SlideShare una empresa de Scribd logo
G. Edgar Mata Ortiz
න 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑇𝑒𝑐ℎ𝑛𝑖𝑞𝑢𝑒𝑠
Mi 03   integration by partial fractions
Métodos y Técnicas de
integración
G. Edgar Mata Ortiz C 1
Mi 03   integration by partial fractions
El trabajo colaborativo es fundamental
para aprender, requiere una actitud de
compromiso de todos los integrantes
del equipo.
Resolución individual de
problemas
En forma complementaria
al aprendizaje colaborativo,
es indispensable que el
alumno haga frente, en
forma individual, a los
problemas de matemáticas
para desarrollar sus
competencias.
Las técnicas de
integración
Son un conjunto de
artificios matemáticos que
se aplican cuando no es
posible realizar una
integración directamente,
ya sea porque al
diferencial le faltan
variables o le sobran.
Las técnicas de
integración
Son un conjunto de
artificios matemáticos que
se aplican cuando no es
posible realizar una
integración directamente,
ya sea porque al
diferencial le faltan
variables o le sobran.
Las técnicas de
integración
En esta presentación se
explica y resuelve, paso a
paso, un ejemplo por el
método de:
Fracciones
Parciales
Fracciones Parciales
Esta técnica se basa en la
suma de fracciones
algebraicas. Consiste en
invertir el proceso:
En la operación directa se
obtiene el resultado de sumar
dos o más fracciones.
En las fracciones parciales se
conoce el resultado de la suma
y se desea determinar cuáles
fueron las fracciones que lo
produjeron.
Fracciones Parciales
Existen varios casos, que
dependen del grado del
denominador y la forma en
la que es posible
factorizarlo.
En este ejemplo se explica el
primer caso, cuando se
obtienen factores lineales
no repetidos, es decir, todos
los factores son diferentes
entre sí.
Factores lineales
distintos
Como en los ejemplos anteriores, no existe
ninguna fórmula que pueda aplicarse,
directamente, a esta integración.
Ejemplo:
න
−3𝑥 − 1
𝑥3 − 𝑥
𝑑𝑥 =
Ejemplo:
𝒙 𝟑 − 𝒙 = 𝒙(𝒙 𝟐 − 𝟏)
El primer paso consiste en factorizar el denominador.
න
−3𝑥 − 1
𝒙 𝟑 − 𝒙
𝑑𝑥 =
= 𝒙(𝒙 + 𝟏)(𝒙 − 𝟏)
Ejemplo:
Las fracciones parciales son:
න
−3𝑥 − 1
𝒙 𝟑 − 𝒙
𝑑𝑥 =
𝑨
𝒙
+
𝑩
𝒙 + 𝟏
+
𝑪
𝒙 − 𝟏
Factores:
𝒙
𝒙 + 𝟏
(𝒙 − 𝟏)
Los numeradores de estas fracciones no los
conocemos, será necesario determinarlos.
Ejemplo:
Para determinar los valores de los numeradores de las
fracciones parciales, se utiliza el hecho de que la fracción
original debe ser igual a las fracciones parciales
න
−3𝑥 − 1
𝒙 𝟑 − 𝒙
𝑑𝑥 =
−𝟑𝒙 − 𝟏
𝒙 𝟑 − 𝒙
=
𝑨
𝒙
+
𝑩
𝒙 + 𝟏
+
𝑪
𝒙 − 𝟏Factores:
𝒙
𝒙 + 𝟏
(𝒙 − 𝟏)
Ejemplo:
El primer paso consiste en obtener el común denominador,
multiplicando los denominadores de las tres fracciones:
Equis, por equis más uno, por equis menos uno.
𝑨
𝒙
+
𝑩
𝒙 + 𝟏
+
𝑪
𝒙 − 𝟏
=
𝒙(𝒙 + 𝟏)(𝒙 − 𝟏)
Suma de
fracciones
1. Primer paso
Ejemplo:
Se divide el común denominador, entre el denominador de
cada fracción, y el resultado se multiplica por el numerador;
en este caso, se divide el común denominador entre equis,
y el resultado (equis más uno por equis menos uno), se
multiplica por “A”.
𝑨
𝒙
+
𝑩
𝒙 + 𝟏
+
𝑪
𝒙 − 𝟏
=
𝑨(𝒙 + 𝟏)(𝒙 − 𝟏)
𝒙(𝒙 + 𝟏)(𝒙 − 𝟏)
Suma de
fracciones
2. Paso número dos;
Obtener el numerador
de la fracción
𝒙(𝒙 + 𝟏)(𝒙 − 𝟏)
𝒙
= (𝒙 + 𝟏)(𝒙 − 𝟏)
Ejemplo:
La fracción original debe ser igual a las fracciones parciales
𝑨
𝒙
+
𝑩
𝒙 + 𝟏
+
𝑪
𝒙 − 𝟏
=
𝑨 𝒙 + 𝟏 𝒙 − 𝟏 + 𝑩𝒙(𝒙 − 𝟏)
𝒙(𝒙 + 𝟏)(𝒙 − 𝟏)
Suma de
fracciones
2. Se divide el común
denominador entre el
denominador de cada
fracción, y el resultado
se multiplica por el
numerador
𝒙(𝒙 + 𝟏)(𝒙 − 𝟏)
𝒙 + 𝟏
= 𝒙(𝒙 − 𝟏)
Ejemplo:
La fracción original debe ser igual a las fracciones parciales
𝑨
𝒙
+
𝑩
𝒙 + 𝟏
+
𝑪
𝒙 − 𝟏
=
𝑨 𝒙 + 𝟏 𝒙 − 𝟏 + 𝑩𝒙 𝒙 − 𝟏 + 𝑪𝒙(𝒙 + 𝟏)
𝒙(𝒙 + 𝟏)(𝒙 − 𝟏)
Suma de
fracciones
2. Se divide el común
denominador entre el
denominador de cada
fracción, y el resultado
se multiplica por el
numerador
𝒙(𝒙 + 𝟏)(𝒙 − 𝟏)
𝒙 − 𝟏
= 𝒙(𝒙 + 𝟏)
Ejemplo:
La fracción original debe ser igual a las fracciones parciales
න
−3𝑥 − 1
𝒙 𝟑 − 𝒙
𝑑𝑥 =
−𝟑𝒙 − 𝟏
𝒙 𝟑 − 𝒙
=
𝑨
𝒙
+
𝑩
𝒙 + 𝟏
+
𝑪
𝒙 − 𝟏
Factores:
𝒙
𝒙 + 𝟏
(𝒙 − 𝟏)
Efectuamos la suma indicada en el lado derecho del signo de igual
−𝟑𝒙 − 𝟏
𝒙 𝟑 − 𝒙
=
𝑨 𝒙 + 𝟏 𝒙 − 𝟏 + 𝑩𝒙 𝒙 − 𝟏 + 𝑪𝒙(𝒙 + 𝟏)
𝒙(𝒙 + 𝟏)(𝒙 − 𝟏)
Ejemplo: Se efectúan operaciones algebraicas
−𝟑𝒙 − 𝟏
𝒙 𝟑 − 𝒙
=
𝑨
𝒙
+
𝑩
𝒙 + 𝟏
+
𝑪
𝒙 − 𝟏
−𝟑𝒙 − 𝟏
𝒙 𝟑 − 𝒙
=
𝑨 𝒙 + 𝟏 𝒙 − 𝟏 + 𝑩𝒙 𝒙 − 𝟏 + 𝑪𝒙(𝒙 + 𝟏)
𝒙(𝒙 + 𝟏)(𝒙 − 𝟏)
−𝟑𝒙 − 𝟏
𝒙 𝟑 − 𝒙
=
𝑨 𝒙 𝟐
− 𝟏 + 𝑩𝒙 𝟐
− 𝑩𝒙 + 𝑪𝒙 𝟐
+ 𝑪𝒙
𝒙(𝒙 + 𝟏)(𝒙 − 𝟏)
Ejemplo: Se efectúan operaciones algebraicas
−𝟑𝒙 − 𝟏
𝒙 𝟑 − 𝒙
=
𝑨
𝒙
+
𝑩
𝒙 + 𝟏
+
𝑪
𝒙 − 𝟏
−𝟑𝒙 − 𝟏
𝒙 𝟑 − 𝒙
=
𝑨 𝒙 + 𝟏 𝒙 − 𝟏 + 𝑩𝒙 𝒙 − 𝟏 + 𝑪𝒙(𝒙 + 𝟏)
𝒙(𝒙 + 𝟏)(𝒙 − 𝟏)
−𝟑𝒙 − 𝟏
𝒙 𝟑 − 𝒙
=
𝑨 𝒙 𝟐 − 𝟏 + 𝑩𝒙 𝟐 − 𝑩𝒙 + 𝑪𝒙 𝟐 + 𝑪𝒙
𝒙(𝒙 + 𝟏)(𝒙 − 𝟏)
−𝟑𝒙 − 𝟏
𝒙 𝟑 − 𝒙
=
𝑨𝒙 𝟐
− 𝑨 + 𝑩𝒙 𝟐
− 𝑩𝒙 + 𝑪𝒙 𝟐
+ 𝑪𝒙
𝒙(𝒙 + 𝟏)(𝒙 − 𝟏)
Vamos a tomar
esta expresión
para obtener
los valores de A,
B y C
Ejemplo: Se efectúan operaciones algebraicas
−𝟑𝒙 − 𝟏
𝒙 𝟑 − 𝒙
=
𝑨𝒙 𝟐
− 𝑨 + 𝑩𝒙 𝟐
− 𝑩𝒙 + 𝑪𝒙 𝟐
+ 𝑪𝒙
𝒙(𝒙 + 𝟏)(𝒙 − 𝟏)
En este paso es útil tomar en consideración que ambos denominadores son iguales, podemos
pasar multiplicando uno de ellos al lado contrario del signo de igual, y se eliminan.
−𝟑𝒙 − 𝟏 =
(𝒙 𝟑
− 𝒙)(𝑨𝒙 𝟐
− 𝑨 + 𝑩𝒙 𝟐
− 𝑩𝒙 + 𝑪𝒙 𝟐
+ 𝑪𝒙)
𝒙(𝒙 + 𝟏)(𝒙 − 𝟏)
Ejemplo: Se efectúan operaciones algebraicas
−𝟑𝒙 − 𝟏
𝒙 𝟑 − 𝒙
=
𝑨𝒙 𝟐
− 𝑨 + 𝑩𝒙 𝟐
− 𝑩𝒙 + 𝑪𝒙 𝟐
+ 𝑪𝒙
𝒙(𝒙 + 𝟏)(𝒙 − 𝟏)
En este paso es útil tomar en consideración que ambos denominadores son iguales, podemos
pasar multiplicando uno de ellos al lado contrario del signo de igual, y se eliminan.
−𝟑𝒙 − 𝟏 =
(𝒙 𝟑
− 𝒙)(𝑨𝒙 𝟐
− 𝑨 + 𝑩𝒙 𝟐
− 𝑩𝒙 + 𝑪𝒙 𝟐
+ 𝑪𝒙)
𝒙(𝒙 + 𝟏)(𝒙 − 𝟏)
−𝟑𝒙 − 𝟏 = 𝑨𝒙 𝟐
− 𝑨 + 𝑩𝒙 𝟐
− 𝑩𝒙 + 𝑪𝒙 𝟐
+ 𝑪𝒙
Ejemplo: Se agrupan términos semejantes
Primero los términos que tienen equis cuadrada, luego los que tienen equis, y al final los
términos independientes.
−𝟑𝒙 − 𝟏 = 𝑨𝒙 𝟐
− 𝑨 + 𝑩𝒙 𝟐
− 𝑩𝒙 + 𝑪𝒙 𝟐
+ 𝑪𝒙
−𝟑𝒙 − 𝟏 = 𝑨 + 𝑩 + 𝑪 𝒙 𝟐 + −𝑩 + 𝑪 𝒙 − 𝑨
Ejemplo: Se agrupan términos semejantes
Primero los términos que tienen equis cuadrada, luego los que tienen equis, y al final los
términos independientes.
−𝟑𝒙 − 𝟏 = 𝑨𝒙 𝟐
− 𝑨 + 𝑩𝒙 𝟐
− 𝑩𝒙 + 𝑪𝒙 𝟐
+ 𝑪𝒙
−𝟑𝒙 − 𝟏 = 𝑨 + 𝑩 + 𝑪 𝒙 𝟐
+ −𝑩 + 𝑪 𝒙 − 𝑨
Con la finalidad de igualar término por término, en este paso se considera que la
expresión del lado izquierdo del signo igual, al no tener término cuadrático es cero equis
cuadrada.
𝟎𝒙 𝟐
− 𝟑𝒙 − 𝟏 = 𝑨 + 𝑩 + 𝑪 𝒙 𝟐
+ −𝑩 + 𝑪 𝒙 − 𝑨
Ejemplo: Se igualan los coeficientes
Los coeficientes de equis cuadrada:
𝟎𝒙 𝟐
− 𝟑𝒙 − 𝟏 = 𝑨 + 𝑩 + 𝑪 𝒙 𝟐
+ −𝑩 + 𝑪 𝒙 − 𝑨
𝑨 + 𝑩 + 𝑪 = 𝟎
Los coeficientes de equis: −𝑩 + 𝑪 = −𝟑
Los términos independientes: −𝑨 = −𝟏
Se obtiene un sistema de tres ecuaciones con tres incógnitas.
Sistemas de 3 ecuaciones
con 3 incógnitas (3x3)
Ejemplo: El sistema de ecuaciones obtenido puede resolverse
por cualquiera de los numerosos métodos existentes.
𝑨 + 𝑩 + 𝑪 = 𝟎
−𝑩 + 𝑪 = −𝟑
−𝑨 = −𝟏
Explicaciones y ejemplos acerca de estos métodos pueden encontrarse en:
http://licmata-math.blogspot.mx/2014/10/solving-cramers-method-determinants.html
http://licmata-math.blogspot.mx/2012/10/gauss-jordan-3-ecuaciones.html
http://licmata-math.blogspot.mx/2014/10/5-tips-on-cramer-method.html
http://licmata-math.blogspot.mx/2013/11/linear-equation-systems-problem-solving.html
http://licmata-math.blogspot.mx/2011/10/formato-gauss-jordan-3x3.html
Sistemas de 2 ecuaciones
con 2 incógnitas (2x2)
Ejemplo: Resolución del sistema de ecuaciones.
𝑨 + 𝑩 + 𝑪 = 𝟎 → 𝟏 + 𝑩 + 𝑪 = 𝟎 ∴
𝑩 + 𝑪 = −𝟏
−𝑩 + 𝑪 = −𝟑
−𝑨 = −𝟏 ∴ 𝑨 = 𝟏
En este caso el sistema de ecuaciones puede simplificarse gracias a que la
tercera ecuación nos proporciona directamente el valor de una de las
incógnitas: A.
El valor de A es uno, y al sustituirla en la primera ecuación obtenemos un
sistema de dos ecuaciones con dos incógnitas.
Sistema de dos ecuaciones
con dos incógnitas
Sistemas de 2 ecuaciones
con 2 incógnitas (2x2)
Ejemplo: Resolución del sistema de ecuaciones.
𝑩 + 𝑪 = −𝟏
−𝑩 + 𝑪 = −𝟑
Sistema de dos ecuaciones
con dos incógnitas
Los métodos empleados en la resolución de sistemas 3x3
también pueden emplearse en sistemas de 2x2, sin embargo,
frecuentemente resulta más sencillo emplear otros métodos:
Método de Reducción
Método de Sustitución
Método de Igualación
Método Gráfico
Sistemas de 2 ecuaciones
con 2 incógnitas (2x2)
Ejemplo: Resolución del sistema de ecuaciones.
𝑩 + 𝑪 = −𝟏
−𝑩 + 𝑪 = −𝟑
Sistema de dos ecuaciones
con dos incógnitas
En este ejemplo, debido a los coeficientes de las ecuaciones es
conveniente aplicar el:
Método de Reducción o de suma y resta
Se elige este método porque al sumar las dos ecuaciones, se
eliminará la incógnita B, obteniéndose una sencilla ecuación de
primer grado con una incógnita (C), de la que se despeja y
obtiene el valor de C.
Sistemas de 2 ecuaciones
con 2 incógnitas (2x2)
Ejemplo: Resolución del sistema de ecuaciones.
𝑩 + 𝑪 = −𝟏
−𝑩 + 𝑪 = −𝟑
Sistema de dos ecuaciones
con dos incógnitas
Método de Reducción o de suma y resta
𝑩 + 𝑪 = −𝟏
−𝑩 + 𝑪 = −𝟑
𝟐𝑪 = −𝟒
𝑪 =
−𝟒
𝟐
∴
Obtenemos el
valor de la
incógnita C
𝑪 = −𝟐
Sistemas de 2 ecuaciones
con 2 incógnitas (2x2)
Ejemplo: Resolución del sistema de ecuaciones.
Método de Reducción o de suma y resta
𝑩 + 𝑪 = −𝟏
−𝑩 + 𝑪 = −𝟑
𝟐𝑪 = −𝟒
𝑪 =
−𝟒
𝟐
∴
𝑪 = −𝟐
El valor de la incógnita C, se sustituye en cualquiera de las dos ecuaciones
que conforman el sistema de 2x2 y se despeja la incógnita faltante (B).
𝑩 + 𝑪 = −𝟏 → 𝑩 − 𝟐 = −𝟏 → 𝑩 = −𝟏 + 𝟐
𝑩 = 𝟏
Sistemas de 3 ecuaciones
con 3 incógnitas (3x3)
Ejemplo: No olvidemos que todo este proceso fue realizado
para determinar los valores de las tres incógnitas que
conforman el sistema original.
𝑨 + 𝑩 + 𝑪 = 𝟎
−𝑩 + 𝑪 = −𝟑
−𝑨 = −𝟏
Las soluciones fueron:
𝑨 = 𝟏 𝑪 = −𝟐𝑩 = 𝟏
Sistemas de 3 ecuaciones
con 3 incógnitas (3x3)
Ejemplo: Significado de las soluciones del sistema de 3x3
Las soluciones fueron:
𝑨 = 𝟏 𝑪 = −𝟐𝑩 = 𝟏
Estas soluciones son los
numeradores de las
fracciones parciales
planteadas para
descomponer la fracción
propia que se desea
integrar
න
−3𝑥 − 1
𝑥3 − 𝑥
𝑑𝑥 =
Ejemplo: Ahora conocemos los numeradores de las fracciones parciales.
−𝟑𝒙 − 𝟏
𝒙 𝟑 − 𝒙
=
𝑨
𝒙
+
𝑩
𝒙 + 𝟏
+
𝑪
𝒙 − 𝟏
−𝟑𝒙 − 𝟏
𝒙 𝟑 − 𝒙
=
𝟏
𝒙
+
𝟏
𝒙 + 𝟏
+
−𝟐
𝒙 − 𝟏
Ejemplo: En lugar de integrar la fracción original, se integrarán sus
fracciones parciales.
න
−3𝑥 − 1
𝑥3 − 𝑥
𝑑𝑥 = න
𝟏
𝒙
+
𝟏
𝒙 + 𝟏
+
−𝟐
𝒙 − 𝟏
𝑑𝑥
Ejemplo: En lugar de integrar la fracción original, se integrarán sus
fracciones parciales.
න
−3𝑥 − 1
𝑥3 − 𝑥
𝑑𝑥 = න
𝟏
𝒙
+
𝟏
𝒙 + 𝟏
+
−𝟐
𝒙 − 𝟏
𝑑𝑥
= න
1
𝑥
𝑑𝑥 + න
1
𝑥 + 1
𝑑𝑥 + න
−2
𝑥 − 1
𝑑𝑥
= න
𝑑𝑥
𝑥
+ න
𝑑𝑥
𝑥 + 1
− 2 න
𝑑𝑥
𝑥 − 1
Ejemplo: En lugar de integrar la fracción original,
se integrarán sus fracciones parciales.
න
−3𝑥 − 1
𝑥3 − 𝑥
𝑑𝑥 = න
𝟏
𝒙
+
𝟏
𝒙 + 𝟏
+
−𝟐
𝒙 − 𝟏
𝑑𝑥
= න
1
𝑥
𝑑𝑥 + න
1
𝑥 + 1
𝑑𝑥 + න
−2
𝑥 − 1
𝑑𝑥
= න
𝑑𝑥
𝑥
+ න
𝑑𝑥
𝑥 + 1
− 2 න
𝑑𝑥
𝑥 − 1
Ejemplo: En lugar de integrar la fracción original,
se integrarán sus fracciones parciales.
න
−3𝑥 − 1
𝑥3 − 𝑥
𝑑𝑥 = න
𝟏
𝒙
+
𝟏
𝒙 + 𝟏
+
−𝟐
𝒙 − 𝟏
𝑑𝑥
= න
1
𝑥
𝑑𝑥 + න
1
𝑥 + 1
𝑑𝑥 + න
−2
𝑥 − 1
𝑑𝑥
= න
𝑑𝑥
𝑥
+ න
𝑑𝑥
𝑥 + 1
− 2 න
𝑑𝑥
𝑥 − 1
= ln 𝑥 + ln 𝑥 + 1 − 2 ln 𝑥 − 1 + 𝒍𝒏𝑪
Ejemplo: Aplicando propiedades de logaritmos
podemos simplificar el resultado.
න
−3𝑥 − 1
𝑥3 − 𝑥
𝑑𝑥 = න
𝟏
𝒙
+
𝟏
𝒙 + 𝟏
+
−𝟐
𝒙 − 𝟏
𝑑𝑥
= ln 𝑥 + ln 𝑥 + 1 − 2 ln 𝑥 − 1 + 𝒍𝒏𝑪
= ln 𝑥 + ln 𝑥 + 1 + ln 𝑥 − 1 −2 + 𝒍𝒏𝑪
= න
1
𝑥
𝑑𝑥 + න
1
𝑥 + 1
𝑑𝑥 + න
−2
𝑥 − 1
𝑑𝑥
= න
𝑑𝑥
𝑥
+ න
𝑑𝑥
𝑥 + 1
− 2 න
𝑑𝑥
𝑥 − 1
Ejemplo: Aplicando propiedades de logaritmos
podemos simplificar el resultado.
න
−3𝑥 − 1
𝑥3 − 𝑥
𝑑𝑥 = න
𝟏
𝒙
+
𝟏
𝒙 + 𝟏
+
−𝟐
𝒙 − 𝟏
𝑑𝑥
= ln 𝑥 + ln 𝑥 + 1 − 2 ln 𝑥 − 1 + 𝒍𝒏𝑪
= ln 𝑥 + ln 𝑥 + 1 + ln 𝑥 − 1 −2 + 𝒍𝒏𝑪
= ln 𝑥 𝑥 + 1 𝑥 − 1 −2 𝑪
= න
𝑑𝑥
𝑥
+ න
𝑑𝑥
𝑥 + 1
− 2 න
𝑑𝑥
𝑥 − 1
Ejemplo: Aplicando propiedades de logaritmos
podemos simplificar el resultado.
න
−3𝑥 − 1
𝑥3 − 𝑥
𝑑𝑥 = න
𝟏
𝒙
+
𝟏
𝒙 + 𝟏
+
−𝟐
𝒙 − 𝟏
𝑑𝑥
= ln 𝑥 + ln 𝑥 + 1 − 2 ln 𝑥 − 1 + 𝒍𝒏𝑪
= ln 𝑥 + ln 𝑥 + 1 + ln 𝑥 − 1 −2
+ 𝒍𝒏𝑪
= ln 𝑥 𝑥 + 1 𝑥 − 1 −2
𝑪
= ln 𝑪
𝑥 𝑥 + 1
𝑥 − 1 2
Solución del problema:
El objetivo de las fracciones parciales es expresar una fracción propia que
no puede integrarse directamente, en sus fracciones parciales que sí
pueden integrase con alguna de las fórmulas básicas de integración.
න
−3𝑥 − 1
𝑥3 − 𝑥
𝑑𝑥 = ln 𝐶
𝑥 𝑥 + 1
𝑥 − 1 2
Fuentes de información en línea
http://licmata-math.blogspot.mx/
https://www.facebook.com/licemata
https://www.linkedin.com/in/licmata
http://www.slideshare.net/licmata
Twitter @licemata
Mi 03   integration by partial fractions

Más contenido relacionado

PDF
Cramer method 2020
PPTX
Determinantes
PDF
Mi 02 integration by parts
PDF
Gauss method 2019
DOCX
Proyecto grupal 2
PPTX
Inecuaciones. Programación lineal
PPTX
Ecuaciones De Primer Grado
DOCX
Determinantes
Cramer method 2020
Determinantes
Mi 02 integration by parts
Gauss method 2019
Proyecto grupal 2
Inecuaciones. Programación lineal
Ecuaciones De Primer Grado
Determinantes

La actualidad más candente (20)

PPTX
Potencias y radicales
PDF
Matrices
PDF
Sistemas lineales
PPTX
Proyecto final de algebra lineal
PPTX
Ecuaciones
PPTX
Limites de funciones
PDF
Mi 03 partial fractions integration 01
PPTX
Sistema de ecuaciones_lineales
PDF
Metodos numericos capitulo 2
PPT
Metodo de eliminacion gaussiana simple
PDF
Two equations systems solution 1
PDF
Metodos numericos capitulo 1
PPTX
3.2.2 eliminacion gaussiana
PPT
Sistemas De Ecuaciones Lineales Con Dos Incognitas
PDF
Rubric 3x3
PDF
Revision de Presaberes Metodos Numericos
PPTX
Sistema de ecuaciones lineales 2 x2 trbajo 1 copia
PPTX
METODO ELIMINACION GAUSSIANA UNIDAD III
PDF
Tema 3 algebra teoría
PPTX
Proyecto final algebra lineal
Potencias y radicales
Matrices
Sistemas lineales
Proyecto final de algebra lineal
Ecuaciones
Limites de funciones
Mi 03 partial fractions integration 01
Sistema de ecuaciones_lineales
Metodos numericos capitulo 2
Metodo de eliminacion gaussiana simple
Two equations systems solution 1
Metodos numericos capitulo 1
3.2.2 eliminacion gaussiana
Sistemas De Ecuaciones Lineales Con Dos Incognitas
Rubric 3x3
Revision de Presaberes Metodos Numericos
Sistema de ecuaciones lineales 2 x2 trbajo 1 copia
METODO ELIMINACION GAUSSIANA UNIDAD III
Tema 3 algebra teoría
Proyecto final algebra lineal
Publicidad

Similar a Mi 03 integration by partial fractions (20)

PDF
Mi 03 integración por fracciones parciales
PDF
Integ by part frac01
DOCX
álgebra lineal
PPTX
Meta 1.3. alonso_cortez
DOC
Fracciones parciales
DOCX
Algebralineal.docx
PDF
Ecuaciones y sistemas de ecuaciones
DOCX
Algebra lineal, Sistemas de ecuaciones y sus métodos.
PPTX
Pasos para resolver problemas de ecuaciones
PPT
sistema de Ecuaciones sistemas con 3.ppt
PPTX
FRACCCIONES-PARCIALES para estudiantes .pptx
DOCX
Mi matematica.com
DOCX
Mi matematica.com
PPT
Sistemas de ecuaciones
DOCX
Mate3 p
PPS
Expresiones algebraicas
PPS
Expresiones algebraicas
PPT
Expresiones algebraicas
PPT
Expresiones algebraicas
PPTX
Guía jornadas - primer semestre
Mi 03 integración por fracciones parciales
Integ by part frac01
álgebra lineal
Meta 1.3. alonso_cortez
Fracciones parciales
Algebralineal.docx
Ecuaciones y sistemas de ecuaciones
Algebra lineal, Sistemas de ecuaciones y sus métodos.
Pasos para resolver problemas de ecuaciones
sistema de Ecuaciones sistemas con 3.ppt
FRACCCIONES-PARCIALES para estudiantes .pptx
Mi matematica.com
Mi matematica.com
Sistemas de ecuaciones
Mate3 p
Expresiones algebraicas
Expresiones algebraicas
Expresiones algebraicas
Expresiones algebraicas
Guía jornadas - primer semestre
Publicidad

Más de Edgar Mata (20)

PDF
Activity 12 c numb
PDF
Pw roo complex numbers 2021
PDF
Ar complex num 2021
PDF
Formato 1 1-limits - solved example 01
PDF
Activity 1 1 part 2 exer ea2021
PDF
Problem identification 2021
PDF
Formato 1 1-limits ea2021
PDF
Activity 1 1 real numbers
PDF
Activity 1 1 limits and continuity ea2021
PDF
Course presentation differential calculus ea2021
PDF
Course presentation linear algebra ea2021
PDF
Formato cramer 3x3
PDF
Exercise 2 2 - area under the curve 2020
PDF
Exercise 4 1 - vector algebra
PDF
Exercise 3 2 - cubic function
PDF
Problemas cramer 3x3 nl
PDF
Cramer method in excel
PDF
Cramer method sd2020
PDF
Exercise 2 1 - area under the curve 2020
PDF
Template 4 1 word problems 2 unk 2020
Activity 12 c numb
Pw roo complex numbers 2021
Ar complex num 2021
Formato 1 1-limits - solved example 01
Activity 1 1 part 2 exer ea2021
Problem identification 2021
Formato 1 1-limits ea2021
Activity 1 1 real numbers
Activity 1 1 limits and continuity ea2021
Course presentation differential calculus ea2021
Course presentation linear algebra ea2021
Formato cramer 3x3
Exercise 2 2 - area under the curve 2020
Exercise 4 1 - vector algebra
Exercise 3 2 - cubic function
Problemas cramer 3x3 nl
Cramer method in excel
Cramer method sd2020
Exercise 2 1 - area under the curve 2020
Template 4 1 word problems 2 unk 2020

Último (20)

PPTX
MARITIMO Y LESGILACION DEL MACO TRANSPORTE
PPT
PRIMEROS AUXILIOS EN EL SECTOR EMPRESARIAL
PDF
MATRIZ IDENTIFICACIÓN EVALUACION CONTROL PRL.pdf
PDF
CALIDAD SSOMA AMBIENTE PRL UNIVERSIDADDD
PDF
TESTAMENTO DE DESCRIPTIVA ..............
PDF
prg2_t01_p01_Fundamentos POO - parte1.pdf
PDF
SUBDIVISIÓN URBANA PUEDE ENFRENTAR SERVIDUMBRE DE PASO.pdf
PDF
Sustitucion_del_maiz_por_harina_integral_de_zapall.pdf
PDF
fulguracion-medicina-legal-418035-downloable-2634665.pdf lesiones por descarg...
PDF
NORMATIVA Y DESCRIPCION ALCANTARILLADO PLUVIAL.pdf
PDF
FIJA NUEVO TEXTO DE LA ORDENANZA GENERAL DE LA LEY GENERAL DE URBANISMO Y CON...
PDF
Estrategias de apoyo de tecnología 2do periodo pdf
PDF
Informe Estudio Final Apagon del 25 de febrero
PPTX
Manual ISO9001_2015_IATF_16949_2016.pptx
PPT
tema DISEÑO ORGANIZACIONAL UNIDAD 1 A.ppt
PPTX
clase MICROCONTROLADORES ago-dic 2019.pptx
PPTX
MODULO 1.SEGURIDAD Y SALUD CONCEPTOS GENERALES.pptx
PPTX
GEOLOGIA, principios , fundamentos y conceptos
PPTX
NILS actividad 4 PRESENTACION.pptx pppppp
PPTX
Contexto Normativo NSR10, presentacion 2025
MARITIMO Y LESGILACION DEL MACO TRANSPORTE
PRIMEROS AUXILIOS EN EL SECTOR EMPRESARIAL
MATRIZ IDENTIFICACIÓN EVALUACION CONTROL PRL.pdf
CALIDAD SSOMA AMBIENTE PRL UNIVERSIDADDD
TESTAMENTO DE DESCRIPTIVA ..............
prg2_t01_p01_Fundamentos POO - parte1.pdf
SUBDIVISIÓN URBANA PUEDE ENFRENTAR SERVIDUMBRE DE PASO.pdf
Sustitucion_del_maiz_por_harina_integral_de_zapall.pdf
fulguracion-medicina-legal-418035-downloable-2634665.pdf lesiones por descarg...
NORMATIVA Y DESCRIPCION ALCANTARILLADO PLUVIAL.pdf
FIJA NUEVO TEXTO DE LA ORDENANZA GENERAL DE LA LEY GENERAL DE URBANISMO Y CON...
Estrategias de apoyo de tecnología 2do periodo pdf
Informe Estudio Final Apagon del 25 de febrero
Manual ISO9001_2015_IATF_16949_2016.pptx
tema DISEÑO ORGANIZACIONAL UNIDAD 1 A.ppt
clase MICROCONTROLADORES ago-dic 2019.pptx
MODULO 1.SEGURIDAD Y SALUD CONCEPTOS GENERALES.pptx
GEOLOGIA, principios , fundamentos y conceptos
NILS actividad 4 PRESENTACION.pptx pppppp
Contexto Normativo NSR10, presentacion 2025

Mi 03 integration by partial fractions

  • 1. G. Edgar Mata Ortiz න 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑇𝑒𝑐ℎ𝑛𝑖𝑞𝑢𝑒𝑠
  • 3. Métodos y Técnicas de integración G. Edgar Mata Ortiz C 1
  • 5. El trabajo colaborativo es fundamental para aprender, requiere una actitud de compromiso de todos los integrantes del equipo.
  • 6. Resolución individual de problemas En forma complementaria al aprendizaje colaborativo, es indispensable que el alumno haga frente, en forma individual, a los problemas de matemáticas para desarrollar sus competencias.
  • 7. Las técnicas de integración Son un conjunto de artificios matemáticos que se aplican cuando no es posible realizar una integración directamente, ya sea porque al diferencial le faltan variables o le sobran.
  • 8. Las técnicas de integración Son un conjunto de artificios matemáticos que se aplican cuando no es posible realizar una integración directamente, ya sea porque al diferencial le faltan variables o le sobran.
  • 9. Las técnicas de integración En esta presentación se explica y resuelve, paso a paso, un ejemplo por el método de: Fracciones Parciales
  • 10. Fracciones Parciales Esta técnica se basa en la suma de fracciones algebraicas. Consiste en invertir el proceso: En la operación directa se obtiene el resultado de sumar dos o más fracciones. En las fracciones parciales se conoce el resultado de la suma y se desea determinar cuáles fueron las fracciones que lo produjeron.
  • 11. Fracciones Parciales Existen varios casos, que dependen del grado del denominador y la forma en la que es posible factorizarlo. En este ejemplo se explica el primer caso, cuando se obtienen factores lineales no repetidos, es decir, todos los factores son diferentes entre sí. Factores lineales distintos
  • 12. Como en los ejemplos anteriores, no existe ninguna fórmula que pueda aplicarse, directamente, a esta integración. Ejemplo: න −3𝑥 − 1 𝑥3 − 𝑥 𝑑𝑥 =
  • 13. Ejemplo: 𝒙 𝟑 − 𝒙 = 𝒙(𝒙 𝟐 − 𝟏) El primer paso consiste en factorizar el denominador. න −3𝑥 − 1 𝒙 𝟑 − 𝒙 𝑑𝑥 = = 𝒙(𝒙 + 𝟏)(𝒙 − 𝟏)
  • 14. Ejemplo: Las fracciones parciales son: න −3𝑥 − 1 𝒙 𝟑 − 𝒙 𝑑𝑥 = 𝑨 𝒙 + 𝑩 𝒙 + 𝟏 + 𝑪 𝒙 − 𝟏 Factores: 𝒙 𝒙 + 𝟏 (𝒙 − 𝟏) Los numeradores de estas fracciones no los conocemos, será necesario determinarlos.
  • 15. Ejemplo: Para determinar los valores de los numeradores de las fracciones parciales, se utiliza el hecho de que la fracción original debe ser igual a las fracciones parciales න −3𝑥 − 1 𝒙 𝟑 − 𝒙 𝑑𝑥 = −𝟑𝒙 − 𝟏 𝒙 𝟑 − 𝒙 = 𝑨 𝒙 + 𝑩 𝒙 + 𝟏 + 𝑪 𝒙 − 𝟏Factores: 𝒙 𝒙 + 𝟏 (𝒙 − 𝟏)
  • 16. Ejemplo: El primer paso consiste en obtener el común denominador, multiplicando los denominadores de las tres fracciones: Equis, por equis más uno, por equis menos uno. 𝑨 𝒙 + 𝑩 𝒙 + 𝟏 + 𝑪 𝒙 − 𝟏 = 𝒙(𝒙 + 𝟏)(𝒙 − 𝟏) Suma de fracciones 1. Primer paso
  • 17. Ejemplo: Se divide el común denominador, entre el denominador de cada fracción, y el resultado se multiplica por el numerador; en este caso, se divide el común denominador entre equis, y el resultado (equis más uno por equis menos uno), se multiplica por “A”. 𝑨 𝒙 + 𝑩 𝒙 + 𝟏 + 𝑪 𝒙 − 𝟏 = 𝑨(𝒙 + 𝟏)(𝒙 − 𝟏) 𝒙(𝒙 + 𝟏)(𝒙 − 𝟏) Suma de fracciones 2. Paso número dos; Obtener el numerador de la fracción 𝒙(𝒙 + 𝟏)(𝒙 − 𝟏) 𝒙 = (𝒙 + 𝟏)(𝒙 − 𝟏)
  • 18. Ejemplo: La fracción original debe ser igual a las fracciones parciales 𝑨 𝒙 + 𝑩 𝒙 + 𝟏 + 𝑪 𝒙 − 𝟏 = 𝑨 𝒙 + 𝟏 𝒙 − 𝟏 + 𝑩𝒙(𝒙 − 𝟏) 𝒙(𝒙 + 𝟏)(𝒙 − 𝟏) Suma de fracciones 2. Se divide el común denominador entre el denominador de cada fracción, y el resultado se multiplica por el numerador 𝒙(𝒙 + 𝟏)(𝒙 − 𝟏) 𝒙 + 𝟏 = 𝒙(𝒙 − 𝟏)
  • 19. Ejemplo: La fracción original debe ser igual a las fracciones parciales 𝑨 𝒙 + 𝑩 𝒙 + 𝟏 + 𝑪 𝒙 − 𝟏 = 𝑨 𝒙 + 𝟏 𝒙 − 𝟏 + 𝑩𝒙 𝒙 − 𝟏 + 𝑪𝒙(𝒙 + 𝟏) 𝒙(𝒙 + 𝟏)(𝒙 − 𝟏) Suma de fracciones 2. Se divide el común denominador entre el denominador de cada fracción, y el resultado se multiplica por el numerador 𝒙(𝒙 + 𝟏)(𝒙 − 𝟏) 𝒙 − 𝟏 = 𝒙(𝒙 + 𝟏)
  • 20. Ejemplo: La fracción original debe ser igual a las fracciones parciales න −3𝑥 − 1 𝒙 𝟑 − 𝒙 𝑑𝑥 = −𝟑𝒙 − 𝟏 𝒙 𝟑 − 𝒙 = 𝑨 𝒙 + 𝑩 𝒙 + 𝟏 + 𝑪 𝒙 − 𝟏 Factores: 𝒙 𝒙 + 𝟏 (𝒙 − 𝟏) Efectuamos la suma indicada en el lado derecho del signo de igual −𝟑𝒙 − 𝟏 𝒙 𝟑 − 𝒙 = 𝑨 𝒙 + 𝟏 𝒙 − 𝟏 + 𝑩𝒙 𝒙 − 𝟏 + 𝑪𝒙(𝒙 + 𝟏) 𝒙(𝒙 + 𝟏)(𝒙 − 𝟏)
  • 21. Ejemplo: Se efectúan operaciones algebraicas −𝟑𝒙 − 𝟏 𝒙 𝟑 − 𝒙 = 𝑨 𝒙 + 𝑩 𝒙 + 𝟏 + 𝑪 𝒙 − 𝟏 −𝟑𝒙 − 𝟏 𝒙 𝟑 − 𝒙 = 𝑨 𝒙 + 𝟏 𝒙 − 𝟏 + 𝑩𝒙 𝒙 − 𝟏 + 𝑪𝒙(𝒙 + 𝟏) 𝒙(𝒙 + 𝟏)(𝒙 − 𝟏) −𝟑𝒙 − 𝟏 𝒙 𝟑 − 𝒙 = 𝑨 𝒙 𝟐 − 𝟏 + 𝑩𝒙 𝟐 − 𝑩𝒙 + 𝑪𝒙 𝟐 + 𝑪𝒙 𝒙(𝒙 + 𝟏)(𝒙 − 𝟏)
  • 22. Ejemplo: Se efectúan operaciones algebraicas −𝟑𝒙 − 𝟏 𝒙 𝟑 − 𝒙 = 𝑨 𝒙 + 𝑩 𝒙 + 𝟏 + 𝑪 𝒙 − 𝟏 −𝟑𝒙 − 𝟏 𝒙 𝟑 − 𝒙 = 𝑨 𝒙 + 𝟏 𝒙 − 𝟏 + 𝑩𝒙 𝒙 − 𝟏 + 𝑪𝒙(𝒙 + 𝟏) 𝒙(𝒙 + 𝟏)(𝒙 − 𝟏) −𝟑𝒙 − 𝟏 𝒙 𝟑 − 𝒙 = 𝑨 𝒙 𝟐 − 𝟏 + 𝑩𝒙 𝟐 − 𝑩𝒙 + 𝑪𝒙 𝟐 + 𝑪𝒙 𝒙(𝒙 + 𝟏)(𝒙 − 𝟏) −𝟑𝒙 − 𝟏 𝒙 𝟑 − 𝒙 = 𝑨𝒙 𝟐 − 𝑨 + 𝑩𝒙 𝟐 − 𝑩𝒙 + 𝑪𝒙 𝟐 + 𝑪𝒙 𝒙(𝒙 + 𝟏)(𝒙 − 𝟏) Vamos a tomar esta expresión para obtener los valores de A, B y C
  • 23. Ejemplo: Se efectúan operaciones algebraicas −𝟑𝒙 − 𝟏 𝒙 𝟑 − 𝒙 = 𝑨𝒙 𝟐 − 𝑨 + 𝑩𝒙 𝟐 − 𝑩𝒙 + 𝑪𝒙 𝟐 + 𝑪𝒙 𝒙(𝒙 + 𝟏)(𝒙 − 𝟏) En este paso es útil tomar en consideración que ambos denominadores son iguales, podemos pasar multiplicando uno de ellos al lado contrario del signo de igual, y se eliminan. −𝟑𝒙 − 𝟏 = (𝒙 𝟑 − 𝒙)(𝑨𝒙 𝟐 − 𝑨 + 𝑩𝒙 𝟐 − 𝑩𝒙 + 𝑪𝒙 𝟐 + 𝑪𝒙) 𝒙(𝒙 + 𝟏)(𝒙 − 𝟏)
  • 24. Ejemplo: Se efectúan operaciones algebraicas −𝟑𝒙 − 𝟏 𝒙 𝟑 − 𝒙 = 𝑨𝒙 𝟐 − 𝑨 + 𝑩𝒙 𝟐 − 𝑩𝒙 + 𝑪𝒙 𝟐 + 𝑪𝒙 𝒙(𝒙 + 𝟏)(𝒙 − 𝟏) En este paso es útil tomar en consideración que ambos denominadores son iguales, podemos pasar multiplicando uno de ellos al lado contrario del signo de igual, y se eliminan. −𝟑𝒙 − 𝟏 = (𝒙 𝟑 − 𝒙)(𝑨𝒙 𝟐 − 𝑨 + 𝑩𝒙 𝟐 − 𝑩𝒙 + 𝑪𝒙 𝟐 + 𝑪𝒙) 𝒙(𝒙 + 𝟏)(𝒙 − 𝟏) −𝟑𝒙 − 𝟏 = 𝑨𝒙 𝟐 − 𝑨 + 𝑩𝒙 𝟐 − 𝑩𝒙 + 𝑪𝒙 𝟐 + 𝑪𝒙
  • 25. Ejemplo: Se agrupan términos semejantes Primero los términos que tienen equis cuadrada, luego los que tienen equis, y al final los términos independientes. −𝟑𝒙 − 𝟏 = 𝑨𝒙 𝟐 − 𝑨 + 𝑩𝒙 𝟐 − 𝑩𝒙 + 𝑪𝒙 𝟐 + 𝑪𝒙 −𝟑𝒙 − 𝟏 = 𝑨 + 𝑩 + 𝑪 𝒙 𝟐 + −𝑩 + 𝑪 𝒙 − 𝑨
  • 26. Ejemplo: Se agrupan términos semejantes Primero los términos que tienen equis cuadrada, luego los que tienen equis, y al final los términos independientes. −𝟑𝒙 − 𝟏 = 𝑨𝒙 𝟐 − 𝑨 + 𝑩𝒙 𝟐 − 𝑩𝒙 + 𝑪𝒙 𝟐 + 𝑪𝒙 −𝟑𝒙 − 𝟏 = 𝑨 + 𝑩 + 𝑪 𝒙 𝟐 + −𝑩 + 𝑪 𝒙 − 𝑨 Con la finalidad de igualar término por término, en este paso se considera que la expresión del lado izquierdo del signo igual, al no tener término cuadrático es cero equis cuadrada. 𝟎𝒙 𝟐 − 𝟑𝒙 − 𝟏 = 𝑨 + 𝑩 + 𝑪 𝒙 𝟐 + −𝑩 + 𝑪 𝒙 − 𝑨
  • 27. Ejemplo: Se igualan los coeficientes Los coeficientes de equis cuadrada: 𝟎𝒙 𝟐 − 𝟑𝒙 − 𝟏 = 𝑨 + 𝑩 + 𝑪 𝒙 𝟐 + −𝑩 + 𝑪 𝒙 − 𝑨 𝑨 + 𝑩 + 𝑪 = 𝟎 Los coeficientes de equis: −𝑩 + 𝑪 = −𝟑 Los términos independientes: −𝑨 = −𝟏 Se obtiene un sistema de tres ecuaciones con tres incógnitas.
  • 28. Sistemas de 3 ecuaciones con 3 incógnitas (3x3) Ejemplo: El sistema de ecuaciones obtenido puede resolverse por cualquiera de los numerosos métodos existentes. 𝑨 + 𝑩 + 𝑪 = 𝟎 −𝑩 + 𝑪 = −𝟑 −𝑨 = −𝟏 Explicaciones y ejemplos acerca de estos métodos pueden encontrarse en: http://licmata-math.blogspot.mx/2014/10/solving-cramers-method-determinants.html http://licmata-math.blogspot.mx/2012/10/gauss-jordan-3-ecuaciones.html http://licmata-math.blogspot.mx/2014/10/5-tips-on-cramer-method.html http://licmata-math.blogspot.mx/2013/11/linear-equation-systems-problem-solving.html http://licmata-math.blogspot.mx/2011/10/formato-gauss-jordan-3x3.html
  • 29. Sistemas de 2 ecuaciones con 2 incógnitas (2x2) Ejemplo: Resolución del sistema de ecuaciones. 𝑨 + 𝑩 + 𝑪 = 𝟎 → 𝟏 + 𝑩 + 𝑪 = 𝟎 ∴ 𝑩 + 𝑪 = −𝟏 −𝑩 + 𝑪 = −𝟑 −𝑨 = −𝟏 ∴ 𝑨 = 𝟏 En este caso el sistema de ecuaciones puede simplificarse gracias a que la tercera ecuación nos proporciona directamente el valor de una de las incógnitas: A. El valor de A es uno, y al sustituirla en la primera ecuación obtenemos un sistema de dos ecuaciones con dos incógnitas. Sistema de dos ecuaciones con dos incógnitas
  • 30. Sistemas de 2 ecuaciones con 2 incógnitas (2x2) Ejemplo: Resolución del sistema de ecuaciones. 𝑩 + 𝑪 = −𝟏 −𝑩 + 𝑪 = −𝟑 Sistema de dos ecuaciones con dos incógnitas Los métodos empleados en la resolución de sistemas 3x3 también pueden emplearse en sistemas de 2x2, sin embargo, frecuentemente resulta más sencillo emplear otros métodos: Método de Reducción Método de Sustitución Método de Igualación Método Gráfico
  • 31. Sistemas de 2 ecuaciones con 2 incógnitas (2x2) Ejemplo: Resolución del sistema de ecuaciones. 𝑩 + 𝑪 = −𝟏 −𝑩 + 𝑪 = −𝟑 Sistema de dos ecuaciones con dos incógnitas En este ejemplo, debido a los coeficientes de las ecuaciones es conveniente aplicar el: Método de Reducción o de suma y resta Se elige este método porque al sumar las dos ecuaciones, se eliminará la incógnita B, obteniéndose una sencilla ecuación de primer grado con una incógnita (C), de la que se despeja y obtiene el valor de C.
  • 32. Sistemas de 2 ecuaciones con 2 incógnitas (2x2) Ejemplo: Resolución del sistema de ecuaciones. 𝑩 + 𝑪 = −𝟏 −𝑩 + 𝑪 = −𝟑 Sistema de dos ecuaciones con dos incógnitas Método de Reducción o de suma y resta 𝑩 + 𝑪 = −𝟏 −𝑩 + 𝑪 = −𝟑 𝟐𝑪 = −𝟒 𝑪 = −𝟒 𝟐 ∴ Obtenemos el valor de la incógnita C 𝑪 = −𝟐
  • 33. Sistemas de 2 ecuaciones con 2 incógnitas (2x2) Ejemplo: Resolución del sistema de ecuaciones. Método de Reducción o de suma y resta 𝑩 + 𝑪 = −𝟏 −𝑩 + 𝑪 = −𝟑 𝟐𝑪 = −𝟒 𝑪 = −𝟒 𝟐 ∴ 𝑪 = −𝟐 El valor de la incógnita C, se sustituye en cualquiera de las dos ecuaciones que conforman el sistema de 2x2 y se despeja la incógnita faltante (B). 𝑩 + 𝑪 = −𝟏 → 𝑩 − 𝟐 = −𝟏 → 𝑩 = −𝟏 + 𝟐 𝑩 = 𝟏
  • 34. Sistemas de 3 ecuaciones con 3 incógnitas (3x3) Ejemplo: No olvidemos que todo este proceso fue realizado para determinar los valores de las tres incógnitas que conforman el sistema original. 𝑨 + 𝑩 + 𝑪 = 𝟎 −𝑩 + 𝑪 = −𝟑 −𝑨 = −𝟏 Las soluciones fueron: 𝑨 = 𝟏 𝑪 = −𝟐𝑩 = 𝟏
  • 35. Sistemas de 3 ecuaciones con 3 incógnitas (3x3) Ejemplo: Significado de las soluciones del sistema de 3x3 Las soluciones fueron: 𝑨 = 𝟏 𝑪 = −𝟐𝑩 = 𝟏 Estas soluciones son los numeradores de las fracciones parciales planteadas para descomponer la fracción propia que se desea integrar න −3𝑥 − 1 𝑥3 − 𝑥 𝑑𝑥 =
  • 36. Ejemplo: Ahora conocemos los numeradores de las fracciones parciales. −𝟑𝒙 − 𝟏 𝒙 𝟑 − 𝒙 = 𝑨 𝒙 + 𝑩 𝒙 + 𝟏 + 𝑪 𝒙 − 𝟏 −𝟑𝒙 − 𝟏 𝒙 𝟑 − 𝒙 = 𝟏 𝒙 + 𝟏 𝒙 + 𝟏 + −𝟐 𝒙 − 𝟏
  • 37. Ejemplo: En lugar de integrar la fracción original, se integrarán sus fracciones parciales. න −3𝑥 − 1 𝑥3 − 𝑥 𝑑𝑥 = න 𝟏 𝒙 + 𝟏 𝒙 + 𝟏 + −𝟐 𝒙 − 𝟏 𝑑𝑥
  • 38. Ejemplo: En lugar de integrar la fracción original, se integrarán sus fracciones parciales. න −3𝑥 − 1 𝑥3 − 𝑥 𝑑𝑥 = න 𝟏 𝒙 + 𝟏 𝒙 + 𝟏 + −𝟐 𝒙 − 𝟏 𝑑𝑥 = න 1 𝑥 𝑑𝑥 + න 1 𝑥 + 1 𝑑𝑥 + න −2 𝑥 − 1 𝑑𝑥 = න 𝑑𝑥 𝑥 + න 𝑑𝑥 𝑥 + 1 − 2 න 𝑑𝑥 𝑥 − 1
  • 39. Ejemplo: En lugar de integrar la fracción original, se integrarán sus fracciones parciales. න −3𝑥 − 1 𝑥3 − 𝑥 𝑑𝑥 = න 𝟏 𝒙 + 𝟏 𝒙 + 𝟏 + −𝟐 𝒙 − 𝟏 𝑑𝑥 = න 1 𝑥 𝑑𝑥 + න 1 𝑥 + 1 𝑑𝑥 + න −2 𝑥 − 1 𝑑𝑥 = න 𝑑𝑥 𝑥 + න 𝑑𝑥 𝑥 + 1 − 2 න 𝑑𝑥 𝑥 − 1
  • 40. Ejemplo: En lugar de integrar la fracción original, se integrarán sus fracciones parciales. න −3𝑥 − 1 𝑥3 − 𝑥 𝑑𝑥 = න 𝟏 𝒙 + 𝟏 𝒙 + 𝟏 + −𝟐 𝒙 − 𝟏 𝑑𝑥 = න 1 𝑥 𝑑𝑥 + න 1 𝑥 + 1 𝑑𝑥 + න −2 𝑥 − 1 𝑑𝑥 = න 𝑑𝑥 𝑥 + න 𝑑𝑥 𝑥 + 1 − 2 න 𝑑𝑥 𝑥 − 1 = ln 𝑥 + ln 𝑥 + 1 − 2 ln 𝑥 − 1 + 𝒍𝒏𝑪
  • 41. Ejemplo: Aplicando propiedades de logaritmos podemos simplificar el resultado. න −3𝑥 − 1 𝑥3 − 𝑥 𝑑𝑥 = න 𝟏 𝒙 + 𝟏 𝒙 + 𝟏 + −𝟐 𝒙 − 𝟏 𝑑𝑥 = ln 𝑥 + ln 𝑥 + 1 − 2 ln 𝑥 − 1 + 𝒍𝒏𝑪 = ln 𝑥 + ln 𝑥 + 1 + ln 𝑥 − 1 −2 + 𝒍𝒏𝑪 = න 1 𝑥 𝑑𝑥 + න 1 𝑥 + 1 𝑑𝑥 + න −2 𝑥 − 1 𝑑𝑥 = න 𝑑𝑥 𝑥 + න 𝑑𝑥 𝑥 + 1 − 2 න 𝑑𝑥 𝑥 − 1
  • 42. Ejemplo: Aplicando propiedades de logaritmos podemos simplificar el resultado. න −3𝑥 − 1 𝑥3 − 𝑥 𝑑𝑥 = න 𝟏 𝒙 + 𝟏 𝒙 + 𝟏 + −𝟐 𝒙 − 𝟏 𝑑𝑥 = ln 𝑥 + ln 𝑥 + 1 − 2 ln 𝑥 − 1 + 𝒍𝒏𝑪 = ln 𝑥 + ln 𝑥 + 1 + ln 𝑥 − 1 −2 + 𝒍𝒏𝑪 = ln 𝑥 𝑥 + 1 𝑥 − 1 −2 𝑪 = න 𝑑𝑥 𝑥 + න 𝑑𝑥 𝑥 + 1 − 2 න 𝑑𝑥 𝑥 − 1
  • 43. Ejemplo: Aplicando propiedades de logaritmos podemos simplificar el resultado. න −3𝑥 − 1 𝑥3 − 𝑥 𝑑𝑥 = න 𝟏 𝒙 + 𝟏 𝒙 + 𝟏 + −𝟐 𝒙 − 𝟏 𝑑𝑥 = ln 𝑥 + ln 𝑥 + 1 − 2 ln 𝑥 − 1 + 𝒍𝒏𝑪 = ln 𝑥 + ln 𝑥 + 1 + ln 𝑥 − 1 −2 + 𝒍𝒏𝑪 = ln 𝑥 𝑥 + 1 𝑥 − 1 −2 𝑪 = ln 𝑪 𝑥 𝑥 + 1 𝑥 − 1 2
  • 44. Solución del problema: El objetivo de las fracciones parciales es expresar una fracción propia que no puede integrarse directamente, en sus fracciones parciales que sí pueden integrase con alguna de las fórmulas básicas de integración. න −3𝑥 − 1 𝑥3 − 𝑥 𝑑𝑥 = ln 𝐶 𝑥 𝑥 + 1 𝑥 − 1 2
  • 45. Fuentes de información en línea http://licmata-math.blogspot.mx/ https://www.facebook.com/licemata https://www.linkedin.com/in/licmata http://www.slideshare.net/licmata Twitter @licemata