TALLER NÚMERO 1
CORPORACION UNIFICADA NACIONAL
DOC. ADRIANA BENITEZ
La lógica como ciencia constituye la lógica formal o simbólica, la cual se encarga de investigar, desarrollar y
establecer los principios fundamentales que siguen la validez de la inferencia; es considerada como uno de los
sistemas mediante el cual se llega a formas puras y rigurosas de razonamiento. La lógica se clasifica en:
Tradicional o no formal: son los procesos psico-biológicos del pensamiento lógico y métodos de inferencia,
que permiten interpretar y distinguir el razonamiento correcto del incorrecto, mediante la experiencia humana,
ya sea por el conocimiento o por la observación de su entorno.
Formal o simbólica: Es la encargada de investigar, desarrollar y establecerreglas de inferencia, que conducen
a formas puras y rigurosas de pensamiento. La lógica simbólica, manipula las palabras como signos, sin tener
en cuenta su sentido.
La lógica ofrece métodos que enseñan cómo formar proposiciones,evaluar sus valores de verdad y determinar
si unas conclusiones se pueden deducir correctamente a partir de proposiciones supuestas; además,la lógica es
una ciencia que se interesa por las relaciones existentes entre las proposiciones,con el fin de obtenerprecisión,
claridad y generalidad en los razonamientos
La competencia lógico matemática hace referencia al uso del lenguaje cotidiano a partir de los razonamientos
lógicos deductivos e inductivos, siguiendo unas estructuras básicas que nos permiten afirmar que un
razonamiento es o no válido. Identificar los conectivos lógicos, las premisas y comprender su función en el
lenguaje nos permitirá diseñarfrases cada vez más complejas sin que se pierda la coherencia en la construcción
gramatical.
Proposicionesatómicas y proposiciones moleculares
La lógica proposicional trata sobre la verdad o la falsedad de las proposiciones y de cómo la verdad se transmite
de unas proposiciones (premisas) a otras (conclusión).Una proposición es la unidad mínima de significado que
puede ser verdadera o falsa. Una proposición atómica es verdadera o falsa, y su verdad o falsedad no depende
de otras proposiciones, sino de cómo es la realidad. Si hubiera algún hombre inmortal, la proposición del
ejemplo sería falsa.
Las proposiciones se representan simbólicamente mediante el uso de letras minúsculas del alfabeto tales como
p, q, r, s, ..., x, y, z, las cuales reciben el nombre de letras o variables proposicionales; de esta forma, el lenguaje
proposicional se hace más simple y exacto que el lenguaje natural. Así,también se logra simplificar la escritura
de argumentos lógicos complicados, creando un lenguaje simbólico artificial, en donde se establece un conjunto
de reglas claras, bien definidas y que no presentan las ambigüedades ni vaguedades del lenguaje corriente o
natural: Los siguientes ejemplos ilustran cómo se pueden simbolizar las proposiciones:
Ejemplos:
P : Hoy es sábado
q: Estudio filosofía
r: Colombia es el país con el mayor número de especies de aves delmundo
x: 4 + 3 = 10
En la siguiente tabla, escribe 10 ejemplos de proposiciones atómicas y establece su valor de verdad:
N° Proposición atómica Valor de Verdad
Las proposiciones moleculares son aquéllas que están compuestas por proposiciones atómicas. Un ejemplo de
proposición molecular sería:
Voy a comprar pan y a tomar un café
La proposición del ejemplo es molecular porque se compone de dos proposiciones atómicas:
Voy a comprar pan
Voy a tomar un café
Estas dos proposiciones atómicas están conectadas mediante la partícula "y". Una proposición molecular será
verdadera o falsa, pero a diferencia de lo que ocurre con las proposiciones atómicas, su verdad o falsedad no
depende directamente de la realidad, sino que depende o es función de la verdad o falsedad de las proposiciones
atómicas que la componen. Esto significa que si quiero saber si es verdadero o falso que voy a comprar pan y
a tomar un café, es necesario que conozca la verdad o falsedad de "voy a comprar pan" y de "voy a tomar un
café" por separado.
Conectores lógicos
Las proposiciones atómicas pueden combinarse de diferentes formas para dar lugar a proposiciones
moleculares. Los elementos que sirven para conectar las proposiciones atómicas entre sí se llaman conectores
lógicos. Los conectores lógicos nos dicen cómo afecta el valor de verdad de las proposiciones atómicas al valor
de verdad de las proposiciones moleculares. Ya hemos visto que en el lenguaje natural, la conjunción "y"
funciona como una conector lógico. Así, cuando decimos:
Las flores son plantas y los erizos aves
Estamos conectando la proposición atómica "las flores son plantas" con la proposición atómica "los erizos
son aves" mediante la conector lógico "y". La "y" nos está diciendo que la proposición molecular "Las flores
son plantas y los erizos aves" sólo es verdadera si las dos proposiciones atómicas que la componen son ambas
verdaderas, y será falsa en caso de que, al menos una de ellas, sea falsa. Como sabemos que los erizos no son
aves, podemos concluir que la proposición "Las flores son plantas y los erizos aves" es falsa.
Según lo anterior, escribe la tabla de verdad para la conjunción.
p q p y q
Escribe 5 ejemplos de proposición compuesta o molecular y establece el valor de verdad para las conjunciones
escritas.
N° Proposición compuesta Valor de Verdad
Probemos a cambiar el conectorlógico del ejemplo, y conectemos las dos proposiciones atómicas con el
conector“o” del siguiente modo:
Las flores son plantas o los erizos son aves
La disyunción "o" también funciona aquí como una conector lógico y nos está diciendo que la propo sición
molecular "las flores son plantas o los erizos son aves" es verdadera si al menos una de las proposiciones
atómicas que la componen es verdadera. Sabemos que los erizos no son aves,pero como las flores síson plantas,
concluimos que la proposición molecular del ejemplo es verdadera.
Según lo anterior, escribe la tabla de verdad para la disyunción.
p q p o q
Escribe 5 ejemplos de proposición compuesta o molecular y establece el valor de verdad para las disyunciones
escritas.
N° Proposición compuesta Valor de Verdad
Una tercera forma de conectar dos proposiciones atómicas sería: Si las flores son plantas entonces los erizos
son aves. Esta forma de conectar dos proposiciones nos indica que una de ellas es la condición de la otra y por
eso la conectiva correspondiente se llama "condicional" o "implicador". La primera proposición (Las flores son
plantas)es la condición que se ha de cumplir, y nos referiremos a ella como antecedente; la segunda proposición
(los erizos son aves) es lo condicionado, y nos referiremos a este elemento del condicional como consecuente.
Según lo anterior, escribe la tabla de verdad para la implicación.
p q p entonces q
Escribe 5 ejemplos de proposición compuesta o molecular y establece el valor de verdad para las implicaciones
escritas.
N° Proposición compuesta Valor de Verdad
En cuarto lugar tenemos la negación que, aplicada a una proposición atómica, simplemente invierte su valor
de verdad, de modo que si la proposición atómica
Los erizos son aves
es falsa, entonces la proposición molecular
Los erizos no son aves
será verdadera. Quizá sorprenda que consideremos molecular la proposición "los erizos no son aves",pues que
no se compone de dos proposiciones atómicas, sino de una. La razón de que dicha proposición sea molecular y
no atómica es que uno de sus elementos componentes (a saber, la proposición "los erizos son aves") es una
proposición atómica. Obsérvese que la negación no modifica el significado de la proposición negada, sino
únicamente su valor de verdad. Esta falta de significado es un rasgo esencial de las conectivas lógicas.
Por su parte, a cada conectiva lógica le corresponde un símbolo, como queda resumido en la siguiente tabla:
Conectiva Símbolo Lenguaje natural Formalización
Conjunción A Pepe es bombero y María es camarera p A q
Diyunción V Pepe es bombero o María es camarera p V q
Implicación -> Si Pepe es bombero, entonces María es camarera p -> q
Negación ¬ Pepe no es bombero ¬p
también existen proposiciones moleculares que reciben el nombre de bicondicionales que se unen con el
conectorlógico si…. y sólo si..
La siguiente es la tabla de verdad para las proposiciones moleculares bicondicionales
Escribe 5 ejemplos de proposición compuesta o molecular y establece el valor de verdad para las
bicondicionales escritas.
N° Proposición compuesta Valor de Verdad
El siguiente triángulo se conoce con el nombre de triangulo de Sierpinsky. ¿Cuántos triángulos equiláteros (un
triangulo equilátero es aquel que tiene la medida de la longitud de sus lados igual), ves en cada una de las
imágenes?.
Número de triángulos
equiláteros.______
Número de triángulos
equiláteros.______
Número de triángulos
equiláteros._______
La siguiente imagen muestras una baldosa y cuatro modelos de enchapes.Señala ¿cuál enchape No es posible
realizar con la baldosa inicial?____________________________________________
Señala los detalles por los cuales la figura que has elegido es la respuesta
correcta.__________________________________________________________________
Observa la figura (baldosa) inicial y los cuatro siguientes modelos de enchapes y señala ¿Cuál enchape No es
posible realizar con la baldosa inicial?____________________________________________
Escribe las razones por las cuales escogiste la
respuesta._______________________
Compara tu respuesta con un compañero y escucha las
razones por las cuales el escogió la
respuesta.____________________________
Observa las siguientes imágenes. Completa la secuencia dibujando las imágenes que corresponden a las
posiciones 3, 6 y 7.
1 2 3 4 5 6 7
Escribe la mayor dificultad que has encontrado para llegar a la solución:
________________________________________________________________________________________
En las siguientes imágenes, completa la secuencia dibujando las imágenes que corresponden a las posiciones 3,
6 y 7 de la secuencia.
1 2 3 4 5 6 7
Escribe el razonamiento que utilizaste para encontrar la
respuesta________________________________________________________________________________
Ahora observa las siguientes imágenes. Completa la secuencia dibujando las imágenes que corresponden a las
posiciones 2, 6 y 7 de la secuencia.
1 2 3 4 5 6 7
¿Tuviste alguna dificultad para llegar a la solución? ______
¿Cuál?______________________________________________.
¿Qué diferencias has encontrado en las tres secuencias anteriores?_______________________.
¿Qué semejanzas has encontrado en las tres secuencias anteriores?______________________.

Más contenido relacionado

PPTX
Distribución Binomial
PDF
Optimizacion
PPT
Propiedades entre fracciones
PPTX
Leyes del algebra proposicional
DOCX
Que es el wronskiano
PPTX
DISTRIBUCIÓN BERNOULLI Y DISTRIBUCIÓN BINOMIAL
DOCX
Ejemplos de ejercicios bernoulli
PPTX
Leyes del álgebra de proposiciones
Distribución Binomial
Optimizacion
Propiedades entre fracciones
Leyes del algebra proposicional
Que es el wronskiano
DISTRIBUCIÓN BERNOULLI Y DISTRIBUCIÓN BINOMIAL
Ejemplos de ejercicios bernoulli
Leyes del álgebra de proposiciones

La actualidad más candente (20)

PPTX
Ecuaciones diferenciales-12
PDF
Logica hipotesis y conclusion
PPT
La Definicion Tarskiana De La Verdad
DOC
Calor trasmision conduccion, convencion y radiacion
PDF
Ma2006 hw05-sol
DOC
Metodo Demostrativo
DOCX
Tarea 7 de probabilidad y estadistica con respuesta (esperanza matemática o v...
 
PPTX
Fundamentos de la Lógica
DOCX
Tarea 6 de probabilidad y estadistica con respuestas
 
DOC
Qué es la lógica matemática
DOCX
Unidad dos punto n°3
PDF
Proposiciones, Leyes del Algebra de Proposiciones
DOCX
Metodo de la tangente
DOCX
Aplicación de ecuaciones diferenciales homogéneas
DOCX
Sesión y practica de formalización y valoración de proposiciones
PDF
Probabilidad y estadística descriptiva
PDF
Distribución de poisson ejercicio práctico-
PDF
Probabilidades
PPSX
DOC
Ecuaciones diferenciales-12
Logica hipotesis y conclusion
La Definicion Tarskiana De La Verdad
Calor trasmision conduccion, convencion y radiacion
Ma2006 hw05-sol
Metodo Demostrativo
Tarea 7 de probabilidad y estadistica con respuesta (esperanza matemática o v...
 
Fundamentos de la Lógica
Tarea 6 de probabilidad y estadistica con respuestas
 
Qué es la lógica matemática
Unidad dos punto n°3
Proposiciones, Leyes del Algebra de Proposiciones
Metodo de la tangente
Aplicación de ecuaciones diferenciales homogéneas
Sesión y practica de formalización y valoración de proposiciones
Probabilidad y estadística descriptiva
Distribución de poisson ejercicio práctico-
Probabilidades
Publicidad

Similar a Proposiciones (20)

PDF
Apuntes de-logica-e28093-1c2ba-bachiller
PPTX
CLASE 1 - 20-05 de matemática logica.pptx
PDF
Unidad 1 alexandre medina-álgebra
PPT
Introduccin a la logica
PPT
Introduccin a la logica
DOCX
Algebra
DOCX
Algebra
PPTX
Estructuras discretas
PDF
Cuaderno digital fabian gutierrez
PPTX
Lógica proposicional y conectivas lógicas
PPTX
Diapositivas de informatica
PPTX
Diapositivas de informatica
PPTX
Semana 1. ASU. Lógica Proposicional (1).pptx
PDF
PPTX
Ppt cepre uni 2016 - lógica i
PPTX
LOGICA Y FUNCIONES DIAPOSITIVAS CLASE 01
PPT
equivalenias logicas EJERCICIOS DE EQUIVALENCIAS
PPTX
Aspectos de logica
PPTX
Introducción a la Lógica Proposicional
PPT
Apuntes de-logica-e28093-1c2ba-bachiller
CLASE 1 - 20-05 de matemática logica.pptx
Unidad 1 alexandre medina-álgebra
Introduccin a la logica
Introduccin a la logica
Algebra
Algebra
Estructuras discretas
Cuaderno digital fabian gutierrez
Lógica proposicional y conectivas lógicas
Diapositivas de informatica
Diapositivas de informatica
Semana 1. ASU. Lógica Proposicional (1).pptx
Ppt cepre uni 2016 - lógica i
LOGICA Y FUNCIONES DIAPOSITIVAS CLASE 01
equivalenias logicas EJERCICIOS DE EQUIVALENCIAS
Aspectos de logica
Introducción a la Lógica Proposicional
Publicidad

Más de Adriana Cecilia Benítez C. (12)

PPTX
Proposiciones compuestas
PPTX
Tipos de pensamiento
PPT
PPTX
Desarrollo del proyecto
PPTX
Política monetaria visuales
PDF
Política monetaria para lecto-escritores
PPTX
Presentación evaluación de ava
PDF
Plataforma claroline (1)
PDF
Plataforma claroline (1)
PDF
Plataforma claroline (1)
Proposiciones compuestas
Tipos de pensamiento
Desarrollo del proyecto
Política monetaria visuales
Política monetaria para lecto-escritores
Presentación evaluación de ava
Plataforma claroline (1)
Plataforma claroline (1)
Plataforma claroline (1)

Último (20)

PDF
Modelo Educativo SUB 2023versión final.pdf
DOCX
PLANES DE área ciencias naturales y aplicadas
PPTX
Clase 3 del silabo-gestion y control financiero
DOCX
TEXTO DE TRABAJO DE EDUCACION RELIGIOSA - CUARTO GRADO.docx
PDF
Ernst Cassirer - Antropologia Filosofica.pdf
PDF
Mi Primer Millon - Poissant - Godefroy Ccesa007.pdf
PDF
Esc. Sab. Lección 7. El pan y el agua de vida.pdf
PDF
La lluvia sabe por qué: una historia sobre amistad, resiliencia y esperanza e...
DOCX
PLAN DE AREA DE CIENCIAS SOCIALES TODOS LOS GRUPOS
PDF
Como Potenciar las Emociones Positivas y Afrontar las Negativas Ccesa007.pdf
PDF
CURRICULAR DE PRIMARIA santa ursula..pdf
PPTX
BIZANCIO. EVOLUCIÓN HISTORICA, RAGOS POLÍTICOS, ECONOMICOS Y SOCIALES
DOCX
PLAN DE CASTELLANO 2021 actualizado a la normativa
PDF
informe tipos de Informatica perfiles profesionales _pdf
PDF
Introduccion a la Investigacion Cualitativa FLICK Ccesa007.pdf
PDF
MATERIAL DIDÁCTICO 2023 SELECCIÓN 1_REFORZAMIENTO 1° BIMESTRE_COM.pdf
DOC
4°_GRADO_-_SESIONES_DEL_11_AL_15_DE_AGOSTO.doc
PPTX
TEMA 1ORGANIZACIÓN FUNCIONAL DEL CUERPO, MEDIO INTERNO Y HOMEOSTASIS (3) [Aut...
PDF
La Formacion Universitaria en Nuevos Escenarios Ccesa007.pdf
PDF
Los10 Mandamientos de la Actitud Mental Positiva Ccesa007.pdf
Modelo Educativo SUB 2023versión final.pdf
PLANES DE área ciencias naturales y aplicadas
Clase 3 del silabo-gestion y control financiero
TEXTO DE TRABAJO DE EDUCACION RELIGIOSA - CUARTO GRADO.docx
Ernst Cassirer - Antropologia Filosofica.pdf
Mi Primer Millon - Poissant - Godefroy Ccesa007.pdf
Esc. Sab. Lección 7. El pan y el agua de vida.pdf
La lluvia sabe por qué: una historia sobre amistad, resiliencia y esperanza e...
PLAN DE AREA DE CIENCIAS SOCIALES TODOS LOS GRUPOS
Como Potenciar las Emociones Positivas y Afrontar las Negativas Ccesa007.pdf
CURRICULAR DE PRIMARIA santa ursula..pdf
BIZANCIO. EVOLUCIÓN HISTORICA, RAGOS POLÍTICOS, ECONOMICOS Y SOCIALES
PLAN DE CASTELLANO 2021 actualizado a la normativa
informe tipos de Informatica perfiles profesionales _pdf
Introduccion a la Investigacion Cualitativa FLICK Ccesa007.pdf
MATERIAL DIDÁCTICO 2023 SELECCIÓN 1_REFORZAMIENTO 1° BIMESTRE_COM.pdf
4°_GRADO_-_SESIONES_DEL_11_AL_15_DE_AGOSTO.doc
TEMA 1ORGANIZACIÓN FUNCIONAL DEL CUERPO, MEDIO INTERNO Y HOMEOSTASIS (3) [Aut...
La Formacion Universitaria en Nuevos Escenarios Ccesa007.pdf
Los10 Mandamientos de la Actitud Mental Positiva Ccesa007.pdf

Proposiciones

  • 1. TALLER NÚMERO 1 CORPORACION UNIFICADA NACIONAL DOC. ADRIANA BENITEZ La lógica como ciencia constituye la lógica formal o simbólica, la cual se encarga de investigar, desarrollar y establecer los principios fundamentales que siguen la validez de la inferencia; es considerada como uno de los sistemas mediante el cual se llega a formas puras y rigurosas de razonamiento. La lógica se clasifica en: Tradicional o no formal: son los procesos psico-biológicos del pensamiento lógico y métodos de inferencia, que permiten interpretar y distinguir el razonamiento correcto del incorrecto, mediante la experiencia humana, ya sea por el conocimiento o por la observación de su entorno. Formal o simbólica: Es la encargada de investigar, desarrollar y establecerreglas de inferencia, que conducen a formas puras y rigurosas de pensamiento. La lógica simbólica, manipula las palabras como signos, sin tener en cuenta su sentido. La lógica ofrece métodos que enseñan cómo formar proposiciones,evaluar sus valores de verdad y determinar si unas conclusiones se pueden deducir correctamente a partir de proposiciones supuestas; además,la lógica es una ciencia que se interesa por las relaciones existentes entre las proposiciones,con el fin de obtenerprecisión, claridad y generalidad en los razonamientos La competencia lógico matemática hace referencia al uso del lenguaje cotidiano a partir de los razonamientos lógicos deductivos e inductivos, siguiendo unas estructuras básicas que nos permiten afirmar que un razonamiento es o no válido. Identificar los conectivos lógicos, las premisas y comprender su función en el lenguaje nos permitirá diseñarfrases cada vez más complejas sin que se pierda la coherencia en la construcción gramatical. Proposicionesatómicas y proposiciones moleculares La lógica proposicional trata sobre la verdad o la falsedad de las proposiciones y de cómo la verdad se transmite de unas proposiciones (premisas) a otras (conclusión).Una proposición es la unidad mínima de significado que puede ser verdadera o falsa. Una proposición atómica es verdadera o falsa, y su verdad o falsedad no depende de otras proposiciones, sino de cómo es la realidad. Si hubiera algún hombre inmortal, la proposición del ejemplo sería falsa. Las proposiciones se representan simbólicamente mediante el uso de letras minúsculas del alfabeto tales como p, q, r, s, ..., x, y, z, las cuales reciben el nombre de letras o variables proposicionales; de esta forma, el lenguaje proposicional se hace más simple y exacto que el lenguaje natural. Así,también se logra simplificar la escritura de argumentos lógicos complicados, creando un lenguaje simbólico artificial, en donde se establece un conjunto de reglas claras, bien definidas y que no presentan las ambigüedades ni vaguedades del lenguaje corriente o natural: Los siguientes ejemplos ilustran cómo se pueden simbolizar las proposiciones: Ejemplos: P : Hoy es sábado q: Estudio filosofía r: Colombia es el país con el mayor número de especies de aves delmundo x: 4 + 3 = 10 En la siguiente tabla, escribe 10 ejemplos de proposiciones atómicas y establece su valor de verdad: N° Proposición atómica Valor de Verdad Las proposiciones moleculares son aquéllas que están compuestas por proposiciones atómicas. Un ejemplo de proposición molecular sería: Voy a comprar pan y a tomar un café La proposición del ejemplo es molecular porque se compone de dos proposiciones atómicas: Voy a comprar pan Voy a tomar un café Estas dos proposiciones atómicas están conectadas mediante la partícula "y". Una proposición molecular será verdadera o falsa, pero a diferencia de lo que ocurre con las proposiciones atómicas, su verdad o falsedad no depende directamente de la realidad, sino que depende o es función de la verdad o falsedad de las proposiciones atómicas que la componen. Esto significa que si quiero saber si es verdadero o falso que voy a comprar pan y a tomar un café, es necesario que conozca la verdad o falsedad de "voy a comprar pan" y de "voy a tomar un café" por separado. Conectores lógicos
  • 2. Las proposiciones atómicas pueden combinarse de diferentes formas para dar lugar a proposiciones moleculares. Los elementos que sirven para conectar las proposiciones atómicas entre sí se llaman conectores lógicos. Los conectores lógicos nos dicen cómo afecta el valor de verdad de las proposiciones atómicas al valor de verdad de las proposiciones moleculares. Ya hemos visto que en el lenguaje natural, la conjunción "y" funciona como una conector lógico. Así, cuando decimos: Las flores son plantas y los erizos aves Estamos conectando la proposición atómica "las flores son plantas" con la proposición atómica "los erizos son aves" mediante la conector lógico "y". La "y" nos está diciendo que la proposición molecular "Las flores son plantas y los erizos aves" sólo es verdadera si las dos proposiciones atómicas que la componen son ambas verdaderas, y será falsa en caso de que, al menos una de ellas, sea falsa. Como sabemos que los erizos no son aves, podemos concluir que la proposición "Las flores son plantas y los erizos aves" es falsa. Según lo anterior, escribe la tabla de verdad para la conjunción. p q p y q Escribe 5 ejemplos de proposición compuesta o molecular y establece el valor de verdad para las conjunciones escritas. N° Proposición compuesta Valor de Verdad Probemos a cambiar el conectorlógico del ejemplo, y conectemos las dos proposiciones atómicas con el conector“o” del siguiente modo: Las flores son plantas o los erizos son aves La disyunción "o" también funciona aquí como una conector lógico y nos está diciendo que la propo sición molecular "las flores son plantas o los erizos son aves" es verdadera si al menos una de las proposiciones atómicas que la componen es verdadera. Sabemos que los erizos no son aves,pero como las flores síson plantas, concluimos que la proposición molecular del ejemplo es verdadera. Según lo anterior, escribe la tabla de verdad para la disyunción. p q p o q Escribe 5 ejemplos de proposición compuesta o molecular y establece el valor de verdad para las disyunciones escritas. N° Proposición compuesta Valor de Verdad Una tercera forma de conectar dos proposiciones atómicas sería: Si las flores son plantas entonces los erizos son aves. Esta forma de conectar dos proposiciones nos indica que una de ellas es la condición de la otra y por eso la conectiva correspondiente se llama "condicional" o "implicador". La primera proposición (Las flores son plantas)es la condición que se ha de cumplir, y nos referiremos a ella como antecedente; la segunda proposición (los erizos son aves) es lo condicionado, y nos referiremos a este elemento del condicional como consecuente. Según lo anterior, escribe la tabla de verdad para la implicación. p q p entonces q Escribe 5 ejemplos de proposición compuesta o molecular y establece el valor de verdad para las implicaciones escritas. N° Proposición compuesta Valor de Verdad
  • 3. En cuarto lugar tenemos la negación que, aplicada a una proposición atómica, simplemente invierte su valor de verdad, de modo que si la proposición atómica Los erizos son aves es falsa, entonces la proposición molecular Los erizos no son aves será verdadera. Quizá sorprenda que consideremos molecular la proposición "los erizos no son aves",pues que no se compone de dos proposiciones atómicas, sino de una. La razón de que dicha proposición sea molecular y no atómica es que uno de sus elementos componentes (a saber, la proposición "los erizos son aves") es una proposición atómica. Obsérvese que la negación no modifica el significado de la proposición negada, sino únicamente su valor de verdad. Esta falta de significado es un rasgo esencial de las conectivas lógicas. Por su parte, a cada conectiva lógica le corresponde un símbolo, como queda resumido en la siguiente tabla: Conectiva Símbolo Lenguaje natural Formalización Conjunción A Pepe es bombero y María es camarera p A q Diyunción V Pepe es bombero o María es camarera p V q Implicación -> Si Pepe es bombero, entonces María es camarera p -> q Negación ¬ Pepe no es bombero ¬p también existen proposiciones moleculares que reciben el nombre de bicondicionales que se unen con el conectorlógico si…. y sólo si.. La siguiente es la tabla de verdad para las proposiciones moleculares bicondicionales Escribe 5 ejemplos de proposición compuesta o molecular y establece el valor de verdad para las bicondicionales escritas. N° Proposición compuesta Valor de Verdad El siguiente triángulo se conoce con el nombre de triangulo de Sierpinsky. ¿Cuántos triángulos equiláteros (un triangulo equilátero es aquel que tiene la medida de la longitud de sus lados igual), ves en cada una de las imágenes?. Número de triángulos equiláteros.______ Número de triángulos equiláteros.______ Número de triángulos equiláteros._______ La siguiente imagen muestras una baldosa y cuatro modelos de enchapes.Señala ¿cuál enchape No es posible realizar con la baldosa inicial?____________________________________________
  • 4. Señala los detalles por los cuales la figura que has elegido es la respuesta correcta.__________________________________________________________________ Observa la figura (baldosa) inicial y los cuatro siguientes modelos de enchapes y señala ¿Cuál enchape No es posible realizar con la baldosa inicial?____________________________________________ Escribe las razones por las cuales escogiste la respuesta._______________________ Compara tu respuesta con un compañero y escucha las razones por las cuales el escogió la respuesta.____________________________ Observa las siguientes imágenes. Completa la secuencia dibujando las imágenes que corresponden a las posiciones 3, 6 y 7. 1 2 3 4 5 6 7 Escribe la mayor dificultad que has encontrado para llegar a la solución: ________________________________________________________________________________________ En las siguientes imágenes, completa la secuencia dibujando las imágenes que corresponden a las posiciones 3, 6 y 7 de la secuencia. 1 2 3 4 5 6 7 Escribe el razonamiento que utilizaste para encontrar la respuesta________________________________________________________________________________ Ahora observa las siguientes imágenes. Completa la secuencia dibujando las imágenes que corresponden a las posiciones 2, 6 y 7 de la secuencia. 1 2 3 4 5 6 7 ¿Tuviste alguna dificultad para llegar a la solución? ______ ¿Cuál?______________________________________________. ¿Qué diferencias has encontrado en las tres secuencias anteriores?_______________________. ¿Qué semejanzas has encontrado en las tres secuencias anteriores?______________________.