiene pendiente 5 e intersecta al eje Y en la
ordenada -3.
I. FUNCIÓN LINEAL
 Análisis de la Pendiente
Para saber con qué tipo de función se está trabajando, se debe
analizar el signo de la pendiente.
• Si m < 0, entonces la función es decreciente.
• Si m = 0, entonces la función es constante.
• Si m > 0, entonces la función es creciente.
I. FUNCIÓN LINEAL
I) II)
X
Y
n
m > 0
n > 0
X
Y
n m < 0
n > 0
X
Y
n
m > 0
n < 0
X
Y
n
m < 0
n < 0
III) IV)
I. FUNCIÓN LINEAL
 Tipos de funciones especiales:
 a) La función de forma f(x) = x, se reconoce como función
identidad y su gráfica es:
1
2
f(x)
x
1 2
-1
-1
I. FUNCIÓN LINEAL
 Tipos de funciones especiales:
 b) La función de la forma f(x) = c, con c: Constante Real, se
conoce como función constante y su gráfica es:
f(x)
x
●
c
con c > 0
f(x)
x
●
c
con c < 0
I. FUNCIÓN LINEAL
 Propiedades:
 El dominio de la función lineal son todos los números IR.
 Las rectas que tienen la misma m serán paralelas.
 Las rectas que al multiplicar sus pendientes el producto es -1
serán perpendiculares.
I. FUNCIÓN LINEAL
 Evaluación de una función lineal:
Dada la función f(x) = mx + n, si se busca el valor de la función para
un valor cualquiera de x, basta reemplazar dicho valor, así como
también si se busca el valor de x conociendo el valor de la función.
Ejemplo
La función que representa el valor a pagar en un taxi, después de recorridos
200m es:
f(x) = 0.8x + 250 con x: cantidad de metros recorridos
f(x): costo en pesos
3 km = 3000 m
Entonces, el valor a pagar por un recorrido de 3 kilómetros es:
f(3000) = 0.8 · 3000 + 250 = 2650
Por 3 kilómetros se pagan $2650.
I. FUNCIÓN LINEAL
Si queremos saber cuántos metros recorrió una persona si pagó
$2.250, se debe resolver la siguiente ecuación:
2250 = 0.8x + 250 / -250
2000 = 0.8x / :0.8
2500 = x
Una persona que paga $2250. recorrió 2500 metros o 2.5
kilómetros.
I. FUNCIÓN LINEAL
 Construcción de una Función Lineal conocidos valores de ella:
 Para construir una función lineal se deben conocer dos
relaciones distintas entre el valor de la variable y el valor de la
función, es decir:
(x , f(x )) y (x , f(x ))
O bien si a f(x) le llamamos y, entonces los pares quedan:
(x , y ) y (x , y )
Donde la función buscada será:
1 1 2 2
1 1 2 2
1
1
2
1
x2 - x1
2 1
y – y 1= y2 - y 1 (x – x 1
)
I. FUNCIÓN LINEAL
 Ejemplo
Si se sabe que el agua se congela a 32º F ó 0º C y hierve a
212º F ó 100º C, ¿cómo se puede expresar los ºF como función
lineal de los ºC?
Solución:
Se tiene la siguiente información:
y
Cº : variable independiente (x)
ºF : variable dependiente (y)
(0, 32) (100, 212)
x y
1 1
x y2
2
I. FUNCIÓN LINEAL
Reemplazando en:
Se tiene:
Donde la función que representa los ºF respecto de ºC es.
1
1
2
1
x - x
2 1
y – y = y - y (x – x )
y – 32 = 212 – 32 (x – 0)
100 – 0
y – 32 = 180 . x
100
y = 1.8· x + 32
f(x) = 1.8· x + 32
I. FUNCIÓN LINEAL
Se le llama crecimiento aritmético a la progresión cuyos
términos aumentan en una misma cantidad constante
llamada diferencia. Este crecimiento aritmético
gráficamente está representado por una recta con pendiente
positiva. Si la pendiente es negativa se habla de un
decrecimiento aritmético.
Ejemplo:
f (x) = 2x + 1
f (0) = 2· 0 + 1 = 1
f (1) = 2· 1 + 1 = 3
f (2) = 2· 2 + 1 = 5
f (3) = 2· 3 + 1 = 7
+2
+2
+2
I. FUNCIÓN LINEAL
 Gráficamente
1 2
3
5
1
II. FUNCIÓN CUADRÁTICA
 Son de la forma:
 Gráfica:
Siempre es una parábola, dependiendo su forma y
la ubicación de sus coeficientes a, b y c.
f(x) = ax² + bx + c
II. FUNCIÓN CUADRÁTICA
 Concavidad:
El coeficiente a de la función cuadrática indica si la parábola es
abierta hacia arriba o hacia abajo.
x
y
0 x
0
y
a > 0, Abierta hacia arriba a < 0, Abierta hacia abajo
II. FUNCIÓN CUADRÁTICA
 Eje de simetría y vértice:
El eje de simetría es aquella recta paralela al eje Y y que pasa por
el vértice de la parábola.
El vértice está dado por:
Vértice = -b , f -b = -b , 4ac – b²
2a 2a 2a 4a
II. FUNCIÓN CUADRÁTICA
Además, la recta x = , corresponde al Eje de simetría.
-b
2a
_ b² - 4ac
4a
x
y
·
-b
2a
x
0
y
·
_ b² - 4ac
4a
-b
2a
a > 0 a < 0
II. FUNCIÓN CUADRÁTICA
 Intersección con los ejes
 Intersección con el eje Y
El coeficiente c nos da el punto en el cual la parábola corta al eje
Y.
Sus coordenadas son (0, c)
0
c·
y
x
II. FUNCIÓN CUADRÁTICA
 Intersección con el eje X
para determinar el o los puntos donde la parábola corta al eje X,
es necesario conocer el valor del discriminante de la función
cuadrática.
Se define el discriminante como:
D = b² - 4ac
II. FUNCIÓN CUADRÁTICA
 a) Si el D = 0, la parábola corta en un solo punto al eje X.
0 ·
Y
X
a > 0
(x = x , 0)
1 2
II. FUNCIÓN CUADRÁTICA
 b) Si el D > 0, la parábola corta en dos puntos al eje X
0 ·
Y
X
a > 0
·
(x ,0) y (x , 0)
1 2
II. FUNCIÓN CUADRÁTICA
 c) Si el D < 0, la parábola no corta al eje X.
0
Y
X
a > 0
II. FUNCIÓN CUADRÁTICA
 Naturaleza de las raíces de una ecuación de 2º grado
Si f(x) = 0, tendremos que ax² + bx + c = 0, llamada Ecuación de 2º
grado en su forma general.
Toda ecuación de 2º grado posee dos soluciones, pudiendo ser
reales o imaginarias, las que vienen dadas por la expresión:
x = -b ±√b²- 4ac
2a
x = -b ±√b²- 4ac
2a
1
x = -b ±√b²- 4ac
2a
2
Estas soluciones, raíces o ceros de la ecuación
corresponden gráficamente a los puntos donde la función f(x)
= ax² + bx + c corta al eje X. Estos puntos tienen como
coordenadas (x ,0) y (x , 0)
1 2
II. FUNCIÓN CUADRÁTICA
 Tipos de soluciones
Dependen del valor del Discriminante
a) Si D = 0, 2 soluciones reales iguales
b) Si D > 0, 2 soluciones reales distintas (x y x € C, con x ≠ x )
c) Si D < 0, 2 soluciones imaginarias distintas (x y x € C, con x ≠ x )
D = b² - 4ac
(x = y)
1 1
1 1
2 2
1 1
2 2
II. FUNCIÓN CUADRÁTICA
 Ejemplo:
 Sea la ecuación de 2º grado: x² + 2x – 15 = 0. ¿Cuáles son las soluciones de
esta ecuación?
Sabemos que las soluciones de una ecuación de 2º grado vienen dadas por
En este caso a = 1 b = 2 c = -15
Luego,
Luego,
x = 3 x = -5
x = -b ±√b²- 4ac
2a
x = -2 ±√2²- 4·1·(-15)
2·1
x = -2 ±√4- 60
2
x = -2 ±√64
2
x = -2 ±8
2
x = -2 + 8
2
1
x = -2 - 8
2
2
1 2
III. FUNCIÓN PARTE ENTERA
 Su valor, para cada número x € IR, es la parte entera de x y se
designa por [x]. Ésta se escribe:
 Dado un número real x, la función parte entera le asigna el mayor
entero que es menor o igual a x, es decir:
Ejemplos:
[2,9] = 2 ;[-7/2] = -4 ;[5] = 5 ;[√2] = 1
f(x) = [x]
[x] ≤ x < [x+1]
Todo número real está comprendido entre dos números
enteros, la parte entera de un número es el menor de los
números enteros entre los que está comprendido.
III. FUNCIÓN PARTE ENTERA
Obsérvese que esta función es constante en los intervalos
semiabiertos (semicerrados) de la forma [n, n + 1[ con n € Z.
Por tanto, los segmentos horizontales contienen sus extremos
izquierdos, pero no los derechos
IV. FUNCIÓN VALOR ABSOLUTO
 El valor absoluto de un número x € IR, denotado por |x|, es siempre
un número real no negativo que se define:
Ejemplo:
|-3| = 3 |12| = 12|-18| = 18 |-5,3| = 5,3
f(x) = |x| =
x si x ≥ 0
-x si x < 0
Si los números reales están representados
geométricamente en el eje real, el número |x| se llama
distancia de x al origen.
IV. FUNCIÓN VALOR ABSOLUTO
 a indica el punto de traslación en el eje de las coordenadas.
IV. FUNCIÓN VALOR ABSOLUTO
 b indica el punto de traslación en el eje de las abscisas.
IV. FUNCIÓN VALOR ABSOLUTO
 Propiedades:
 a. Si |x| ≤ a entonces -a ≤ x a; con a ≥ 0
 b. Si |x| ≥ a entonces x ≥ a ó -x ≥ a
 c. |xy| = |x| · |y|
 d. |x + y| ≤ |x| + |y| (Desigualdad Triangular)
IV. FUNCIÓN VALOR ABSOLUTO
 La última propiedad se llama desigualdad triangular, pues, cuando,
se generaliza a vectores indica que la longitud de cada lado de un
triangulo es menor o igual a la suma de las longitudes de los otros
dos.
IV. FUNCIÓN VALOR ABSOLUTO
 Ejercicios:
 Determinar el intervalo solución de las siguiente inecuación:
 a. |x – 3| ≤ 2
Aplicando la primera propiedad:
-2 ≤ x – 3 ≤ 2
-2 + 3 ≤ x ≤ 2 + 3
1 ≤ x ≤ 5
x € [1, 5]
IV. FUNCIÓN VALOR ABSOLUTO
La Respuesta correcta es B
IV. FUNCIÓN VALOR ABSOLUTO
La Respuesta correcta es D
V. FUNCIÓN EXPONENCIAL
 Es la función inversa del logaritmo natural y se denota
equivalentemente como: x e^x o x exp(x)
La función exponencial f con base a se define como
f(x) = a Si a > 0 ^ a ≠ 1, x € IR
x
V. FUNCIÓN EXPONENCIAL
 Propiedades:
 El dominio de la función exponencial está dado por los números
IR.
 El recorrido de la función exponencial está dado por los IR*.
 El punto de intersección de la función con el eje Y es (0, 1).
 La función no intercepta el eje X.
V. FUNCIÓN EXPONENCIAL
 Crecimiento y decrecimiento exponencial:
 Si a > 1, f(x) es creciente en todo IR.
Mientras más grande el número de la base, la línea
estará más cerca del eje Y.
V. FUNCIÓN EXPONENCIAL
 Crecimiento y decrecimiento exponencial:
 Si 0 < a < 1, f(x) es decreciente en IR
V. FUNCIÓN EXPONENCIAL
 Ejercicio:
 Determinar la función que representa en número de bacterias que hay en una
población después de x horas si se sabe que inicialmente había 10.000
bacterias y que la población se triplica cada una hora.
Solución:
Cantidad inicial = 10.000
Después de una hora = 10.000 · 3 = 30.000
Después de dos horas = 10.000 · 3 · 3 = 90.000
… Después de x horas = 10.000· 3
Por lo tanto, siendo x el número de horas que pasan desde el inicio del
estudio, la cantidad de bacterias se representa por la función:
f(x) = 10.000 · 3
x
x
V. FUNCIÓN LOGARÍTMICA
 La inversa de una función exponencial de base a se llama función
logarítmica de base a y se representa por log .
 Está dada por la siguiente ecuación:
a
y = log x si x = a
y
a
V. FUNCIÓN LOGARÍTMICA
 Propiedades
 El dominio de la función logarítmica está dado por los números
IR, la función no está definida para x ≤ 0.
 El punto de intersección de la función con el eje X es (1, 0).
 La función no intercepta el eje Y.
V. FUNCIÓN LOGARÍTMICA
 Crecimiento y decrecimiento Logarítmico:
 Si a > 1, f(x) = log x es creciente para x > 0.
a
V. FUNCIÓN LOGARÍTMICA
 Crecimiento y decrecimiento Logarítmico:
 Si 0 < a < 1, f(x) = log x es decreciente para x > 0.
a
V. FUNCIÓN LOGARÍTMICA
 Ejercicios:
 Dado los valores: log 2 = 0.3010 y log 3 = 0.4771. Entonces, en la función f(x)
= log x, determine f(6).
Solución:
f(6) = log (6)
Donde
log 6 = log (2 · 3)
Por Propiedad
log (2 · 3) = log 2 + log 3
= 0.3010 + 0.4771
= 0.7781
Por lo tanto:
Si f(x) = log x, entonces f(6) = 0.7781
V. FUNCIÓN LOGARÍTMICA
La Respuesta correcta es D

Más contenido relacionado

PPT
FUNCIONES 1° NIVEL ADMINISTRACION CATOLICA.ppt
PPT
Funciones lineales, funciones cuadráticas y trigonométricas
PPT
Funciones y preguntas tipo test
PPT
Funciones
PPT
Funciones 150302195747-conversion-gate01
PPTX
Función Lineal
PPTX
Funciones parte I
PPT
FUNCIONES 1° NIVEL ADMINISTRACION CATOLICA.ppt
Funciones lineales, funciones cuadráticas y trigonométricas
Funciones y preguntas tipo test
Funciones
Funciones 150302195747-conversion-gate01
Función Lineal
Funciones parte I

Similar a funciones de variable real.ppt (20)

PPT
PPTX
Funciones reales
PPTX
PLAN DE LECCION
PDF
Cap 4 funciones y gráficas módulo de matemáticas y física snna
PDF
Cap 4 funciones y gráficas módulo de matemáticas y física snna
PDF
PowerPoint Funciones y graficas.pdf
PDF
Funciones y progresiones
DOCX
Calculo II - Funciones
PDF
PPT FUNCIONES.pdf
DOCX
Delavalle betina lujan act 2 u2
PPTX
2da evaluacion de matematica, presentacion
PPTX
Funciones: conceptos básicos
PPTX
Funcionesssssssssssssssssssssssssssssssssssssssssssss.pptx
PDF
10 - T (1).pdf
PDF
Clase 1_Funciones.pdf
PDF
Funciones
PPTX
Funciones lineales y cuadráticas.
PPT
Funciones para el jueves
DOCX
Función lineal y función cuadrática
DOCX
Funcion cuadratica
Funciones reales
PLAN DE LECCION
Cap 4 funciones y gráficas módulo de matemáticas y física snna
Cap 4 funciones y gráficas módulo de matemáticas y física snna
PowerPoint Funciones y graficas.pdf
Funciones y progresiones
Calculo II - Funciones
PPT FUNCIONES.pdf
Delavalle betina lujan act 2 u2
2da evaluacion de matematica, presentacion
Funciones: conceptos básicos
Funcionesssssssssssssssssssssssssssssssssssssssssssss.pptx
10 - T (1).pdf
Clase 1_Funciones.pdf
Funciones
Funciones lineales y cuadráticas.
Funciones para el jueves
Función lineal y función cuadrática
Funcion cuadratica
Publicidad

Último (20)

PDF
GUIA DE: CANVA + INTELIGENCIA ARTIFICIAL
DOCX
III Ciclo _ Plan Anual 2025.docx PARA ESTUDIANTES DE PRIMARIA
PDF
DI, TEA, TDAH.pdf guía se secuencias didacticas
PDF
Fundamentos_Educacion_a_Distancia_ABC.pdf
PDF
Didactica de la Investigacion Educativa SUE Ccesa007.pdf
PDF
Cronograma de clases de Práctica Profesional 2 2025 UDE.pdf
PDF
Integrando la Inteligencia Artificial Generativa (IAG) en el Aula
PDF
Escuela de Negocios - Robert kiyosaki Ccesa007.pdf
PPT
Cosacos y hombres del Este en el Heer.ppt
PDF
benveniste-problemas-de-linguistica-general-i-cap-6 (1)_compressed.pdf
PDF
Híper Mega Repaso Histológico Bloque 3.pdf
PDF
Salvese Quien Pueda - Andres Oppenheimer Ccesa007.pdf
PDF
Punto Critico - Brian Tracy Ccesa007.pdf
PDF
SESION 12 INMUNIZACIONES - CADENA DE FRÍO- SALUD FAMILIAR - PUEBLOS INDIGENAS...
DOCX
2 GRADO UNIDAD 5 - 2025.docx para primaria
DOCX
UNIDAD DE APRENDIZAJE 5 AGOSTO tradiciones
PDF
ciencias-1.pdf libro cuarto basico niños
PDF
Unidad de Aprendizaje 5 de Educacion para el Trabajo EPT Ccesa007.pdf
DOCX
V UNIDAD - PRIMER GRADO. del mes de agosto
PDF
OK OK UNIDAD DE APRENDIZAJE 5TO Y 6TO CORRESPONDIENTE AL MES DE AGOSTO 2025.pdf
GUIA DE: CANVA + INTELIGENCIA ARTIFICIAL
III Ciclo _ Plan Anual 2025.docx PARA ESTUDIANTES DE PRIMARIA
DI, TEA, TDAH.pdf guía se secuencias didacticas
Fundamentos_Educacion_a_Distancia_ABC.pdf
Didactica de la Investigacion Educativa SUE Ccesa007.pdf
Cronograma de clases de Práctica Profesional 2 2025 UDE.pdf
Integrando la Inteligencia Artificial Generativa (IAG) en el Aula
Escuela de Negocios - Robert kiyosaki Ccesa007.pdf
Cosacos y hombres del Este en el Heer.ppt
benveniste-problemas-de-linguistica-general-i-cap-6 (1)_compressed.pdf
Híper Mega Repaso Histológico Bloque 3.pdf
Salvese Quien Pueda - Andres Oppenheimer Ccesa007.pdf
Punto Critico - Brian Tracy Ccesa007.pdf
SESION 12 INMUNIZACIONES - CADENA DE FRÍO- SALUD FAMILIAR - PUEBLOS INDIGENAS...
2 GRADO UNIDAD 5 - 2025.docx para primaria
UNIDAD DE APRENDIZAJE 5 AGOSTO tradiciones
ciencias-1.pdf libro cuarto basico niños
Unidad de Aprendizaje 5 de Educacion para el Trabajo EPT Ccesa007.pdf
V UNIDAD - PRIMER GRADO. del mes de agosto
OK OK UNIDAD DE APRENDIZAJE 5TO Y 6TO CORRESPONDIENTE AL MES DE AGOSTO 2025.pdf
Publicidad

funciones de variable real.ppt

  • 2. FUNCIÓN  Definición:  Sean A y B conjuntos no vacíos. Una función de A en B es una relación que asigna a cada elemento x del conjunto A uno y solo un elemento y del conjunto B. Se expresa como: f: A B x f(x) = y Se dice que y es la imagen de x mediante f, y que x es la pre- imagen de f(x) = y
  • 3. FUNCIÓN  Conceptos:  Dominio: es el conjunto de todos los valores para los cuales está definida la función y se denota Dom f.  Rango : es el conjunto de todos los valores que toma la variable dependiente (Y), y se denota Ran f.  Función Creciente: es aquella que al aumentar la variable independiente, también aumenta la variable dependiente.  Función Decreciente: es aquella que al aumentar la variable independiente, la variable dependiente disminuye.
  • 4. FUNCIÓN  Conceptos Fundamentales:  Si tenemos una relación f entre dos conjuntos A y B, f se dirá función si a cada valor del conjunto de partida A le corresponde uno y sólo un valor en el conjunto de llegada B. f(x) A B f a x b = f(a) f(x)
  • 5.  Conceptos Fundamentales:  La variable x corresponde a la variable independiente y la variable cuyo valor viene determinado por el que toma x, se llama variable independiente. Se designa generalmente por y o f(x) [se lee “f de x”]. Decir que “y” es función de “x” equivale a decir que “y” depende de “x”. A B f a x b = f(a) f(x) FUNCIÓN
  • 6. o Conceptos Fundamentales Se dirá:  f : A B  b € B es la imagen de a € A bajo la función f y se denota por b= f(a)  Dom f =A  Si (x, y) € f ^ (x, z) € f y = z (Unívoca) Toda función es relación, pero no toda relación es función. FUNCIÓN
  • 7.  Rango o Recorrido de f: Es aquel subconjunto del codominio en el cual todos sus elementos son imagen de alguna preimagen del dominio o conjunto de partida. Se denota por Rec f. 1 2 3 4 5 6 7 Se puede ver que para todo elemento de A, existe sólo una imagen en B. a b c d e 1 2 3 4 5 6 7 A B f FUNCIÓN
  • 8.  Luego para la función f denotada:  Dominio de f = Dom f = A = {a, b, c, d, e}  Codominio = B = {1, 2, 3, 4, 5, 6, 7}  Rango o Recorrido de f = Rec f = {1, 2, 3, 4, 7} a b c d e 1 2 3 4 5 6 7 A B f Los elementos {5, 6} no son imagen de ninguna preimagen en A, luego no pertenecen al rango de f .
  • 9. CLASIFICACIÓN  a) Función Inyectiva: Una inyección de A en B es toda f de A en B, de modo que a elementos distintos del dominio A le corresponden imágenes distintas en el codominio B. Cada elemento de A tiene una única imagen en B (y sólo una), de tal forma que se verifica que # A ≤ # B. Como se ve, 4 € B y no es imagen de ningún elemento de A a b c d 1 2 3 4 5 A B f
  • 10.  b) Función Epiyectiva o Sobreyectiva: Una epiyección o sobreyección de A en B, de modo que todo elemento del codominio B es imagen de, al meno, un elemento del dominio A. Cada elemento de B es imagen de por lo menos un elemento de A. Se verifica que # A ≥ # B. Es decir, que en este caso el codominio es igual al recorrido. a b c d 1 2 A B f
  • 11.  c) Función Biyectiva: una función f es biyectiva de A en B si y sólo si la función f es tanto Inyectiva como Epiyectiva a la vez, por lo que se verifica que #A = #B y que a cada elemento de A le corresponde una única imagen en B y que cada imagen de B le corresponde una preimagen en A. a b c 1 2 3 A B f
  • 15. I. FUNCIÓN LINEAL  Es de la forma f(x) = mx + n con m : Pendiente n : Ordenada del punto de intersección entre la recta y el eje Y (coeficiente de posición). Ejemplo: La función f(x) = 5x – 3, tiene pendiente 5 e intersecta al eje Y en la ordenada -3.
  • 16. I. FUNCIÓN LINEAL  Análisis de la Pendiente Para saber con qué tipo de función se está trabajando, se debe analizar el signo de la pendiente. • Si m < 0, entonces la función es decreciente. • Si m = 0, entonces la función es constante. • Si m > 0, entonces la función es creciente.
  • 17. I. FUNCIÓN LINEAL I) II) X Y n m > 0 n > 0 X Y n m < 0 n > 0 X Y n m > 0 n < 0 X Y n m < 0 n < 0 III) IV)
  • 18. I. FUNCIÓN LINEAL  Tipos de funciones especiales:  a) La función de forma f(x) = x, se reconoce como función identidad y su gráfica es: 1 2 f(x) x 1 2 -1 -1
  • 19. I. FUNCIÓN LINEAL  Tipos de funciones especiales:  b) La función de la forma f(x) = c, con c: Constante Real, se conoce como función constante y su gráfica es: f(x) x ● c con c > 0 f(x) x ● c con c < 0
  • 20. I. FUNCIÓN LINEAL  Propiedades:  El dominio de la función lineal son todos los números IR.  Las rectas que tienen la misma m serán paralelas.  Las rectas que al multiplicar sus pendientes el producto es -1 serán perpendiculares.
  • 21. I. FUNCIÓN LINEAL  Evaluación de una función lineal: Dada la función f(x) = mx + n, si se busca el valor de la función para un valor cualquiera de x, basta reemplazar dicho valor, así como también si se busca el valor de x conociendo el valor de la función. Ejemplo La función que representa el valor a pagar en un taxi, después de recorridos 200m es: f(x) = 0.8x + 250 con x: cantidad de metros recorridos f(x): costo en pesos 3 km = 3000 m Entonces, el valor a pagar por un recorrido de 3 kilómetros es: f(3000) = 0.8 · 3000 + 250 = 2650 Por 3 kilómetros se pagan $2650.
  • 22. I. FUNCIÓN LINEAL Si queremos saber cuántos metros recorrió una persona si pagó $2.250, se debe resolver la siguiente ecuación: 2250 = 0.8x + 250 / -250 2000 = 0.8x / :0.8 2500 = x Una persona que paga $2250. recorrió 2500 metros o 2.5 kilómetros.
  • 23. I. FUNCIÓN LINEAL  Construcción de una Función Lineal conocidos valores de ella:  Para construir una función lineal se deben conocer dos relaciones distintas entre el valor de la variable y el valor de la función, es decir: (x , f(x )) y (x , f(x )) O bien si a f(x) le llamamos y, entonces los pares quedan: (x , y ) y (x , y ) Donde la función buscada será: 1 1 2 2 1 1 2 2 1 1 2 1 x2 - x1 2 1 y – y 1= y2 - y 1 (x – x 1 )
  • 24. I. FUNCIÓN LINEAL  Ejemplo Si se sabe que el agua se congela a 32º F ó 0º C y hierve a 212º F ó 100º C, ¿cómo se puede expresar los ºF como función lineal de los ºC? Solución: Se tiene la siguiente información: y Cº : variable independiente (x) ºF : variable dependiente (y) (0, 32) (100, 212) x y 1 1 x y2 2
  • 25. I. FUNCIÓN LINEAL Reemplazando en: Se tiene: Donde la función que representa los ºF respecto de ºC es. 1 1 2 1 x - x 2 1 y – y = y - y (x – x ) y – 32 = 212 – 32 (x – 0) 100 – 0 y – 32 = 180 . x 100 y = 1.8· x + 32 f(x) = 1.8· x + 32
  • 26. I. FUNCIÓN LINEAL Se le llama crecimiento aritmético a la progresión cuyos términos aumentan en una misma cantidad constante llamada diferencia. Este crecimiento aritmético gráficamente está representado por una recta con pendiente positiva. Si la pendiente es negativa se habla de un decrecimiento aritmético. Ejemplo: f (x) = 2x + 1 f (0) = 2· 0 + 1 = 1 f (1) = 2· 1 + 1 = 3 f (2) = 2· 2 + 1 = 5 f (3) = 2· 3 + 1 = 7 +2 +2 +2
  • 27. I. FUNCIÓN LINEAL  Gráficamente 1 2 3 5 1
  • 28. II. FUNCIÓN CUADRÁTICA  Son de la forma:  Gráfica: Siempre es una parábola, dependiendo su forma y la ubicación de sus coeficientes a, b y c. f(x) = ax² + bx + c
  • 29. II. FUNCIÓN CUADRÁTICA  Concavidad: El coeficiente a de la función cuadrática indica si la parábola es abierta hacia arriba o hacia abajo. x y 0 x 0 y a > 0, Abierta hacia arriba a < 0, Abierta hacia abajo
  • 30. II. FUNCIÓN CUADRÁTICA  Eje de simetría y vértice: El eje de simetría es aquella recta paralela al eje Y y que pasa por el vértice de la parábola. El vértice está dado por: Vértice = -b , f -b = -b , 4ac – b² 2a 2a 2a 4a
  • 31. II. FUNCIÓN CUADRÁTICA Además, la recta x = , corresponde al Eje de simetría. -b 2a _ b² - 4ac 4a x y · -b 2a x 0 y · _ b² - 4ac 4a -b 2a a > 0 a < 0
  • 32. II. FUNCIÓN CUADRÁTICA  Intersección con los ejes  Intersección con el eje Y El coeficiente c nos da el punto en el cual la parábola corta al eje Y. Sus coordenadas son (0, c) 0 c· y x
  • 33. II. FUNCIÓN CUADRÁTICA  Intersección con el eje X para determinar el o los puntos donde la parábola corta al eje X, es necesario conocer el valor del discriminante de la función cuadrática. Se define el discriminante como: D = b² - 4ac
  • 34. II. FUNCIÓN CUADRÁTICA  a) Si el D = 0, la parábola corta en un solo punto al eje X. 0 · Y X a > 0 (x = x , 0) 1 2
  • 35. II. FUNCIÓN CUADRÁTICA  b) Si el D > 0, la parábola corta en dos puntos al eje X 0 · Y X a > 0 · (x ,0) y (x , 0) 1 2
  • 36. II. FUNCIÓN CUADRÁTICA  c) Si el D < 0, la parábola no corta al eje X. 0 Y X a > 0
  • 37. II. FUNCIÓN CUADRÁTICA  Naturaleza de las raíces de una ecuación de 2º grado Si f(x) = 0, tendremos que ax² + bx + c = 0, llamada Ecuación de 2º grado en su forma general. Toda ecuación de 2º grado posee dos soluciones, pudiendo ser reales o imaginarias, las que vienen dadas por la expresión: x = -b ±√b²- 4ac 2a x = -b ±√b²- 4ac 2a 1 x = -b ±√b²- 4ac 2a 2 Estas soluciones, raíces o ceros de la ecuación corresponden gráficamente a los puntos donde la función f(x) = ax² + bx + c corta al eje X. Estos puntos tienen como coordenadas (x ,0) y (x , 0) 1 2
  • 38. II. FUNCIÓN CUADRÁTICA  Tipos de soluciones Dependen del valor del Discriminante a) Si D = 0, 2 soluciones reales iguales b) Si D > 0, 2 soluciones reales distintas (x y x € C, con x ≠ x ) c) Si D < 0, 2 soluciones imaginarias distintas (x y x € C, con x ≠ x ) D = b² - 4ac (x = y) 1 1 1 1 2 2 1 1 2 2
  • 39. II. FUNCIÓN CUADRÁTICA  Ejemplo:  Sea la ecuación de 2º grado: x² + 2x – 15 = 0. ¿Cuáles son las soluciones de esta ecuación? Sabemos que las soluciones de una ecuación de 2º grado vienen dadas por En este caso a = 1 b = 2 c = -15 Luego, Luego, x = 3 x = -5 x = -b ±√b²- 4ac 2a x = -2 ±√2²- 4·1·(-15) 2·1 x = -2 ±√4- 60 2 x = -2 ±√64 2 x = -2 ±8 2 x = -2 + 8 2 1 x = -2 - 8 2 2 1 2
  • 40. III. FUNCIÓN PARTE ENTERA  Su valor, para cada número x € IR, es la parte entera de x y se designa por [x]. Ésta se escribe:  Dado un número real x, la función parte entera le asigna el mayor entero que es menor o igual a x, es decir: Ejemplos: [2,9] = 2 ;[-7/2] = -4 ;[5] = 5 ;[√2] = 1 f(x) = [x] [x] ≤ x < [x+1] Todo número real está comprendido entre dos números enteros, la parte entera de un número es el menor de los números enteros entre los que está comprendido.
  • 41. III. FUNCIÓN PARTE ENTERA Obsérvese que esta función es constante en los intervalos semiabiertos (semicerrados) de la forma [n, n + 1[ con n € Z. Por tanto, los segmentos horizontales contienen sus extremos izquierdos, pero no los derechos
  • 42. IV. FUNCIÓN VALOR ABSOLUTO  El valor absoluto de un número x € IR, denotado por |x|, es siempre un número real no negativo que se define: Ejemplo: |-3| = 3 |12| = 12|-18| = 18 |-5,3| = 5,3 f(x) = |x| = x si x ≥ 0 -x si x < 0 Si los números reales están representados geométricamente en el eje real, el número |x| se llama distancia de x al origen.
  • 43. IV. FUNCIÓN VALOR ABSOLUTO  a indica el punto de traslación en el eje de las coordenadas.
  • 44. IV. FUNCIÓN VALOR ABSOLUTO  b indica el punto de traslación en el eje de las abscisas.
  • 45. IV. FUNCIÓN VALOR ABSOLUTO  Propiedades:  a. Si |x| ≤ a entonces -a ≤ x a; con a ≥ 0  b. Si |x| ≥ a entonces x ≥ a ó -x ≥ a  c. |xy| = |x| · |y|  d. |x + y| ≤ |x| + |y| (Desigualdad Triangular)
  • 46. IV. FUNCIÓN VALOR ABSOLUTO  La última propiedad se llama desigualdad triangular, pues, cuando, se generaliza a vectores indica que la longitud de cada lado de un triangulo es menor o igual a la suma de las longitudes de los otros dos.
  • 47. IV. FUNCIÓN VALOR ABSOLUTO  Ejercicios:  Determinar el intervalo solución de las siguiente inecuación:  a. |x – 3| ≤ 2 Aplicando la primera propiedad: -2 ≤ x – 3 ≤ 2 -2 + 3 ≤ x ≤ 2 + 3 1 ≤ x ≤ 5 x € [1, 5]
  • 48. IV. FUNCIÓN VALOR ABSOLUTO La Respuesta correcta es B
  • 49. IV. FUNCIÓN VALOR ABSOLUTO La Respuesta correcta es D
  • 50. V. FUNCIÓN EXPONENCIAL  Es la función inversa del logaritmo natural y se denota equivalentemente como: x e^x o x exp(x) La función exponencial f con base a se define como f(x) = a Si a > 0 ^ a ≠ 1, x € IR x
  • 51. V. FUNCIÓN EXPONENCIAL  Propiedades:  El dominio de la función exponencial está dado por los números IR.  El recorrido de la función exponencial está dado por los IR*.  El punto de intersección de la función con el eje Y es (0, 1).  La función no intercepta el eje X.
  • 52. V. FUNCIÓN EXPONENCIAL  Crecimiento y decrecimiento exponencial:  Si a > 1, f(x) es creciente en todo IR. Mientras más grande el número de la base, la línea estará más cerca del eje Y.
  • 53. V. FUNCIÓN EXPONENCIAL  Crecimiento y decrecimiento exponencial:  Si 0 < a < 1, f(x) es decreciente en IR
  • 54. V. FUNCIÓN EXPONENCIAL  Ejercicio:  Determinar la función que representa en número de bacterias que hay en una población después de x horas si se sabe que inicialmente había 10.000 bacterias y que la población se triplica cada una hora. Solución: Cantidad inicial = 10.000 Después de una hora = 10.000 · 3 = 30.000 Después de dos horas = 10.000 · 3 · 3 = 90.000 … Después de x horas = 10.000· 3 Por lo tanto, siendo x el número de horas que pasan desde el inicio del estudio, la cantidad de bacterias se representa por la función: f(x) = 10.000 · 3 x x
  • 55. V. FUNCIÓN LOGARÍTMICA  La inversa de una función exponencial de base a se llama función logarítmica de base a y se representa por log .  Está dada por la siguiente ecuación: a y = log x si x = a y a
  • 56. V. FUNCIÓN LOGARÍTMICA  Propiedades  El dominio de la función logarítmica está dado por los números IR, la función no está definida para x ≤ 0.  El punto de intersección de la función con el eje X es (1, 0).  La función no intercepta el eje Y.
  • 57. V. FUNCIÓN LOGARÍTMICA  Crecimiento y decrecimiento Logarítmico:  Si a > 1, f(x) = log x es creciente para x > 0. a
  • 58. V. FUNCIÓN LOGARÍTMICA  Crecimiento y decrecimiento Logarítmico:  Si 0 < a < 1, f(x) = log x es decreciente para x > 0. a
  • 59. V. FUNCIÓN LOGARÍTMICA  Ejercicios:  Dado los valores: log 2 = 0.3010 y log 3 = 0.4771. Entonces, en la función f(x) = log x, determine f(6). Solución: f(6) = log (6) Donde log 6 = log (2 · 3) Por Propiedad log (2 · 3) = log 2 + log 3 = 0.3010 + 0.4771 = 0.7781 Por lo tanto: Si f(x) = log x, entonces f(6) = 0.7781
  • 60. V. FUNCIÓN LOGARÍTMICA La Respuesta correcta es D