TIPOS DE MUESTREO
Prof. Joan Fernando Chipia Lobo
@JoanFChipiaL
TIPOS DE
MUESTREO
NO
PROBABILÍSTICOS
PROBABILÍSTICOS
TIPOS DE MUESTREO
No probabilístico
A juicio
Por
conveniencia
Voluntariado
Probabilístico
Aleatorio Simple
Sistemático
Estratificado
Por
conglomerados
¿CÓMO ELEGIR EL MUESTREO
APROPIADO?
Se recomiendan muestreos no probabilísticos,
por limitaciones de recursos, tiempo, dinero y
trabajo, se debe estudiar un número de individuos
menor que el deseable y entonces la opinión del
experto se hace conveniente.
Los muestreos probabilísticos, en la literatura
se menciona que deberían utilizarse siempre que
sean posibles de realizar, sin embargo veamos
algunas excepciones:
EJEMPLOS DE SELECCIÓN DE
MUESTREO
Ejemplo. En ocasiones no se puede obtener una lista
completa de la población que se va a estudiar, siendo
por lo tanto imposible aplicar el azar. En dicho caso, la
selección de los individuos que se estudian envuelve
un proceso de opinión.
Ejemplo. Si se desea ensayar una nueva droga y sólo
se tienen 5 o 6 dosis, en lugar de escoger los
individuos al azar pueden seleccionarse casos
graves, ya que si se mejoran estos casos, será válido
para pacientes con menor o sin gravedad.
Ejemplo. En ocasiones el principal interés está en
localizar individuos con determinadas características
en una población muy numerosa, digamos los
enfermos tuberculosos de una colectividad. En tal
caso, es preferible concentrarnos en el estudio de
aquellos grupos en los cuales la experiencia señala
que hay más probabilidad de encontrar los individuos
buscados.
EJEMPLOS DE SELECCIÓN DE
MUESTREO (cont.)
MUESTREOS NO
PROBABILÍSTICOS
MUESTREO NO PROBABILÍSTICO (I)
Es un procedimiento por medio del cual las
unidades muestrales no se seleccionan al
azar, sino que son elegidas por el responsable
de realizar el muestreo.
La selección de la muestra se basa en el
criterio del investigador.
El costo de dichos muestreos es menor
comparado con un muestreo probabilístico.
Este tipo de muestreo estriba en la posibilidad de
que un individuo sea incluido en la muestra
desconocida, siendo imposible medir la exactitud
de los resultados obtenidos
MUESTREO NO PROBABILÍSTICO (II)
Porque no se puede medir el error o nivel de
confianza, porque no se pueden incluir
ecuaciones de probabilidad.
DESVENTAJAS DEL MUESTREO
NO PROBABILÍSTICO
• Incapacidad de juzgar la precisión de la muestra.
• Mecanismo poco objetivo de apreciación.
• No ofrece representatividad.
• No se puede medir la exactitud de los resultados.
TIPOS DE MUESTREOS NO
PROBABÍLISTICO
A JUICIO, INTENCIONAL U OPINÁTICO: los
elementos son seleccionados a juicio o en
opinión del investigador.
POR CONVENIENCIA: se eligen los elementos
que se encuentran a mayor alcance del
investigador.
VOLUNTARIADO: el informante voluntariamente
suministra información sin ser seleccionado.
MUESTREOS
PROBABILÍSTICOS
MUESTREO PROBABILÍSTICO (I)
Es aquel procedimiento en el cual cada individuo
de la población, tiene probabilidad perfectamente
conocida.
No es necesario que los individuos cumplan con el
principio de equiprobabilidad, basta con que tenga
cualquier posibilidad diferente de cero de formar
parte de la muestra y que esa probabilidad sea
conocida.
MUESTREO PROBABILÍSTICO (II)
Todas las posibles muestras de tamaño n tienen
la misma probabilidad de ser elegidas.
Estos métodos de muestreo probabilísticos nos
aseguran la representatividad de la muestra
extraída y son, por tanto, los más
recomendables.
CONDICIONES DE UN MUESTREO
PROBABILÍSTICO (I)
- La probabilidad de elegir cada individuo sea
perfectamente conocida, de lo contrario, NO se
podrán calcular los errores al momento de la
selección.
- Es fundamental que los individuos se elijan al azar,
se puede usar, por ejemplo: la tabla de números
aleatorios, el método de la lotería u otro método.
MUESTREO ALEATORIO
SIMPLE (I)
Procedimiento donde todos y cada uno de
los elementos de la población tienen la
misma probabilidad de ser seleccionados
en la muestra y esta probabilidad es
conocida.
Este tipo de muestreo es más recomendable,
pero resulta mucho más difícil de llevarse a
cabo y por lo tanto, es más costoso.
Para seleccionar una muestra de este tipo se
requiere tener en forma de lista todos los
elementos que integran la población
investigada y utilizar algún instrumento, yal
como las tablas de números aleatorios.
MUESTREO ALEATORIO
SIMPLE (II)
VEAMOS EL PROCEDIMIENTO DE UN
MUESTREO ALEATORIO SIMPLE
EJEMPLO 1
Suponga que estamos investigando sobre el
porcentaje de estudiantes que fuman según el
sexo de una población de 20 estudiantes de la
Universidad de Los Andes
-Elija una muestra aleatoria simple de tamaño n=4
de esta población.
-Use la tabla de números aleatorios adjunta.
-Empiece en la fila 1 columna 1 y continúe
seleccionando hacia la derecha.
-Indique los pasos para elegir la muestra.
Primero. Asignamos un número a cada
estudiante del 1 al 20:
Segundo. Buscamos en la tabla de números
aleatorios 4 números, de dos dígitos, entre el 1 y
el 20, sin repetir:
Los números seleccionados son: 10, 1, 11 y 20. Por
lo tanto, la muestra está compuesta por Victoria,
Juan y Marcelo que fuman y María que no fuma.
El 75% de los estudiantes de la Universidad de Los
Andes fuman.
El 50% de los estudiantes de la Universidad de Los
Andes son hombres fumadores.
El 25% de los estudiantes de la Universidad de Los
Andes son mujeres fumadoras.
¿Qué falló en el muestreo para que se dieran
resultados no extrapolables a la población?
Tercero. Conclusiones
Fundamentalmente falló el tamaño de la población y
muestra, pues ante poblaciones pequeñas se puede
hacer un censo.
¿CÓMO CALCULAR EL TAMAÑO DE
LA MUESTRA?
Se requiere el valor de la Varianza, Nivel de confianza y
Precisión de la estimación.
La Varianza (𝝈 𝟐
): correspondiente al grado de variabilidad que
presentan las unidades de la población. Mientras más grande
sea la varianza, mayor será el tamaño de la muestra. El valor
de la Varianza se debe conocer, de lo contrario se debe
estimar a través de una investigación preliminar. En el caso de
la Varianza de una proporción, se toma P=0,5, con lo cual se
obtiene el máximo valor posible de n.
Nivel de confianza: tiene relación directa con el tamaño de
la muestra, por lo tanto se dirá que a mayor nivel de
confianza más grande debe ser el tamaño de la muestra.
Los valores de la Distribución Normal Estandarizada (Z) se
obtienen mediante el uso de tablas. El nivel es fijado por el
investigador de acuerdo con su experiencia.
Precisión de la estimación: Corresponde al margen de
error que el investigador fija de acuerdo con el
conocimiento que tenga acerca del parámetro que piensa
estimar. Se le conoce como error de muestreo (E).
Supongamos que se quiere obtener una muestra para la
población de estudiantes del Ejemplo 1, con los siguientes
datos, con un Nivel de Confianza del 95% que en la tabla de Z
es 1,96 y se estima que P=0,1, por lo tanto Q=0,9 y se asume
un E=0,02
𝑛 =
𝑍2 𝑁𝑃𝑄
𝑁𝐸2 + 𝑍2 𝑃𝑄
𝑛 =
1,962
× 20 × 0,1 × 0,9
20 × 0,02 2 + 1,962 × (0,1) × (0,9)
= 19,54 ≈ 20
Por ello se recomienda hacer un censo ante poblaciones
pequeñas.
EJEMPLO 2
EJEMPLO 3
Tamaño de poblaciones infinitas
Un médico desea investigar sobre los accidentes de
motos, para ello quiere tomar una muestra con un nivel de
confianza del 99% y que no exceda un error del 2% ¿Qué
tamaño de muestra tendrá que tomar si estima que la
proporción del error es del 8%?
Solución:
Nivel de Confianza del 99% que en la tabla de Z es 2,58
P=0,08, por lo tanto Q=0,92
E=0,02
𝒏 =
𝒁 𝟐
𝑷𝑸
𝑬 𝟐
=
2,582
× (0,08) × (0,92)
0,022
= 1224,78 ≈ 1225
EJEMPLO 4
Error muestral
De un conjunto de gorros descartables se tomaron una
muestra de 200, se encontró que 9 de ellos eran
defectuosos. Con una confianza del 95%, calcular el error
de la muestra.
Solución:
𝑃 =
9
200
= 0,045
𝐸 = 𝑍
𝑃𝑄
𝑛
= 1,96
(0,045) × (0,955)
200
= 0,0287
Expresado en porcentaje el error muestral es del 2,87%
EJEMPLO 5
Tamaño de poblaciones finitas
El INTTT desea tomar una muestra para estimar la proporción
de conductores con experiencia de 1 año o menos, que puedan
clasificarse como conductores descuidados ¿De qué tamaño es
la muestra si se considera 10 mil conductores a investigar,
utilizando un nivel de confianza del 95% y un error muestral del
2%? Se espera observar que aproximadamente ¼ de los
conductores sean descuidados.
Solución:
𝒏 =
𝒁 𝟐 𝑵𝑷𝑸
𝑵𝑬 𝟐 + 𝒁 𝟐 𝑷𝑸
𝑛 =
1,962 × 10000 × 0,25 × 0,75
10000 × 0,02 2 + 1,962 × (0,25) × (0,75)
= 1526
La selección de unidades se halla a través
intervalos regulares en un orden sistemático.
La lista de elementos debe estar realizada al azar.
El punto de partida debe ser al azar.
CUIDADO: Si en la lista existen periodicidades, se
obtendría una muestra sesgada.
MUESTREO SISTEMÁTICO
EJEMPLO 6
En la Facultad de Medicina de la Universidad de
Los Andes, se desea elegir una muestra
sistemática de 30 estudiantes a partir de una
población de 120 estudiantes que poseen
enfermedades respiratorias.
SOLUCIÓN
Paso 1. Se enumeran los estudiantes.
Paso 2. Se calcula la constante (k) entre cada intervalo, es
decir:
𝑘 =
𝑁
𝑛
=
120
30
= 4
Paso 3. Se sortea un número del 1 al 4, a partir del número
obtenido al azar se le suma la constante hasta conseguir la
cantidad de la muestra.
Supongamos que sea 2, entonces la muestra queda
conformada por los siguientes números:
2, 6,10,14,18,22,26,30,34,38,42,46,50,54,
58,62,66,70,74,78,82,86,90,94,
98,102,106,110,114,118
En este procedimiento la población se divide en
estratos y luego en cada uno de los estratos se
escogen al azar los individuos que compondrán la
muestra, haciendo una asignación homogénea,
es decir, proporcional por cada estrato de acuerdo
a la composición de la población.
DIFICULTAD: exige un conocimiento muy
detallado de la población.
MUESTREO ESTRATIFICADO
VENTAJAS DEL MUESTREO
ESTRATIFICADO
1. Se obtiene información separada de cada uno
de los estratos.
2. Se evita el riesgo de que determinada muestra
quede inadecuadamente representada.
EJEMPLO 6
Es conveniente el muestreo estratificado, en el
caso de los días de hospitalización de los Servicios
de Ginecología y Obstetricia, Pediatría, Cirugía y
Medicina general, son diferentes unos de otros.
En este caso se hace una muestra separada de
cada uno de los 4 servicios y luego se combinan
los resultados.
EJEMPLO 7
Suponga que estamos investigando sobre el
porcentaje de estudiantes que fuman de una
población de 20 estudiantes de la Universidad de
Los Andes
Seleccione una muestra estratificada según el
sexo, de tamaño n=5 de la población del problema
anterior.
Utilice la tabla de números aleatorios en cada
estrato, comenzando en la fila 1, columna 1 y
continúe seleccionando hacia la derecha.
Indique los pasos para elegir la muestra
PASOS A SEGUIR
Primero: para elegir una muestra estratificada, se
dividen los estratos y se le asignan un número de
identificación.
Segundo: se determina la proporción por sexo, es decir
N = 20 estudiantes
Estrato de hombres: 12
Estrato de mujeres: 8
Proporción de hombres = 12/20 = 0,6
Proporción de mujeres = 8/20 = 0,4
Tercero: halle el tamaño de la muestra, en este caso
está dado n=5
Cuarto: determine la proporción de la muestra por
estrato es:
Muestra de hombres = 0,6 x 5 = 3
Muestra de mujeres = 0,4 x 5 = 2
Quinto: usando la tabla de números aleatorios, se
elige una muestra aleatoria simple de tamaño n=3
para los hombres, buscando números del 1 al 12.
Se parte de la fila 1, columna 1.
Los números seleccionados son 10, 1 y 11. Por
lo tanto, la muestra del estrato de hombres
queda constituida por: Juan, Fabián y Enrique.
Sexto: empleando la tabla de números aleatorios, se
elige una muestra aleatoria simple de tamaño n=2 para
las mujeres, buscando números del 1 al 8.
Se parte de la fila 1, columna 1.
Los números seleccionados son 1 y 4. Por lo
tanto, la muestra del estrato de mujeres queda
constituida por: Alicia y Fernanda.
En lugar de escogerse a los individuos que van a
estudiarse, se selecciona un grupo o
conglomerado de individuos.
No es necesario conocer a todos los individuos a
estudiar, basta con enumerar a los grupos o
conglomerados a investigar.
MUESTREO POR
CONGLOMERADOS
- Dividir la población en conglomerados.
- Seleccionar el número de conglomerados según
la necesidad del investigador.
- Tomar una muestra aleatoria simple de uno de
los elementos de cada conglomerado.
PROCEDIMIENTO
Se desea efectuar una encuesta sobre las
políticas de sanidad del municipio Libertador
(Mérida-Venezuela).
Se podría dividir el municipio en distritos, por
ejemplo en 10 distritos, de esos se toma al azar el
4, 5, 7 y 10.
EJEMPLO 8
MUESTREOS COMBINADOS
Es la forma de muestreo que resulta de combinar
en varias etapas, dos o más de los métodos antes
descritos.
Ejemplo: Para un estudio sobre Enfermedades de
Transmisión Sexual en un municipio, se selecciona
al azar 20 de los consultorios Médicos del área
urbana y 20 del área rural. Posteriormente, se toman
los registros, de día por medio, durante 2 semanas.
ACTIVIDADES EN CLASES
1. Realice un muestreo aleatorio simple para un
conjunto de pacientes que asisten al servicio de
pediatría, si se quiere asumir un nivel de confianza del
95%, un error del 3% y P=0,3
2. Realice un muestreo sistemático considerando que
en los archivos de un hospital que posee 20000
historias clínicas y se considera un Nivel de Confianza
del 99%, con un error muestral del 5% y P=0,2.
¿Cuál es la constante (k) que se tomaría, si la muestra
que se desea obtener es de 300 historias clínicas?
2. Formule un problema de salud y luego
determine la muestra a través de un muestreo
estratificado.
3. Construya un experimento médico donde se
pueda utilizar un muestreo por conglomerados
y después explique el procedimiento para hallar
la muestra.
ACTIVIDAD EN CLASES
• Plantee 3 problemas médicos donde explique
cuál y por qué usaría un Muestreo no
Probabilístico.
• Plantee 1 problema médico con una población de
200 datos, luego realice un muestreo aleatorio
simple, seleccione el nivel de confianza y error
muestral, con un P=0,25. Halle el tamaño de la
muestra y explique las conclusiones en términos
porcentuales.
"La medicina no solo es
ciencia sino también arte"
(Paracelso).
FINALMENTE, LOS INVITO A LA PÁGINA WEB DE
BIOESTADÍSTICA:
URL http://www.webdelprofesor.ula.ve/ciencias/joanfchipia/
REFERENCIAS
Camel, F. (1991). Estadística Médica y Planificación de
la Salud. Mérida: Consejo de Publicaciones de la
Universidad de Los Andes.
Martínez, C. (2008). Estadística y Muestreo (12a. Ed.).
Bogotá: ECOE Ediciones.

Más contenido relacionado

PDF
Tipos de muestreo
PPTX
Muestreo Estadistico
PPTX
Tipos de muestreo
PPT
PoblacióN Y Muestra
PDF
Muestreo Probabilistico
PPT
Poblacion y muestra.
DOCX
Metodos de muestreo, ejercicios y su procedimiento (1)
PDF
Ejemplos practicos de muestreo
Tipos de muestreo
Muestreo Estadistico
Tipos de muestreo
PoblacióN Y Muestra
Muestreo Probabilistico
Poblacion y muestra.
Metodos de muestreo, ejercicios y su procedimiento (1)
Ejemplos practicos de muestreo

La actualidad más candente (20)

PPT
Muestreo aleatorio simple
PDF
Clase población muestra y muestreo
PPTX
Presentación ANOVA
PPTX
Escalas de medición
PPTX
Teorema del limite central
PPTX
MéTodo De Muestreo Por Conglomerados
PPTX
Prueba de KRUSKAL WALLIS
PPT
Clasificación de variables
PDF
Tablas de frecuencias
PPTX
Estimacion puntual, propiedades de las estimaciones; estimacion por intervalo...
PPTX
Operaconalización de variables
PPTX
Medidas de Resumen
PPTX
Medidas de Tendencia Central
PPT
EstadíStica Inferencial
PPT
Chi Cuadrado
PPTX
Pruebas parametricas y no parametricas
PPT
Investigacion no experimental DISENO LONGITUDINAL
PPTX
poblacion y muestra
PDF
Seleccion de la Muestra en Investigacion
PDF
Estadistica inferencial formulas
Muestreo aleatorio simple
Clase población muestra y muestreo
Presentación ANOVA
Escalas de medición
Teorema del limite central
MéTodo De Muestreo Por Conglomerados
Prueba de KRUSKAL WALLIS
Clasificación de variables
Tablas de frecuencias
Estimacion puntual, propiedades de las estimaciones; estimacion por intervalo...
Operaconalización de variables
Medidas de Resumen
Medidas de Tendencia Central
EstadíStica Inferencial
Chi Cuadrado
Pruebas parametricas y no parametricas
Investigacion no experimental DISENO LONGITUDINAL
poblacion y muestra
Seleccion de la Muestra en Investigacion
Estadistica inferencial formulas
Publicidad

Destacado (20)

PPSX
Tipos de muestreo
PPTX
Tema 3 muestreo aguas.
PPT
7.5 tipos y tecnicas de muestreo
PPTX
<muestreo
PPTX
El muestreo. Unidad para 1º de Bachillerato
PPTX
Muestreo Aceptacion por atributos Generalidades
PPTX
Tipos de-muestreo
PPS
Muestreo en una auditoría
PPT
muestreo
PPTX
Segmentación, cálculo de la muestra y estimación de la demanda
PPTX
Muestreo
PPTX
Muestreo en Auditoria de Sstemas
PPT
Instrumentos de recoleccion de informacion en la investigacion
PPT
Muestreo en control de calidad
DOCX
Ejemplos distribución bernoulli
DOCX
Ejemplos distribución normal
PDF
Prueba de hipotesis para proporciones Est ind clase02
DOCX
Ejemplos distribución binomial
PDF
Procedimientos de muestreo
PPT
Instrumentos de evaluación proyecto
Tipos de muestreo
Tema 3 muestreo aguas.
7.5 tipos y tecnicas de muestreo
<muestreo
El muestreo. Unidad para 1º de Bachillerato
Muestreo Aceptacion por atributos Generalidades
Tipos de-muestreo
Muestreo en una auditoría
muestreo
Segmentación, cálculo de la muestra y estimación de la demanda
Muestreo
Muestreo en Auditoria de Sstemas
Instrumentos de recoleccion de informacion en la investigacion
Muestreo en control de calidad
Ejemplos distribución bernoulli
Ejemplos distribución normal
Prueba de hipotesis para proporciones Est ind clase02
Ejemplos distribución binomial
Procedimientos de muestreo
Instrumentos de evaluación proyecto
Publicidad

Similar a Tipos de muestreos (20)

PDF
1.2 Recurso Muestreo Unidad 1, Tron y Mendoza
PDF
UNIDAD N- 02 - TIPOS DE MUESTREO ESTADISTICA
PDF
UNIDAD N- 02 - TIPOS DE MUESTREO ESTADÍSTICA
PDF
Tamaño de muestra para datos cualitativos y cuantitativos
PPT
poblacion y muestra.ppt
PPTX
7. población y muestra
PPTX
TIPOS DE MUESTREO introduccion a la estadistica.pptx
PPT
Estadística inferencia estadistica (muestreo)
PDF
Muestreo y tamano_de_muestra
PPTX
PABLACION Y MUESTRA DE UN PROYECTO,,.pptx
PPT
Poblacionmuestramuestreo
PPT
POBLACION Y MUESTRA ESTADISTICA INFERENCIAL.ppt
PPT
Poblaciön y muestra1
PPTX
Muestreo Estadístico. Presentación diseñada por el MTRO. JAVIER SOLIS NOYOLA
PDF
TECNICAS DE MUESTREO Y TAMAÑO DE MUESTRA.pdf
PPTX
Muestreo no probabilístico para una investigacion.pptx
PDF
Unidad 3.5 población y muestra
PPTX
Muestreo
PPTX
MUESTREO Y TAMANO DE MUESTRAl_ estadistica y probabilidades
PDF
Tamaño de muestra revisado
1.2 Recurso Muestreo Unidad 1, Tron y Mendoza
UNIDAD N- 02 - TIPOS DE MUESTREO ESTADISTICA
UNIDAD N- 02 - TIPOS DE MUESTREO ESTADÍSTICA
Tamaño de muestra para datos cualitativos y cuantitativos
poblacion y muestra.ppt
7. población y muestra
TIPOS DE MUESTREO introduccion a la estadistica.pptx
Estadística inferencia estadistica (muestreo)
Muestreo y tamano_de_muestra
PABLACION Y MUESTRA DE UN PROYECTO,,.pptx
Poblacionmuestramuestreo
POBLACION Y MUESTRA ESTADISTICA INFERENCIAL.ppt
Poblaciön y muestra1
Muestreo Estadístico. Presentación diseñada por el MTRO. JAVIER SOLIS NOYOLA
TECNICAS DE MUESTREO Y TAMAÑO DE MUESTRA.pdf
Muestreo no probabilístico para una investigacion.pptx
Unidad 3.5 población y muestra
Muestreo
MUESTREO Y TAMANO DE MUESTRAl_ estadistica y probabilidades
Tamaño de muestra revisado

Más de Joan Fernando Chipia Lobo (20)

PDF
ChatGPT: ALGUNAS INTERROGANTES POR DESPEJAR
PDF
Pensamiento bioestadístico complejo de los sistemas de salud
PDF
Experiencia de Construcción de la Revista GICOS, Facultad de Medicina, ULA
PDF
Contrastes de hipótesis estadísticas
PDF
Principales causas de mortalidad por distritos sanitarios. Mérida, 2011-2015
PDF
DISEÑO, VALIDACIÓN Y EVALUACIÓN DE UN PROGRAMA EDUCATIVO SOBRE BEBIDAS ALCOHÓ...
PDF
CALIDAD DE LA ATENCIÓN EN MEDICINA DE FAMILIA. CENTRO DE ATENCIÓN MÉDICA INTE...
PDF
EFICACIA DEL APÓSITO BIOACTIVO NATURAL VERSUS CONVENCIONAL EN CICATRIZACIÓN C...
PDF
Cáncer epidermoide de laringe: prevalencia y manejo
PDF
PDF
Filosofía, ciencia, religión: espacios de encuentros y desencuentros
PDF
PROYECTOS: MEDIO INTEGRADOR EN EL APRENDIZAJE DE BIOESTADÍSTICA
PDF
Prevalencia del Dengue en la parroquia Lagunillas, municipio Sucre, estado ...
PDF
Videocast, podcast y webquest como estrategias educacionales para las ciencia...
PDF
Proyectos: medio integrador en el aprendizaje de Bioestadística
PDF
Instrumento sobre las actitudes de los adolescentes hacia los medios N.0 y su...
PDF
EXPERIENCIA DE EVALUACIÓN DE UN OBJETO DE APRENDIZAJE SOBRE ESTADÍSTICA DESCR...
PDF
BLOG Y PODCASTING EN EL APRENDIZAJE DE MATEMÁTICA BÁSICA
PDF
2016 revista-oc
PDF
Errores más comunes en metodología de la investigación y análisis de datos
ChatGPT: ALGUNAS INTERROGANTES POR DESPEJAR
Pensamiento bioestadístico complejo de los sistemas de salud
Experiencia de Construcción de la Revista GICOS, Facultad de Medicina, ULA
Contrastes de hipótesis estadísticas
Principales causas de mortalidad por distritos sanitarios. Mérida, 2011-2015
DISEÑO, VALIDACIÓN Y EVALUACIÓN DE UN PROGRAMA EDUCATIVO SOBRE BEBIDAS ALCOHÓ...
CALIDAD DE LA ATENCIÓN EN MEDICINA DE FAMILIA. CENTRO DE ATENCIÓN MÉDICA INTE...
EFICACIA DEL APÓSITO BIOACTIVO NATURAL VERSUS CONVENCIONAL EN CICATRIZACIÓN C...
Cáncer epidermoide de laringe: prevalencia y manejo
Filosofía, ciencia, religión: espacios de encuentros y desencuentros
PROYECTOS: MEDIO INTEGRADOR EN EL APRENDIZAJE DE BIOESTADÍSTICA
Prevalencia del Dengue en la parroquia Lagunillas, municipio Sucre, estado ...
Videocast, podcast y webquest como estrategias educacionales para las ciencia...
Proyectos: medio integrador en el aprendizaje de Bioestadística
Instrumento sobre las actitudes de los adolescentes hacia los medios N.0 y su...
EXPERIENCIA DE EVALUACIÓN DE UN OBJETO DE APRENDIZAJE SOBRE ESTADÍSTICA DESCR...
BLOG Y PODCASTING EN EL APRENDIZAJE DE MATEMÁTICA BÁSICA
2016 revista-oc
Errores más comunes en metodología de la investigación y análisis de datos

Último (20)

PDF
NOM-020-SSA-2025.pdf Para establecimientos de salud y el reconocimiento de l...
PPTX
RESUMENES JULIO - QUIRÓFANO HOSPITAL GENERAL PUYO.pptx
PDF
MODULO I ENFERMERIA BASICA.pdf HIstoria en enfermeria
PDF
E1 Guía_Matemática_5°_grado.pdf paraguay
PDF
Las Matematicas y el Pensamiento Cientifico SE3 Ccesa007.pdf
PDF
RM2025 - FUNDAMENTOS TEÓRICOS - PEDIATRÍA.pdf
PDF
KOF-2022-espanol-mar-27-11-36 coke.pdf jsja
PDF
Los hombres son de Marte - Las mujeres de Venus Ccesa007.pdf
PDF
Introducción a la historia de la filosofía
PDF
KOF-2022-espanol-mar-27-11-36 coke.pdf tv
PDF
Los10 Mandamientos de la Actitud Mental Positiva Ccesa007.pdf
PDF
Nadie puede salvarte excepto Tú - Madame Rouge Ccesa007.pdf
PDF
Házlo con Miedo - Scott Allan Ccesa007.pdf
PDF
Como usar el Cerebro en las Aulas SG2 NARCEA Ccesa007.pdf
PDF
Cuaderno_Castellano_6°_grado.pdf 000000000000000001
PDF
Jodorowsky, Alejandro - Manual de Psicomagia.pdf
PPTX
BIZANCIO. EVOLUCIÓN HISTORICA, RAGOS POLÍTICOS, ECONOMICOS Y SOCIALES
PDF
LIBRO 2-SALUD Y AMBIENTE-4TO CEBA avanzado.pdf
PDF
Como Potenciar las Emociones Positivas y Afrontar las Negativas Ccesa007.pdf
PDF
Ernst Cassirer - Antropologia Filosofica.pdf
NOM-020-SSA-2025.pdf Para establecimientos de salud y el reconocimiento de l...
RESUMENES JULIO - QUIRÓFANO HOSPITAL GENERAL PUYO.pptx
MODULO I ENFERMERIA BASICA.pdf HIstoria en enfermeria
E1 Guía_Matemática_5°_grado.pdf paraguay
Las Matematicas y el Pensamiento Cientifico SE3 Ccesa007.pdf
RM2025 - FUNDAMENTOS TEÓRICOS - PEDIATRÍA.pdf
KOF-2022-espanol-mar-27-11-36 coke.pdf jsja
Los hombres son de Marte - Las mujeres de Venus Ccesa007.pdf
Introducción a la historia de la filosofía
KOF-2022-espanol-mar-27-11-36 coke.pdf tv
Los10 Mandamientos de la Actitud Mental Positiva Ccesa007.pdf
Nadie puede salvarte excepto Tú - Madame Rouge Ccesa007.pdf
Házlo con Miedo - Scott Allan Ccesa007.pdf
Como usar el Cerebro en las Aulas SG2 NARCEA Ccesa007.pdf
Cuaderno_Castellano_6°_grado.pdf 000000000000000001
Jodorowsky, Alejandro - Manual de Psicomagia.pdf
BIZANCIO. EVOLUCIÓN HISTORICA, RAGOS POLÍTICOS, ECONOMICOS Y SOCIALES
LIBRO 2-SALUD Y AMBIENTE-4TO CEBA avanzado.pdf
Como Potenciar las Emociones Positivas y Afrontar las Negativas Ccesa007.pdf
Ernst Cassirer - Antropologia Filosofica.pdf

Tipos de muestreos

  • 1. TIPOS DE MUESTREO Prof. Joan Fernando Chipia Lobo @JoanFChipiaL
  • 3. TIPOS DE MUESTREO No probabilístico A juicio Por conveniencia Voluntariado Probabilístico Aleatorio Simple Sistemático Estratificado Por conglomerados
  • 4. ¿CÓMO ELEGIR EL MUESTREO APROPIADO? Se recomiendan muestreos no probabilísticos, por limitaciones de recursos, tiempo, dinero y trabajo, se debe estudiar un número de individuos menor que el deseable y entonces la opinión del experto se hace conveniente. Los muestreos probabilísticos, en la literatura se menciona que deberían utilizarse siempre que sean posibles de realizar, sin embargo veamos algunas excepciones:
  • 5. EJEMPLOS DE SELECCIÓN DE MUESTREO Ejemplo. En ocasiones no se puede obtener una lista completa de la población que se va a estudiar, siendo por lo tanto imposible aplicar el azar. En dicho caso, la selección de los individuos que se estudian envuelve un proceso de opinión. Ejemplo. Si se desea ensayar una nueva droga y sólo se tienen 5 o 6 dosis, en lugar de escoger los individuos al azar pueden seleccionarse casos graves, ya que si se mejoran estos casos, será válido para pacientes con menor o sin gravedad.
  • 6. Ejemplo. En ocasiones el principal interés está en localizar individuos con determinadas características en una población muy numerosa, digamos los enfermos tuberculosos de una colectividad. En tal caso, es preferible concentrarnos en el estudio de aquellos grupos en los cuales la experiencia señala que hay más probabilidad de encontrar los individuos buscados. EJEMPLOS DE SELECCIÓN DE MUESTREO (cont.)
  • 8. MUESTREO NO PROBABILÍSTICO (I) Es un procedimiento por medio del cual las unidades muestrales no se seleccionan al azar, sino que son elegidas por el responsable de realizar el muestreo. La selección de la muestra se basa en el criterio del investigador. El costo de dichos muestreos es menor comparado con un muestreo probabilístico.
  • 9. Este tipo de muestreo estriba en la posibilidad de que un individuo sea incluido en la muestra desconocida, siendo imposible medir la exactitud de los resultados obtenidos MUESTREO NO PROBABILÍSTICO (II) Porque no se puede medir el error o nivel de confianza, porque no se pueden incluir ecuaciones de probabilidad.
  • 10. DESVENTAJAS DEL MUESTREO NO PROBABILÍSTICO • Incapacidad de juzgar la precisión de la muestra. • Mecanismo poco objetivo de apreciación. • No ofrece representatividad. • No se puede medir la exactitud de los resultados.
  • 11. TIPOS DE MUESTREOS NO PROBABÍLISTICO A JUICIO, INTENCIONAL U OPINÁTICO: los elementos son seleccionados a juicio o en opinión del investigador. POR CONVENIENCIA: se eligen los elementos que se encuentran a mayor alcance del investigador. VOLUNTARIADO: el informante voluntariamente suministra información sin ser seleccionado.
  • 13. MUESTREO PROBABILÍSTICO (I) Es aquel procedimiento en el cual cada individuo de la población, tiene probabilidad perfectamente conocida. No es necesario que los individuos cumplan con el principio de equiprobabilidad, basta con que tenga cualquier posibilidad diferente de cero de formar parte de la muestra y que esa probabilidad sea conocida.
  • 14. MUESTREO PROBABILÍSTICO (II) Todas las posibles muestras de tamaño n tienen la misma probabilidad de ser elegidas. Estos métodos de muestreo probabilísticos nos aseguran la representatividad de la muestra extraída y son, por tanto, los más recomendables.
  • 15. CONDICIONES DE UN MUESTREO PROBABILÍSTICO (I) - La probabilidad de elegir cada individuo sea perfectamente conocida, de lo contrario, NO se podrán calcular los errores al momento de la selección. - Es fundamental que los individuos se elijan al azar, se puede usar, por ejemplo: la tabla de números aleatorios, el método de la lotería u otro método.
  • 16. MUESTREO ALEATORIO SIMPLE (I) Procedimiento donde todos y cada uno de los elementos de la población tienen la misma probabilidad de ser seleccionados en la muestra y esta probabilidad es conocida.
  • 17. Este tipo de muestreo es más recomendable, pero resulta mucho más difícil de llevarse a cabo y por lo tanto, es más costoso. Para seleccionar una muestra de este tipo se requiere tener en forma de lista todos los elementos que integran la población investigada y utilizar algún instrumento, yal como las tablas de números aleatorios. MUESTREO ALEATORIO SIMPLE (II)
  • 18. VEAMOS EL PROCEDIMIENTO DE UN MUESTREO ALEATORIO SIMPLE
  • 19. EJEMPLO 1 Suponga que estamos investigando sobre el porcentaje de estudiantes que fuman según el sexo de una población de 20 estudiantes de la Universidad de Los Andes
  • 20. -Elija una muestra aleatoria simple de tamaño n=4 de esta población. -Use la tabla de números aleatorios adjunta. -Empiece en la fila 1 columna 1 y continúe seleccionando hacia la derecha. -Indique los pasos para elegir la muestra.
  • 21. Primero. Asignamos un número a cada estudiante del 1 al 20:
  • 22. Segundo. Buscamos en la tabla de números aleatorios 4 números, de dos dígitos, entre el 1 y el 20, sin repetir: Los números seleccionados son: 10, 1, 11 y 20. Por lo tanto, la muestra está compuesta por Victoria, Juan y Marcelo que fuman y María que no fuma.
  • 23. El 75% de los estudiantes de la Universidad de Los Andes fuman. El 50% de los estudiantes de la Universidad de Los Andes son hombres fumadores. El 25% de los estudiantes de la Universidad de Los Andes son mujeres fumadoras. ¿Qué falló en el muestreo para que se dieran resultados no extrapolables a la población? Tercero. Conclusiones Fundamentalmente falló el tamaño de la población y muestra, pues ante poblaciones pequeñas se puede hacer un censo.
  • 24. ¿CÓMO CALCULAR EL TAMAÑO DE LA MUESTRA? Se requiere el valor de la Varianza, Nivel de confianza y Precisión de la estimación. La Varianza (𝝈 𝟐 ): correspondiente al grado de variabilidad que presentan las unidades de la población. Mientras más grande sea la varianza, mayor será el tamaño de la muestra. El valor de la Varianza se debe conocer, de lo contrario se debe estimar a través de una investigación preliminar. En el caso de la Varianza de una proporción, se toma P=0,5, con lo cual se obtiene el máximo valor posible de n.
  • 25. Nivel de confianza: tiene relación directa con el tamaño de la muestra, por lo tanto se dirá que a mayor nivel de confianza más grande debe ser el tamaño de la muestra. Los valores de la Distribución Normal Estandarizada (Z) se obtienen mediante el uso de tablas. El nivel es fijado por el investigador de acuerdo con su experiencia. Precisión de la estimación: Corresponde al margen de error que el investigador fija de acuerdo con el conocimiento que tenga acerca del parámetro que piensa estimar. Se le conoce como error de muestreo (E).
  • 26. Supongamos que se quiere obtener una muestra para la población de estudiantes del Ejemplo 1, con los siguientes datos, con un Nivel de Confianza del 95% que en la tabla de Z es 1,96 y se estima que P=0,1, por lo tanto Q=0,9 y se asume un E=0,02 𝑛 = 𝑍2 𝑁𝑃𝑄 𝑁𝐸2 + 𝑍2 𝑃𝑄 𝑛 = 1,962 × 20 × 0,1 × 0,9 20 × 0,02 2 + 1,962 × (0,1) × (0,9) = 19,54 ≈ 20 Por ello se recomienda hacer un censo ante poblaciones pequeñas. EJEMPLO 2
  • 27. EJEMPLO 3 Tamaño de poblaciones infinitas Un médico desea investigar sobre los accidentes de motos, para ello quiere tomar una muestra con un nivel de confianza del 99% y que no exceda un error del 2% ¿Qué tamaño de muestra tendrá que tomar si estima que la proporción del error es del 8%? Solución: Nivel de Confianza del 99% que en la tabla de Z es 2,58 P=0,08, por lo tanto Q=0,92 E=0,02 𝒏 = 𝒁 𝟐 𝑷𝑸 𝑬 𝟐 = 2,582 × (0,08) × (0,92) 0,022 = 1224,78 ≈ 1225
  • 28. EJEMPLO 4 Error muestral De un conjunto de gorros descartables se tomaron una muestra de 200, se encontró que 9 de ellos eran defectuosos. Con una confianza del 95%, calcular el error de la muestra. Solución: 𝑃 = 9 200 = 0,045 𝐸 = 𝑍 𝑃𝑄 𝑛 = 1,96 (0,045) × (0,955) 200 = 0,0287 Expresado en porcentaje el error muestral es del 2,87%
  • 29. EJEMPLO 5 Tamaño de poblaciones finitas El INTTT desea tomar una muestra para estimar la proporción de conductores con experiencia de 1 año o menos, que puedan clasificarse como conductores descuidados ¿De qué tamaño es la muestra si se considera 10 mil conductores a investigar, utilizando un nivel de confianza del 95% y un error muestral del 2%? Se espera observar que aproximadamente ¼ de los conductores sean descuidados. Solución: 𝒏 = 𝒁 𝟐 𝑵𝑷𝑸 𝑵𝑬 𝟐 + 𝒁 𝟐 𝑷𝑸 𝑛 = 1,962 × 10000 × 0,25 × 0,75 10000 × 0,02 2 + 1,962 × (0,25) × (0,75) = 1526
  • 30. La selección de unidades se halla a través intervalos regulares en un orden sistemático. La lista de elementos debe estar realizada al azar. El punto de partida debe ser al azar. CUIDADO: Si en la lista existen periodicidades, se obtendría una muestra sesgada. MUESTREO SISTEMÁTICO
  • 31. EJEMPLO 6 En la Facultad de Medicina de la Universidad de Los Andes, se desea elegir una muestra sistemática de 30 estudiantes a partir de una población de 120 estudiantes que poseen enfermedades respiratorias.
  • 32. SOLUCIÓN Paso 1. Se enumeran los estudiantes. Paso 2. Se calcula la constante (k) entre cada intervalo, es decir: 𝑘 = 𝑁 𝑛 = 120 30 = 4 Paso 3. Se sortea un número del 1 al 4, a partir del número obtenido al azar se le suma la constante hasta conseguir la cantidad de la muestra. Supongamos que sea 2, entonces la muestra queda conformada por los siguientes números: 2, 6,10,14,18,22,26,30,34,38,42,46,50,54, 58,62,66,70,74,78,82,86,90,94, 98,102,106,110,114,118
  • 33. En este procedimiento la población se divide en estratos y luego en cada uno de los estratos se escogen al azar los individuos que compondrán la muestra, haciendo una asignación homogénea, es decir, proporcional por cada estrato de acuerdo a la composición de la población. DIFICULTAD: exige un conocimiento muy detallado de la población. MUESTREO ESTRATIFICADO
  • 34. VENTAJAS DEL MUESTREO ESTRATIFICADO 1. Se obtiene información separada de cada uno de los estratos. 2. Se evita el riesgo de que determinada muestra quede inadecuadamente representada.
  • 35. EJEMPLO 6 Es conveniente el muestreo estratificado, en el caso de los días de hospitalización de los Servicios de Ginecología y Obstetricia, Pediatría, Cirugía y Medicina general, son diferentes unos de otros. En este caso se hace una muestra separada de cada uno de los 4 servicios y luego se combinan los resultados.
  • 36. EJEMPLO 7 Suponga que estamos investigando sobre el porcentaje de estudiantes que fuman de una población de 20 estudiantes de la Universidad de Los Andes
  • 37. Seleccione una muestra estratificada según el sexo, de tamaño n=5 de la población del problema anterior. Utilice la tabla de números aleatorios en cada estrato, comenzando en la fila 1, columna 1 y continúe seleccionando hacia la derecha. Indique los pasos para elegir la muestra PASOS A SEGUIR
  • 38. Primero: para elegir una muestra estratificada, se dividen los estratos y se le asignan un número de identificación.
  • 39. Segundo: se determina la proporción por sexo, es decir N = 20 estudiantes Estrato de hombres: 12 Estrato de mujeres: 8 Proporción de hombres = 12/20 = 0,6 Proporción de mujeres = 8/20 = 0,4 Tercero: halle el tamaño de la muestra, en este caso está dado n=5 Cuarto: determine la proporción de la muestra por estrato es: Muestra de hombres = 0,6 x 5 = 3 Muestra de mujeres = 0,4 x 5 = 2
  • 40. Quinto: usando la tabla de números aleatorios, se elige una muestra aleatoria simple de tamaño n=3 para los hombres, buscando números del 1 al 12. Se parte de la fila 1, columna 1. Los números seleccionados son 10, 1 y 11. Por lo tanto, la muestra del estrato de hombres queda constituida por: Juan, Fabián y Enrique.
  • 41. Sexto: empleando la tabla de números aleatorios, se elige una muestra aleatoria simple de tamaño n=2 para las mujeres, buscando números del 1 al 8. Se parte de la fila 1, columna 1. Los números seleccionados son 1 y 4. Por lo tanto, la muestra del estrato de mujeres queda constituida por: Alicia y Fernanda.
  • 42. En lugar de escogerse a los individuos que van a estudiarse, se selecciona un grupo o conglomerado de individuos. No es necesario conocer a todos los individuos a estudiar, basta con enumerar a los grupos o conglomerados a investigar. MUESTREO POR CONGLOMERADOS
  • 43. - Dividir la población en conglomerados. - Seleccionar el número de conglomerados según la necesidad del investigador. - Tomar una muestra aleatoria simple de uno de los elementos de cada conglomerado. PROCEDIMIENTO
  • 44. Se desea efectuar una encuesta sobre las políticas de sanidad del municipio Libertador (Mérida-Venezuela). Se podría dividir el municipio en distritos, por ejemplo en 10 distritos, de esos se toma al azar el 4, 5, 7 y 10. EJEMPLO 8
  • 45. MUESTREOS COMBINADOS Es la forma de muestreo que resulta de combinar en varias etapas, dos o más de los métodos antes descritos. Ejemplo: Para un estudio sobre Enfermedades de Transmisión Sexual en un municipio, se selecciona al azar 20 de los consultorios Médicos del área urbana y 20 del área rural. Posteriormente, se toman los registros, de día por medio, durante 2 semanas.
  • 46. ACTIVIDADES EN CLASES 1. Realice un muestreo aleatorio simple para un conjunto de pacientes que asisten al servicio de pediatría, si se quiere asumir un nivel de confianza del 95%, un error del 3% y P=0,3 2. Realice un muestreo sistemático considerando que en los archivos de un hospital que posee 20000 historias clínicas y se considera un Nivel de Confianza del 99%, con un error muestral del 5% y P=0,2. ¿Cuál es la constante (k) que se tomaría, si la muestra que se desea obtener es de 300 historias clínicas?
  • 47. 2. Formule un problema de salud y luego determine la muestra a través de un muestreo estratificado. 3. Construya un experimento médico donde se pueda utilizar un muestreo por conglomerados y después explique el procedimiento para hallar la muestra.
  • 48. ACTIVIDAD EN CLASES • Plantee 3 problemas médicos donde explique cuál y por qué usaría un Muestreo no Probabilístico. • Plantee 1 problema médico con una población de 200 datos, luego realice un muestreo aleatorio simple, seleccione el nivel de confianza y error muestral, con un P=0,25. Halle el tamaño de la muestra y explique las conclusiones en términos porcentuales.
  • 49. "La medicina no solo es ciencia sino también arte" (Paracelso). FINALMENTE, LOS INVITO A LA PÁGINA WEB DE BIOESTADÍSTICA: URL http://www.webdelprofesor.ula.ve/ciencias/joanfchipia/
  • 50. REFERENCIAS Camel, F. (1991). Estadística Médica y Planificación de la Salud. Mérida: Consejo de Publicaciones de la Universidad de Los Andes. Martínez, C. (2008). Estadística y Muestreo (12a. Ed.). Bogotá: ECOE Ediciones.