1
Límite de una función
Idea intuitiva de límite
El límite de la función f(x) en el punto x0, es el valor al que se acercan las imágenes
(las y) cuando los originales (las x) se acercan al valor x0. Es decir el valor al que tienden
las imágenes cuando los originales tienden a x0.
Vamos a estudiar el límite de la función f(x) = x2
en el punto x0 = 2.
x f(x)
1,9 3,61
1,99 3,9601
1,999 3,996001
... ...
↓ ↓
2 4
x f(x)
2,1 4.41
2,01 4,0401
2,001 4,004001
... ...
↓ ↓
2 4
Tanto si nos acercamos a 2 por la izquierda (valores menores que 2) o la derecha
(valores mayores que 2) las imágenes se acercan a 4.
Se dice que el límite cuando x tiende a 2 de la función f(x) = x2
es 4
𝐒𝐞 𝐞𝐬𝐜𝐫𝐢𝐛𝐞 𝐥𝐢𝐦
𝒙→𝟐
𝒙 𝟐
= 𝟒
2
Def. de límite de una función en un punto
Se dice que la función f(x) tiene como límite el número L, cuando x tiende a x0, si
fijado un número real positivo ε , mayor que cero, existe un numero positivo δ dependiente
de ε , tal que, para todos los valores de x distintos de x0 que cumplen la condición |x - x0| <
δ , se cumple que |f(x) - L| <ε .
También podemos definir el concepto de límite a través de entornos:
si y sólo si, para cualquier entorno de L que tomemos, por pequeño que
sea su radio, existe un entorno de x0 , Eδ(x0) , cuyos elementos (sin contar x0), tienen sus
imágenes dentro del entorno de L , Eε(L).
Límites laterales
Diremos que el límite de una función f(x) cuando x tiende hacia a por la izquierda es
L, si y sólo si para todo ε > 0 existe δ > 0 tal que si x ∈ (a+δ, a ) , entonces |f (x) - L| <ε .
Diremos que el límite de una función f(x) cuando x tiende hacia a por la derecha es L
, si y sólo si para todo ε > 0 existe δ > 0 tal que si x ∈ (a, a + δ), , entonces |f (x) - L| <ε .
3
El límite de una función en un punto si existe, es único. Para que exista el límite
de una función en un punto, tienen que existir los límites laterales en ese punto y
coincidir.
Ejemplo:
En este caso vemos que el límite tanto por la izquierda como por la derecha cuando x
tiende a 2 es 4.
El límite de la función es 4 aunque la función no tenga imagen en x = 2.
Para calcular el límite de una función en un punto, no nos interesa lo que sucede en
dicho punto sino a su alrededor.
4
Ejemplo
Dada la función:
Hallar .
Como no coinciden los límites laterales, la función no tiene límite en x = 0.
Limites infinitos
Límite más infinito
Una función f(x) tiene por límite +∞ cuando x → a, si para todo número real positivo
(K>0 )se verifica que f(x)>k para todos los valores próximos a a.
𝐥𝐢𝐦 𝒙→𝒂 𝒇 𝒙 = ∞ ∀𝑲 ∈ 𝑹+
∃𝜹 = 𝜹 𝑲 > 𝟎/ 𝟎< 𝒙 − 𝒂 < 𝜹 𝒇 𝒙 > 𝒌
Ejemplo:
5
Límite menos infinito
Una función f(x) tiene por límite -∞ cuando x a, si fijado un número real negativo K
< 0 se verifica que f(x) < k para todos los valores próximos a a.
𝐥𝐢𝐦 𝒙→𝒂 𝒇 𝒙 = −∞ ∀𝑲 ∈ 𝑹−
∃𝜹 = 𝜹 𝑲 > 𝟎/ 𝟎< 𝒙 − 𝒂 < 𝜹 𝒇 𝒙 < 𝒌
Ejemplo:
Límites en el infinito
Límite cuando x tiende a infinito
Límite cuando x tiende a menos infinito
6
Ejemplo:
Ejemplo:
Ejemplo:
Ejemplo:
7
Asíntotas
Asíntotas horizontales
Si se cumple que
Ejemplo
Calcular las asíntotas horizontales de la función:
Asíntotas verticales
Es una asíntota horizontal
8
Asíntotas verticales
Si se cumple que
Los valores de K hay que buscarlos entre los puntos que no pertenecen al dominio de
la función
Ejemplo
Calcular las asíntotas horizontales y verticales de la función:
Es una asíntota vertical
9
Asíntotas oblicuas
Tienen la forma
Sólo hallaremos las asíntotas oblicuas cuando no haya asíntotas horizontales.
Ejemplo
Calcular las asíntotas de la función:
Asíntotas horizontales
No hay asíntotas horizontales
Asíntotas verticales
Asíntotas oblicuas
10
Ramas parabólicas
Las ramas parabólicas se estudian sólo si:
Rama parabólica en la dirección del eje OY
Se dice que f tiene una rama parabólica en la dirección del eje OY cuando:
Esto quiere decir que la gráfica se comporta como una parábola de eje vertical.
Ejemplo
Estudiar las ramas parabólicas de la función:
Tiene una rama parabólica en la dirección del eje OY.
11
Rama parabólica en la dirección del eje OX
Se dice que f tiene una rama parabólica en la dirección del eje OX cuando:
Esto quiere decir que la gráfica se comporta como una parábola de eje horizontal.
Ejemplo
Estudiar las ramas parabólicas de la función:
Tiene una rama parabólica en la dirección del eje OX.
12
Propiedades de los límites
Límite de una constante
Límite de una suma
Límite de un producto
Límite de un cociente
Límite de una potencia
Límite de un logaritmo
Operaciones con infinito: Indeterminaciones
Infinito más un número
Infinito más infinito
Infinito menos infinito
13
Infinito por un número
Infinito por infinito
Infinito por cero
Cero partido por un número
Un número partido por cero
Un número partido por infinito
Infinito partido por un número
Cero partido por infinito
Cero partido por cero
Infinito partido por infinito
Un número elevado a cero
Cero elevado a cero
14
Infinito elevado a cero
Cero elevado a un número
Un número elevado a infinito
Cero elevado a infinito
Infinito elevado a infinito
Uno elevado a infinito
No distinguimos entre +∞ y -∞ para no alargar excesivamente la lista. Nos basta con
saber:
La regla de los signos y que a-n
= 1/a n
15
Las 7 Indeterminaciones
1. Infinito partido por infinito
2. Infinito menos infinito
3. Cero partido por cero
4. Cero por infinito
5. Cero elevado a cero
6. Infinito elevado a cero
7. Uno elevado a infinito
Cálculo de límites
Cálculo del límite en un punto
Si f(x) es una función (polinómicas, racionales, radicales, exponenciales,
logarítmicas, etc.) y está definida en el punto a, entonces se suele cumplir que:
Es decir: para calcular el límite se sustituye en la función el valor al que tienden las x.
16
No podemos calcular porque el dominio de definición está en el intervalo
[0, ∞), por tanto no puede tomar valores que se acerquen a -2.
Sin embargo si podemos calcular , aunque 3 no pertenezca al
dominio, D= − {2, 3}, si podemos tomar valores del dominio tan próximos a 3 como
queramos.
Cálculo del límite en una función definida a trozos
En primer lugar tenemos que estudiar los límites laterales en los puntos de unión de
los diferentes trozos.
Si coinciden, este es el valor del límite.
Si no coinciden, el límite no existe
.
En x = -1, los límites laterales son:
Por la izquierda:
Por la derecha:
Como en ambos casos coinciden, existe el límite y vale 1.
En x = 1, los límites laterales son:
Por la izquierda:
17
Por la derecha:
Como no coinciden los límites laterales no tiene límite en x = 1.
Cálculo de límites cuando x ∞
Para calcular el límite de una función cuando x ∞ se sustituyen las x por ∞.
Límite de funciones polinómicas en el infinito
El límite cuando x ∞ de una función polinómica es +∞ o -∞ según que el término
de mayor grado sea positivo o negativo.
Límite de la inversa de un polinomio en el infinito
Si P(x) es un polinomio, entonces:
.
Cálculo de límites cuando 𝒙 → −∞
18
No existe el límite, porque el radicando toma valores negativos.
Límite de la función exponencial
Si a > 0
Si 0 < a < 1
19
Ejemplo:
Límite de la función logarítmica
Si a > 0
20
Si 0 < a < 1
21
Límites de logaritmos
Comparación de infinitos
1. f(x) es un infinito de orden superior a g(x) si:
2. f(x) es un infinito de orden inferior a g(x) si:
2. f(x) es un infinito de igual orden a g(x) si:
22
Dadas dos potencias de x, la de mayor exponente es un infinito de orden superior.
Dadas dos funciones exponenciales de base mayor que 1, la de mayor base es un
infinito de orden superior.
Cualquier función exponencial de base mayor que 1 es un infinito de orden superior a
cualquier potencia de x.
Las potencias de x son infinitos de orden superior a las funciones logarítmicas.
Dos polinomios del mismo grado o dos exponenciales de la misma base son infinitos
del mismo orden.
Ejemplos:
Hallar los límites por comparación de infinitos:
Límites del tipo
El límite puede ser +∞, -∞ ó no tener límite.
Ejemplo:
Tomamos los límites laterales para determinar el signo de ∞.
Si le damos a la x un valor que se acerque a -1 por la izquierda como -1,1; tanto el
numerador como denominador son negativos, por lo que el límite por la izquierda será: +∞.
23
Si le damos a la x un valor que se acerque a -1 por la derecha como -0,9. El
numerador será positivo y el denominador negativo, por lo que el límite por la derecha
será: - ∞.
Como no coinciden los límites laterales, la función no tiene límite cuando x -1.
Ejemplo:
Ejemplo:
Indeterminación infinito partido infinito
24
Podemos resolver esta indeterminación por dos métodos:
1. Por comparación de infinitos.
El numerador tiene mayor grado que el denominador.
El denominador tiene mayor grado que el numerador.
Al tener el mismo grado el límite es el cociente entre los coeficientes de mayor grado.
25
2. Si se trata de funciones potenciales dividimos todos los sumandos por la x
elevada al mayor exponente.
Si son funciones exponenciales dividimos por la exponencial de mayor base.
Indeterminación infinito menos infinito
1. Por comparación de infinitos.
26
2. Con funciones racionales.
Ponemos a común denominador, y obtenemos . Resolvemos esta
indeterminación.
3. Cuando se trata de funciones irracionales podemos multiplicar y dividir por
el conjugado.
Indeterminación cero partido cero
1. Función racional sin radicales:
Se descomponen en factores los polinomios y se simplifica la fracción.
27
No tiene límite en x = -1
2. Función racional con radicales:
En primer lugar multiplicamos numerador y denominador por el conjugado de la
expresión irracional.
Realizamos las operaciones y simplificamos la fracción.
Indeterminación cero por infinito
Se transforma a ó a
28
Ejemplo:
Indeterminación uno elevado a infinito
Se resuelve transformando la expresión en una potencia del número e.
1er
Método:
29
2º Método:

Más contenido relacionado

PPTX
Funcion potencial
PPT
Limites matemáticos
PPTX
Odepowerpointpresentation1
PPTX
Integrales impropias
PDF
Limites y-continuidad
PPTX
Diapositivas
PPS
La derivada
PDF
Limite de una funcion
Funcion potencial
Limites matemáticos
Odepowerpointpresentation1
Integrales impropias
Limites y-continuidad
Diapositivas
La derivada
Limite de una funcion

La actualidad más candente (20)

PPT
Funciones Algebraicas
PPT
Funciones racionales
DOC
Unidad 3 limites
PPTX
DERIVADA INTRODUCCION (1).pptx
PPTX
Reglas de derivación
PDF
Aplicaciones de limites.continuidad
PPTX
Monotonia
PPT
Teorema del Valor Medio
PPTX
2.2 metodo de biseccion
PPTX
LA FUNCION CONSTANTE
PPT
Derivacion implicita
PDF
Integrales dobles
PPTX
Función homográfica
PDF
Homología Persistente - IX Jornadas Matemáticas - UMSS
PDF
Calculo integral
PDF
Teorema del valor intermedio y valores extremos
PDF
Limites y continuidad
PDF
Regla del Trapecio.pdf
PPT
aplicaciones de la derivada.ppt
PPTX
2.3 metodos de aproximacion
Funciones Algebraicas
Funciones racionales
Unidad 3 limites
DERIVADA INTRODUCCION (1).pptx
Reglas de derivación
Aplicaciones de limites.continuidad
Monotonia
Teorema del Valor Medio
2.2 metodo de biseccion
LA FUNCION CONSTANTE
Derivacion implicita
Integrales dobles
Función homográfica
Homología Persistente - IX Jornadas Matemáticas - UMSS
Calculo integral
Teorema del valor intermedio y valores extremos
Limites y continuidad
Regla del Trapecio.pdf
aplicaciones de la derivada.ppt
2.3 metodos de aproximacion
Publicidad

Similar a Limite de una funcion (20)

DOCX
Libro ejercicios
ODP
PPTX
Matematica aplicada
PPTX
Expo- limites .pptx
PPTX
Limites y continuidad de funciones
DOCX
Guía función racional
PPS
Limites aplicadas fb
PPTX
2da evaluacion de matematica, presentacion
PDF
Limites
PPTX
Definición de los limites y su continuidad.
PPT
Álgebra Funciones Polimoniales y Racionales
PPTX
Limites
ODP
Representación De Funciones
PDF
Definición de límites, continuidad y derivadas
DOC
Funciones trascendentes
DOC
Límites de funciones
PPSX
Limites y continuidad
RTF
Matematica 2
PPTX
Portafolio calculo 3 limites
DOCX
Guía función racional
Libro ejercicios
Matematica aplicada
Expo- limites .pptx
Limites y continuidad de funciones
Guía función racional
Limites aplicadas fb
2da evaluacion de matematica, presentacion
Limites
Definición de los limites y su continuidad.
Álgebra Funciones Polimoniales y Racionales
Limites
Representación De Funciones
Definición de límites, continuidad y derivadas
Funciones trascendentes
Límites de funciones
Limites y continuidad
Matematica 2
Portafolio calculo 3 limites
Guía función racional
Publicidad

Último (20)

PDF
TALLER DE ESTADISTICA BASICA para principiantes y no tan basicos
PDF
ciencia_tecnologia_sociedad Mitcham Carl. (1994)..pdf
PDF
La lluvia sabe por qué: una historia sobre amistad, resiliencia y esperanza e...
PDF
La Inteligencia Emocional - Fabian Goleman TE4 Ccesa007.pdf
PDF
4 CP-20172RC-042-Katherine-Mendez-21239260.pdf
PDF
Ficha de Atencion a Estudiantes RE Ccesa007.pdf
PDF
NOM-020-SSA-2025.pdf Para establecimientos de salud y el reconocimiento de l...
PDF
Las Matematicas y el Pensamiento Cientifico SE3 Ccesa007.pdf
PPTX
PRESENTACIÓN SOBRE LA RELIGIÓN MUSULMANA Y LA FORMACIÓN DEL IMPERIO MUSULMAN
PDF
Introduccion a la Investigacion Cualitativa FLICK Ccesa007.pdf
PDF
UNIDAD 2 | La noticia como género: Informar con precisión y criterio
DOCX
Fisiopatologia bdjdbd resumen de cierta parte
PDF
Manual del Gobierno Escolar -MINEDUC.pdf
DOCX
TEXTO DE TRABAJO DE EDUCACION RELIGIOSA - CUARTO GRADO.docx
PDF
Uso de la Inteligencia Artificial en la IE.pdf
DOCX
TEXTO DE TRABAJO DE EDUCACION RELIGIOSA - TERCER GRADO.docx
PDF
Cuaderno_Castellano_6°_grado.pdf 000000000000000001
PDF
APUNTES DE SISTEMAS PSICOLOGICOS CONTEMPORANEOS
PPTX
BIZANCIO. EVOLUCIÓN HISTORICA, RAGOS POLÍTICOS, ECONOMICOS Y SOCIALES
PDF
Lo que hacen los Mejores Profesores de la Universidad - Ken Bain Ccesa007.pdf
TALLER DE ESTADISTICA BASICA para principiantes y no tan basicos
ciencia_tecnologia_sociedad Mitcham Carl. (1994)..pdf
La lluvia sabe por qué: una historia sobre amistad, resiliencia y esperanza e...
La Inteligencia Emocional - Fabian Goleman TE4 Ccesa007.pdf
4 CP-20172RC-042-Katherine-Mendez-21239260.pdf
Ficha de Atencion a Estudiantes RE Ccesa007.pdf
NOM-020-SSA-2025.pdf Para establecimientos de salud y el reconocimiento de l...
Las Matematicas y el Pensamiento Cientifico SE3 Ccesa007.pdf
PRESENTACIÓN SOBRE LA RELIGIÓN MUSULMANA Y LA FORMACIÓN DEL IMPERIO MUSULMAN
Introduccion a la Investigacion Cualitativa FLICK Ccesa007.pdf
UNIDAD 2 | La noticia como género: Informar con precisión y criterio
Fisiopatologia bdjdbd resumen de cierta parte
Manual del Gobierno Escolar -MINEDUC.pdf
TEXTO DE TRABAJO DE EDUCACION RELIGIOSA - CUARTO GRADO.docx
Uso de la Inteligencia Artificial en la IE.pdf
TEXTO DE TRABAJO DE EDUCACION RELIGIOSA - TERCER GRADO.docx
Cuaderno_Castellano_6°_grado.pdf 000000000000000001
APUNTES DE SISTEMAS PSICOLOGICOS CONTEMPORANEOS
BIZANCIO. EVOLUCIÓN HISTORICA, RAGOS POLÍTICOS, ECONOMICOS Y SOCIALES
Lo que hacen los Mejores Profesores de la Universidad - Ken Bain Ccesa007.pdf

Limite de una funcion

  • 1. 1 Límite de una función Idea intuitiva de límite El límite de la función f(x) en el punto x0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan al valor x0. Es decir el valor al que tienden las imágenes cuando los originales tienden a x0. Vamos a estudiar el límite de la función f(x) = x2 en el punto x0 = 2. x f(x) 1,9 3,61 1,99 3,9601 1,999 3,996001 ... ... ↓ ↓ 2 4 x f(x) 2,1 4.41 2,01 4,0401 2,001 4,004001 ... ... ↓ ↓ 2 4 Tanto si nos acercamos a 2 por la izquierda (valores menores que 2) o la derecha (valores mayores que 2) las imágenes se acercan a 4. Se dice que el límite cuando x tiende a 2 de la función f(x) = x2 es 4 𝐒𝐞 𝐞𝐬𝐜𝐫𝐢𝐛𝐞 𝐥𝐢𝐦 𝒙→𝟐 𝒙 𝟐 = 𝟒
  • 2. 2 Def. de límite de una función en un punto Se dice que la función f(x) tiene como límite el número L, cuando x tiende a x0, si fijado un número real positivo ε , mayor que cero, existe un numero positivo δ dependiente de ε , tal que, para todos los valores de x distintos de x0 que cumplen la condición |x - x0| < δ , se cumple que |f(x) - L| <ε . También podemos definir el concepto de límite a través de entornos: si y sólo si, para cualquier entorno de L que tomemos, por pequeño que sea su radio, existe un entorno de x0 , Eδ(x0) , cuyos elementos (sin contar x0), tienen sus imágenes dentro del entorno de L , Eε(L). Límites laterales Diremos que el límite de una función f(x) cuando x tiende hacia a por la izquierda es L, si y sólo si para todo ε > 0 existe δ > 0 tal que si x ∈ (a+δ, a ) , entonces |f (x) - L| <ε . Diremos que el límite de una función f(x) cuando x tiende hacia a por la derecha es L , si y sólo si para todo ε > 0 existe δ > 0 tal que si x ∈ (a, a + δ), , entonces |f (x) - L| <ε .
  • 3. 3 El límite de una función en un punto si existe, es único. Para que exista el límite de una función en un punto, tienen que existir los límites laterales en ese punto y coincidir. Ejemplo: En este caso vemos que el límite tanto por la izquierda como por la derecha cuando x tiende a 2 es 4. El límite de la función es 4 aunque la función no tenga imagen en x = 2. Para calcular el límite de una función en un punto, no nos interesa lo que sucede en dicho punto sino a su alrededor.
  • 4. 4 Ejemplo Dada la función: Hallar . Como no coinciden los límites laterales, la función no tiene límite en x = 0. Limites infinitos Límite más infinito Una función f(x) tiene por límite +∞ cuando x → a, si para todo número real positivo (K>0 )se verifica que f(x)>k para todos los valores próximos a a. 𝐥𝐢𝐦 𝒙→𝒂 𝒇 𝒙 = ∞ ∀𝑲 ∈ 𝑹+ ∃𝜹 = 𝜹 𝑲 > 𝟎/ 𝟎< 𝒙 − 𝒂 < 𝜹 𝒇 𝒙 > 𝒌 Ejemplo:
  • 5. 5 Límite menos infinito Una función f(x) tiene por límite -∞ cuando x a, si fijado un número real negativo K < 0 se verifica que f(x) < k para todos los valores próximos a a. 𝐥𝐢𝐦 𝒙→𝒂 𝒇 𝒙 = −∞ ∀𝑲 ∈ 𝑹− ∃𝜹 = 𝜹 𝑲 > 𝟎/ 𝟎< 𝒙 − 𝒂 < 𝜹 𝒇 𝒙 < 𝒌 Ejemplo: Límites en el infinito Límite cuando x tiende a infinito Límite cuando x tiende a menos infinito
  • 7. 7 Asíntotas Asíntotas horizontales Si se cumple que Ejemplo Calcular las asíntotas horizontales de la función: Asíntotas verticales Es una asíntota horizontal
  • 8. 8 Asíntotas verticales Si se cumple que Los valores de K hay que buscarlos entre los puntos que no pertenecen al dominio de la función Ejemplo Calcular las asíntotas horizontales y verticales de la función: Es una asíntota vertical
  • 9. 9 Asíntotas oblicuas Tienen la forma Sólo hallaremos las asíntotas oblicuas cuando no haya asíntotas horizontales. Ejemplo Calcular las asíntotas de la función: Asíntotas horizontales No hay asíntotas horizontales Asíntotas verticales Asíntotas oblicuas
  • 10. 10 Ramas parabólicas Las ramas parabólicas se estudian sólo si: Rama parabólica en la dirección del eje OY Se dice que f tiene una rama parabólica en la dirección del eje OY cuando: Esto quiere decir que la gráfica se comporta como una parábola de eje vertical. Ejemplo Estudiar las ramas parabólicas de la función: Tiene una rama parabólica en la dirección del eje OY.
  • 11. 11 Rama parabólica en la dirección del eje OX Se dice que f tiene una rama parabólica en la dirección del eje OX cuando: Esto quiere decir que la gráfica se comporta como una parábola de eje horizontal. Ejemplo Estudiar las ramas parabólicas de la función: Tiene una rama parabólica en la dirección del eje OX.
  • 12. 12 Propiedades de los límites Límite de una constante Límite de una suma Límite de un producto Límite de un cociente Límite de una potencia Límite de un logaritmo Operaciones con infinito: Indeterminaciones Infinito más un número Infinito más infinito Infinito menos infinito
  • 13. 13 Infinito por un número Infinito por infinito Infinito por cero Cero partido por un número Un número partido por cero Un número partido por infinito Infinito partido por un número Cero partido por infinito Cero partido por cero Infinito partido por infinito Un número elevado a cero Cero elevado a cero
  • 14. 14 Infinito elevado a cero Cero elevado a un número Un número elevado a infinito Cero elevado a infinito Infinito elevado a infinito Uno elevado a infinito No distinguimos entre +∞ y -∞ para no alargar excesivamente la lista. Nos basta con saber: La regla de los signos y que a-n = 1/a n
  • 15. 15 Las 7 Indeterminaciones 1. Infinito partido por infinito 2. Infinito menos infinito 3. Cero partido por cero 4. Cero por infinito 5. Cero elevado a cero 6. Infinito elevado a cero 7. Uno elevado a infinito Cálculo de límites Cálculo del límite en un punto Si f(x) es una función (polinómicas, racionales, radicales, exponenciales, logarítmicas, etc.) y está definida en el punto a, entonces se suele cumplir que: Es decir: para calcular el límite se sustituye en la función el valor al que tienden las x.
  • 16. 16 No podemos calcular porque el dominio de definición está en el intervalo [0, ∞), por tanto no puede tomar valores que se acerquen a -2. Sin embargo si podemos calcular , aunque 3 no pertenezca al dominio, D= − {2, 3}, si podemos tomar valores del dominio tan próximos a 3 como queramos. Cálculo del límite en una función definida a trozos En primer lugar tenemos que estudiar los límites laterales en los puntos de unión de los diferentes trozos. Si coinciden, este es el valor del límite. Si no coinciden, el límite no existe . En x = -1, los límites laterales son: Por la izquierda: Por la derecha: Como en ambos casos coinciden, existe el límite y vale 1. En x = 1, los límites laterales son: Por la izquierda:
  • 17. 17 Por la derecha: Como no coinciden los límites laterales no tiene límite en x = 1. Cálculo de límites cuando x ∞ Para calcular el límite de una función cuando x ∞ se sustituyen las x por ∞. Límite de funciones polinómicas en el infinito El límite cuando x ∞ de una función polinómica es +∞ o -∞ según que el término de mayor grado sea positivo o negativo. Límite de la inversa de un polinomio en el infinito Si P(x) es un polinomio, entonces: . Cálculo de límites cuando 𝒙 → −∞
  • 18. 18 No existe el límite, porque el radicando toma valores negativos. Límite de la función exponencial Si a > 0 Si 0 < a < 1
  • 19. 19 Ejemplo: Límite de la función logarítmica Si a > 0
  • 20. 20 Si 0 < a < 1
  • 21. 21 Límites de logaritmos Comparación de infinitos 1. f(x) es un infinito de orden superior a g(x) si: 2. f(x) es un infinito de orden inferior a g(x) si: 2. f(x) es un infinito de igual orden a g(x) si:
  • 22. 22 Dadas dos potencias de x, la de mayor exponente es un infinito de orden superior. Dadas dos funciones exponenciales de base mayor que 1, la de mayor base es un infinito de orden superior. Cualquier función exponencial de base mayor que 1 es un infinito de orden superior a cualquier potencia de x. Las potencias de x son infinitos de orden superior a las funciones logarítmicas. Dos polinomios del mismo grado o dos exponenciales de la misma base son infinitos del mismo orden. Ejemplos: Hallar los límites por comparación de infinitos: Límites del tipo El límite puede ser +∞, -∞ ó no tener límite. Ejemplo: Tomamos los límites laterales para determinar el signo de ∞. Si le damos a la x un valor que se acerque a -1 por la izquierda como -1,1; tanto el numerador como denominador son negativos, por lo que el límite por la izquierda será: +∞.
  • 23. 23 Si le damos a la x un valor que se acerque a -1 por la derecha como -0,9. El numerador será positivo y el denominador negativo, por lo que el límite por la derecha será: - ∞. Como no coinciden los límites laterales, la función no tiene límite cuando x -1. Ejemplo: Ejemplo: Indeterminación infinito partido infinito
  • 24. 24 Podemos resolver esta indeterminación por dos métodos: 1. Por comparación de infinitos. El numerador tiene mayor grado que el denominador. El denominador tiene mayor grado que el numerador. Al tener el mismo grado el límite es el cociente entre los coeficientes de mayor grado.
  • 25. 25 2. Si se trata de funciones potenciales dividimos todos los sumandos por la x elevada al mayor exponente. Si son funciones exponenciales dividimos por la exponencial de mayor base. Indeterminación infinito menos infinito 1. Por comparación de infinitos.
  • 26. 26 2. Con funciones racionales. Ponemos a común denominador, y obtenemos . Resolvemos esta indeterminación. 3. Cuando se trata de funciones irracionales podemos multiplicar y dividir por el conjugado. Indeterminación cero partido cero 1. Función racional sin radicales: Se descomponen en factores los polinomios y se simplifica la fracción.
  • 27. 27 No tiene límite en x = -1 2. Función racional con radicales: En primer lugar multiplicamos numerador y denominador por el conjugado de la expresión irracional. Realizamos las operaciones y simplificamos la fracción. Indeterminación cero por infinito Se transforma a ó a
  • 28. 28 Ejemplo: Indeterminación uno elevado a infinito Se resuelve transformando la expresión en una potencia del número e. 1er Método: