SlideShare una empresa de Scribd logo
Sistemas Numéricos
Con números se puede demostrar cualquier cosa.
Thomas Carlyle
Numeración
Sistema de símbolos o signos utilizados para expresar los números.
Numeración Griega
Numeración China
Numeración Maya
Números Romanos
Es un sistema de numeración que usa letras mayúsculas a las que se
ha asignado un valor numérico.
Se usa principalmente:
• En los números de capítulos y tomos de una obra.
• En los actos y escenas de una obra de teatro.
• En los nombres de papas, reyes y emperadores.
• En la designación de congresos, olimpiadas, asambleas,
certámenes
• En la fecha de las películas.
Números Romanos
Imagine la dificultad para efectuar una
multiplicación con los números romanos
Numeración Arábiga
El sistema corriente de notación numérica que es utilizado hoy y en casi todo
el mundo es la numeración arábiga.
Europeo 0 1 2 3 4 5 6 7 8 9
Arábico-Índico ٠ ١ ٢ ٣ ٤ ٥ ٦ ٧ ٨ ٩
Arábico-Índico Oriental
(Persa y Urdu)
۰ ۱ ۲ ۳ ۴ ۵ ۶ ۷ ۸ ۹
Devanagari (Hindi) ० १ २ ३ ४ ५ ६ ७ ८ ९
Tamil ௧ ௨ ௩ ௪ ௫ ௬ ௭ ௮ ௯
glifo es un signo grabado o, por extensión, pintado
• ¿Pero has pensado alguna vez por qué
“1” significa "uno", “2” significa "dos“,
etc.?
¿Cuál es la lógica que hay detrás de los
números arábigos o fenicios?
Se trata de ángulos
Si escribes el número en su forma primitiva,
verás que:
• El número 1 tiene un ángulo.
• El número 2 tiene dos ángulos.
• El número 3 tiene tres ángulos.
• Y el "O" no tiene ángulos.
• una imagen vale más que mil palabras…
Numeración Arábiga
Este sistema fue desarrollado primero por los
hindúes y luego por los árabes que introdujeron
la innovación de la
Notación posicional.
Solo es posible si existe un número para el cero.
El guarismo 0 permite distinguir entre 11, 101 y 1001 sin tener que
agregar símbolos adicionales.
La notación posicional
En la notación posicional los números
cambian su valor según su posición.
por ejemplo el digito 2 en el número 20 y el
mismo digito en el 2,000 toman diferente
valor.
Formula General
Los sistemas numéricos que utilizan la notación
posicional se pueden describir con la siguiente
formula.
Formula General
N = Numero
i = Posición
a = Coeficiente
n = el numero de dígitos
R = Raíz o base
Formula General
Subíndice para indicar a que base pertenecen.
Los números de notación posicional se usa el
subíndice.
385(10) es el numero trescientos ochenta y cinco de
base diez, el subíndice (10) indica que pertenece
al sistema decimal
101(10) 101(2) 101(16) 101(7)
Identificación de la posición
Ejemplo 385(10)
En donde el digito 5 ocupa la posición cero, el 8
la uno y el 3 la posición dos, como lo indica la
figura.
Ejemplo 385(10)
012
)10(5)10(8)10(3 ++=N
Ejemplo 385(10)
N= 3 (100) + 8 (10) + 5 (1)
En donde se puede observar que el número adquiere valor dependiendo la
posición que guarde.
El 3 que esta en la posición 2 se multiplica por 100 que es 102
como lo
llamamos tradicionalmente centenas.
al 8 de posición uno por 101
o decenas unidades.
al 5 de posición cero 100 unidades.
012
)10(5)10(8)10(3 ++=N
 sistemas-numericos
Además del sistema decimal existen otras bases de notación posicional que son
empleadas en los sistemas digitales como:
Binario o base 2 que consta de solo dos símbolos 0 y 1.
Octal o base 8 consta de ocho símbolos (0, 1, 2, 3, 4, 5, 6, 7) y es una
representación corta del binario.
ejemplo 111101110(2) = 756(8).
Hexadecimal o base 16 consta de 16 símbolos
(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F), es la representación corta mas
usada del binario
Ejemplo 111101111010(2) = F7A(16).
Decimal Binario
N(10)
N(2)
0 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
1
10
11
100
101
110
111
1000
1001
1010
1011
1100
1101
1110
1111
Decimal Binario Octal
N(10)
N(2)
N(8)
0 0
1
2
3
4
5
6
7
8
9
10
11
12
13
1
10
11
100
101
110
111
1000
1001
1010
1011
1100
0
1
2
3
4
5
6
7
10
11
12
13
14
1101 15
Decimal Binario Octal Hexadecimal
N(10)
N(2)
N(8)
N(16)
0 0 0
1 1 1
2 10 2
3 11 3
4 100 4
5 101 5
6 110 6
7 111 7
8 1000 10
9 1001 11
10 1010 12
11 1011 13
12 1100 14
13 1101 15
14 1110 16
15 1111 17
16 10000 20
17 10001 21
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
10
11
Decimal Binario Octal Hexadecimal Quinario
N(10)
N(2)
N(8)
N(16)
N(5)
0 0 0 0
1 1 1 1
2 10 2 2
3 11 3 3
4 100 4 4
5 101 5 5
6 110 6 6
7 111 7 7
8 1000 10 8
9 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F
16 10000 20 10
17 10001 21 11
0
1
2
3
4
10
11
12
13
14
20
21
22
23
24
30
31
Decimal Binario Octal Hexadecimal Quinario Base 11
N(10)
N(2)
N(8)
N(16)
N(5)
N(11)
0 0 0 0 0
1 1 1 1 1
2 10 2 2 2
3 11 3 3 3
4 100 4 4 4
5 101 5 5 5
6 110 6 6 6
7 111 7 7 7
8 1000 10 8 8
9 1001 11 9 9
10 1010 12 A A
11 1011 13 B 10
12 1100 14 C 11
13 1101 15 D 12
14 1110 16 E 13
15 1111 17 F 14
16 10000 20 10 15
17 10001 21 11 16
0
1
2
3
4
10
11
12
13
14
20
21
22
23
24
30
Conversiones entre sistemas
numéricos
Formula General
Para números con decimales
Ejemplo 1
convertir un número binario a decimal:
1011.11(2)→ N(10)
Ejemplo 1
1011.11(2)→ N(10)
N(10) = 1(2)3
+ 0(2)2
+ 1(2)1
+ 1(2)0
+ 1(2)-1
+ 1(2)-2
Ejemplo 1
N(10) = 1(2)3
+ 0(2)2
+ 1(2)1
+ 1(2)0
+ 1(2)-1
+ 1(2)-2
N(10) = 1(8) + 0(4) + 1(2) + 1(1) + 1(0.5) + 1(0.25)
N(10) = 8 + 0 + 2 + 1 + 0.5 + 0.25 =11.75(10)
1011.11(2)→ 11.75(10)
Ejercicio 1
• Convertir 100.01(2) → N(10)
Ejercicio 1
• Convertir
100.01(2) → N(10)
2 1 0 -1 -2
1 0 0 . 0 1(2)
= 4.25 (10)
Ejemplo 2
convertir un número octal a decimal
25.4(8)→ N(10)
Ejemplo 2
convertir un número octal a decimal
25.4(8)→ N(10)
N(10) = 2(8)1
+ 5(8)0
+ 4(8)-1
Ejemplo 2
N(10) = 2(8) + 5(1) + 4(0.125)
N(10) = 2(8)1
+ 5(8)0
+ 4(8)-1
convertir un número octal a decimal
25.4(8)→ N(10)
N(10) = 16 + 5 + .5 = 21. 5(10)
25.4(8)→ 21.5(10)
Ejercicio 2
convertir un número octal a decimal
5.2(8)→ N(10)
Ejercicio 2
convertir un número octal a decimal
5.2(8)→ N(10)
= 5.25 (10)
Ejemplo 3
convertir un número hexadecimal a decimal
AB.8(16)→ N(10)
A = 10
B = 11
C = 12
D = 13
E = 14
F = 15
Ejemplo 3
convertir un número hexadecimal a decimal
AB.8(16)→ N(10)
A B . 8 (16)
0 -11
N (10) =
A = 10
B = 11
C = 12
D = 13
E = 14
F = 15
10 (16)1
+ 11 (16)0
+ 8(16)-1
N (10) = 10 (16) + 11 (1) + 8(1/16)
N (10) = 160 + 11 + 0.5 = 171.5 (10)
Ejemplo 4
convertir un número hexadecimal a decimal
1D.8(16)→ N(10)
A = 10
B = 11
C = 12
D = 13
E = 14
F = 15
Ejemplo 3
convertir un número de base 5 a decimal
34.2(5)→ N(10)
3 4 . 2 (5)
0 -11
3(5)1
+ 4(5)0
+ 2 (5) -1
3(5)+ 4(1)0
+ 2 (.2) = 19.4 (10)
Ejemplo 4
convertir un número binario a decimal
1001.01(2)→ N(10)
0 -11
1 0 0 1 . 0 1
-223
Conversiones entre sistemas
numéricos
Multiplicar por la base
y sumar
N(X) → N(10)
Para números enteros
En un número de notación posicional el dígito más
significativo es la tiene la ponderación más alta (MSD) y se
encuentra más a la izquierda y el dígito menos significativo
es la que tiene es la tiene la ponderación más baja (LSD) y se
encuentra más a la derecha
MSD Digito mas significativo
LSD Digito menos significativo
En el caso del sistema binario se le
llama Bit (Dígito Binario)
MSB Bit mas significativo
LSB Bit menos significativo
• Bit = La Unidad de medida más pequeña de la
información digital. Un bit sólo tiene dos posibles valores:
0 o 1. La palabra "bit" se forma al combinar "b”- de
binary y la letra "t" de digit, o sea dígito binario.
Byte = Unidad de medida de la información digital,
equivalente a 8 bits o un carácter de información.
• El byte es una unidad común de almacenamiento en un
sistema de cómputo y es sinónimo de carácter de datos o
de texto; 100,000 bytes equivalen a 100,000 caracteres.
• Los bytes se emplean para hacer referencia a la
capacidad del hardware, al tamaño del software o la
información.
• Se llama también octeto.
Multiplicar por la base y sumar
Este método consiste en multiplicar el MSD o MSB (más
significativo dígito o más significativo Bit) por la base y el
producto se suma al valor del dígito siguiente, el
resultado se multiplica de nuevo por la base y el
producto se suma al dígito siguiente y así
sucesivamente hasta llegar al LSD o LSB, de modo que
el resultado de todas las operaciones es el número
equivalente decimal.
Multiplicar por la base y sumar
Ejemplo 1 convertir un número binario a decimal:
1011011 (2)→ N(10)
Multiplicar por la base y sumar
1X2=2
2
2X2=4
5
5X2=10
11
11X2=22
22
22X2=44
45
45X2=90
= 91(10)
Ejemplo 2 convertir un número Octal a decimal:
352 (8)→ N(10)
3 5 2 (8)
3X8=24
29
29X8=232
= 234(10)
= 719(10)
Ejemplo 3 convertir un número Hexadecimal a decimal:
2CF (16)→ N(10)
2 C F (16)
2X16=32
44
44X16=704
A = 10
B = 11
C = 12
D = 13
E = 14
F = 15
= 63(10)
Ejemplo 4 convertir un número de base cinco a decimal:
223 (5)→ N(10)
2 2 3 (5)
2X5=10
12
12X5=60
= 175(10)
Ejemplo 5 convertir un número de base siete a decimal:
340 (7)→ N(10)
3 4 0 (7)
3X7=21
25
25X7=175
11001(2)= 25(10)
Realice la siguiente Actividad
convertir un número binario a decimal:
11001 (2)→ N(10)
1121(4)= 89(10)
Realice la siguiente Actividad
convertir un número de base 4 a decimal:
1121 (4)→ N(10)

Más contenido relacionado

DOCX
Marco teorico robot
PPTX
La robótica
PDF
Copia de seguridad_de_astrid
PPTX
Evolucion de las computadoras
DOCX
Buses Arquitectura de computadoras
DOC
Convertir a binarios
PPTX
Conversión de números fraccionarios a binarios
PPTX
3. present sist nume
Marco teorico robot
La robótica
Copia de seguridad_de_astrid
Evolucion de las computadoras
Buses Arquitectura de computadoras
Convertir a binarios
Conversión de números fraccionarios a binarios
3. present sist nume

Similar a sistemas-numericos (20)

PPTX
sistemas numericos
PPTX
Sistemas numéricos.ppt
PDF
Sistemas Numéricos -- Numeric systems N1_x4.pdf
DOCX
1. elec digital
DOCX
Electrónica digital
DOCX
1. elec digital
DOCX
1. elec digital
PDF
Sistemas numericos final
PDF
Sistemas Numéricos
PPTX
Sistemas numericos y de conversion
PPTX
Sistemas digitales.
PPTX
Representacion de la información
PPT
Sistemas de numeracion(1)
PPTX
Asignacion #3
PPTX
Unidad 1 - Lógica unlar primer año tecni
PDF
REPRESENTACIÓN DE LA INFORMACIÓN EN LA COMPUTADORA
DOCX
Sistemas numericos
PPT
Sistemas Numericos
DOCX
Taller sistemas numericos sirley tatiana colorado gomez
PPTX
Asignacion #3
sistemas numericos
Sistemas numéricos.ppt
Sistemas Numéricos -- Numeric systems N1_x4.pdf
1. elec digital
Electrónica digital
1. elec digital
1. elec digital
Sistemas numericos final
Sistemas Numéricos
Sistemas numericos y de conversion
Sistemas digitales.
Representacion de la información
Sistemas de numeracion(1)
Asignacion #3
Unidad 1 - Lógica unlar primer año tecni
REPRESENTACIÓN DE LA INFORMACIÓN EN LA COMPUTADORA
Sistemas numericos
Sistemas Numericos
Taller sistemas numericos sirley tatiana colorado gomez
Asignacion #3
Publicidad

Más de joeltecno9 (20)

PPT
problema aviones
PPT
sistema combinacional-ascensor_monedas
PPT
sistema combinacional-ovejas
PPT
representacion de funciones semaforo
PPT
leyes morgan
PPT
mapas karnaught
PPT
simplificacion metodos-algebraicos
PPT
algebra boole
PPT
simplificar funciones
PPT
puertas logicas
PPT
electrónica digital
PPT
conversion sistemas numericos
PPT
cambios de base 2
PPT
cambios base
PPT
sistemas de numeracion
PPT
Sistemas analogicos-digitales
PPSX
Electronica analogica
PPSX
Componentes electronicos
PPSX
Electronica analogica
PPT
Semiconductores
problema aviones
sistema combinacional-ascensor_monedas
sistema combinacional-ovejas
representacion de funciones semaforo
leyes morgan
mapas karnaught
simplificacion metodos-algebraicos
algebra boole
simplificar funciones
puertas logicas
electrónica digital
conversion sistemas numericos
cambios de base 2
cambios base
sistemas de numeracion
Sistemas analogicos-digitales
Electronica analogica
Componentes electronicos
Electronica analogica
Semiconductores
Publicidad

Último (20)

PDF
ADMINISTRACIÓN DE ARCHIVOS - TICS (SENA).pdf
PDF
capacitación de aire acondicionado Bgh r 410
PDF
Maste clas de estructura metálica y arquitectura
PDF
Diapositiva proyecto de vida, materia catedra
PPTX
historia_web de la creacion de un navegador_presentacion.pptx
PDF
programa-de-estudios-2011-guc3ada-para-el-maestro-secundarias-tecnicas-tecnol...
PDF
MANUAL TECNOLOGÍA SER MINISTERIO EDUCACIÓN
PPTX
Sesion 1 de microsoft power point - Clase 1
PPTX
Presentacion de Alba Curso Auditores Internos ISO 19011
PPTX
modulo seguimiento 1 para iniciantes del
PPTX
Acronis Cyber Protect Cloud para Ciber Proteccion y Ciber Seguridad LATAM - A...
PDF
TRABAJO DE TECNOLOGIA.pdf...........................
PPTX
la-historia-de-la-medicina Edna Silva.pptx
PPTX
Curso de generación de energía mediante sistemas solares
PPTX
RAP02 - TECNICO SISTEMAS TELEINFORMATICOS.pptx
PDF
Ronmy José Cañas Zambrano - Potenciando la tecnología en Venezuela.pdf
PPT
El-Gobierno-Electrónico-En-El-Estado-Bolivia
PPTX
Historia Inteligencia Artificial Ana Romero.pptx
PPT
introduccion a las_web en el 2025_mejoras.ppt
PPTX
Power Point Nicolás Carrasco (disertación Roblox).pptx
ADMINISTRACIÓN DE ARCHIVOS - TICS (SENA).pdf
capacitación de aire acondicionado Bgh r 410
Maste clas de estructura metálica y arquitectura
Diapositiva proyecto de vida, materia catedra
historia_web de la creacion de un navegador_presentacion.pptx
programa-de-estudios-2011-guc3ada-para-el-maestro-secundarias-tecnicas-tecnol...
MANUAL TECNOLOGÍA SER MINISTERIO EDUCACIÓN
Sesion 1 de microsoft power point - Clase 1
Presentacion de Alba Curso Auditores Internos ISO 19011
modulo seguimiento 1 para iniciantes del
Acronis Cyber Protect Cloud para Ciber Proteccion y Ciber Seguridad LATAM - A...
TRABAJO DE TECNOLOGIA.pdf...........................
la-historia-de-la-medicina Edna Silva.pptx
Curso de generación de energía mediante sistemas solares
RAP02 - TECNICO SISTEMAS TELEINFORMATICOS.pptx
Ronmy José Cañas Zambrano - Potenciando la tecnología en Venezuela.pdf
El-Gobierno-Electrónico-En-El-Estado-Bolivia
Historia Inteligencia Artificial Ana Romero.pptx
introduccion a las_web en el 2025_mejoras.ppt
Power Point Nicolás Carrasco (disertación Roblox).pptx

sistemas-numericos

  • 1. Sistemas Numéricos Con números se puede demostrar cualquier cosa. Thomas Carlyle
  • 2. Numeración Sistema de símbolos o signos utilizados para expresar los números.
  • 6. Números Romanos Es un sistema de numeración que usa letras mayúsculas a las que se ha asignado un valor numérico. Se usa principalmente: • En los números de capítulos y tomos de una obra. • En los actos y escenas de una obra de teatro. • En los nombres de papas, reyes y emperadores. • En la designación de congresos, olimpiadas, asambleas, certámenes • En la fecha de las películas.
  • 7. Números Romanos Imagine la dificultad para efectuar una multiplicación con los números romanos
  • 8. Numeración Arábiga El sistema corriente de notación numérica que es utilizado hoy y en casi todo el mundo es la numeración arábiga. Europeo 0 1 2 3 4 5 6 7 8 9 Arábico-Índico ٠ ١ ٢ ٣ ٤ ٥ ٦ ٧ ٨ ٩ Arábico-Índico Oriental (Persa y Urdu) ۰ ۱ ۲ ۳ ۴ ۵ ۶ ۷ ۸ ۹ Devanagari (Hindi) ० १ २ ३ ४ ५ ६ ७ ८ ९ Tamil ௧ ௨ ௩ ௪ ௫ ௬ ௭ ௮ ௯ glifo es un signo grabado o, por extensión, pintado
  • 9. • ¿Pero has pensado alguna vez por qué “1” significa "uno", “2” significa "dos“, etc.? ¿Cuál es la lógica que hay detrás de los números arábigos o fenicios?
  • 10. Se trata de ángulos Si escribes el número en su forma primitiva, verás que: • El número 1 tiene un ángulo. • El número 2 tiene dos ángulos. • El número 3 tiene tres ángulos. • Y el "O" no tiene ángulos.
  • 11. • una imagen vale más que mil palabras…
  • 12. Numeración Arábiga Este sistema fue desarrollado primero por los hindúes y luego por los árabes que introdujeron la innovación de la Notación posicional. Solo es posible si existe un número para el cero. El guarismo 0 permite distinguir entre 11, 101 y 1001 sin tener que agregar símbolos adicionales.
  • 13. La notación posicional En la notación posicional los números cambian su valor según su posición. por ejemplo el digito 2 en el número 20 y el mismo digito en el 2,000 toman diferente valor.
  • 14. Formula General Los sistemas numéricos que utilizan la notación posicional se pueden describir con la siguiente formula.
  • 15. Formula General N = Numero i = Posición a = Coeficiente n = el numero de dígitos R = Raíz o base
  • 16. Formula General Subíndice para indicar a que base pertenecen. Los números de notación posicional se usa el subíndice. 385(10) es el numero trescientos ochenta y cinco de base diez, el subíndice (10) indica que pertenece al sistema decimal 101(10) 101(2) 101(16) 101(7)
  • 18. Ejemplo 385(10) En donde el digito 5 ocupa la posición cero, el 8 la uno y el 3 la posición dos, como lo indica la figura.
  • 20. Ejemplo 385(10) N= 3 (100) + 8 (10) + 5 (1) En donde se puede observar que el número adquiere valor dependiendo la posición que guarde. El 3 que esta en la posición 2 se multiplica por 100 que es 102 como lo llamamos tradicionalmente centenas. al 8 de posición uno por 101 o decenas unidades. al 5 de posición cero 100 unidades. 012 )10(5)10(8)10(3 ++=N
  • 22. Además del sistema decimal existen otras bases de notación posicional que son empleadas en los sistemas digitales como: Binario o base 2 que consta de solo dos símbolos 0 y 1. Octal o base 8 consta de ocho símbolos (0, 1, 2, 3, 4, 5, 6, 7) y es una representación corta del binario. ejemplo 111101110(2) = 756(8). Hexadecimal o base 16 consta de 16 símbolos (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F), es la representación corta mas usada del binario Ejemplo 111101111010(2) = F7A(16).
  • 24. Decimal Binario Octal N(10) N(2) N(8) 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 1 10 11 100 101 110 111 1000 1001 1010 1011 1100 0 1 2 3 4 5 6 7 10 11 12 13 14 1101 15
  • 25. Decimal Binario Octal Hexadecimal N(10) N(2) N(8) N(16) 0 0 0 1 1 1 2 10 2 3 11 3 4 100 4 5 101 5 6 110 6 7 111 7 8 1000 10 9 1001 11 10 1010 12 11 1011 13 12 1100 14 13 1101 15 14 1110 16 15 1111 17 16 10000 20 17 10001 21 0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11
  • 26. Decimal Binario Octal Hexadecimal Quinario N(10) N(2) N(8) N(16) N(5) 0 0 0 0 1 1 1 1 2 10 2 2 3 11 3 3 4 100 4 4 5 101 5 5 6 110 6 6 7 111 7 7 8 1000 10 8 9 1001 11 9 10 1010 12 A 11 1011 13 B 12 1100 14 C 13 1101 15 D 14 1110 16 E 15 1111 17 F 16 10000 20 10 17 10001 21 11 0 1 2 3 4 10 11 12 13 14 20 21 22 23 24 30 31
  • 27. Decimal Binario Octal Hexadecimal Quinario Base 11 N(10) N(2) N(8) N(16) N(5) N(11) 0 0 0 0 0 1 1 1 1 1 2 10 2 2 2 3 11 3 3 3 4 100 4 4 4 5 101 5 5 5 6 110 6 6 6 7 111 7 7 7 8 1000 10 8 8 9 1001 11 9 9 10 1010 12 A A 11 1011 13 B 10 12 1100 14 C 11 13 1101 15 D 12 14 1110 16 E 13 15 1111 17 F 14 16 10000 20 10 15 17 10001 21 11 16 0 1 2 3 4 10 11 12 13 14 20 21 22 23 24 30
  • 30. Ejemplo 1 convertir un número binario a decimal: 1011.11(2)→ N(10)
  • 31. Ejemplo 1 1011.11(2)→ N(10) N(10) = 1(2)3 + 0(2)2 + 1(2)1 + 1(2)0 + 1(2)-1 + 1(2)-2
  • 32. Ejemplo 1 N(10) = 1(2)3 + 0(2)2 + 1(2)1 + 1(2)0 + 1(2)-1 + 1(2)-2 N(10) = 1(8) + 0(4) + 1(2) + 1(1) + 1(0.5) + 1(0.25) N(10) = 8 + 0 + 2 + 1 + 0.5 + 0.25 =11.75(10) 1011.11(2)→ 11.75(10)
  • 33. Ejercicio 1 • Convertir 100.01(2) → N(10)
  • 34. Ejercicio 1 • Convertir 100.01(2) → N(10) 2 1 0 -1 -2 1 0 0 . 0 1(2) = 4.25 (10)
  • 35. Ejemplo 2 convertir un número octal a decimal 25.4(8)→ N(10)
  • 36. Ejemplo 2 convertir un número octal a decimal 25.4(8)→ N(10) N(10) = 2(8)1 + 5(8)0 + 4(8)-1
  • 37. Ejemplo 2 N(10) = 2(8) + 5(1) + 4(0.125) N(10) = 2(8)1 + 5(8)0 + 4(8)-1 convertir un número octal a decimal 25.4(8)→ N(10) N(10) = 16 + 5 + .5 = 21. 5(10) 25.4(8)→ 21.5(10)
  • 38. Ejercicio 2 convertir un número octal a decimal 5.2(8)→ N(10)
  • 39. Ejercicio 2 convertir un número octal a decimal 5.2(8)→ N(10) = 5.25 (10)
  • 40. Ejemplo 3 convertir un número hexadecimal a decimal AB.8(16)→ N(10) A = 10 B = 11 C = 12 D = 13 E = 14 F = 15
  • 41. Ejemplo 3 convertir un número hexadecimal a decimal AB.8(16)→ N(10) A B . 8 (16) 0 -11 N (10) = A = 10 B = 11 C = 12 D = 13 E = 14 F = 15 10 (16)1 + 11 (16)0 + 8(16)-1 N (10) = 10 (16) + 11 (1) + 8(1/16) N (10) = 160 + 11 + 0.5 = 171.5 (10)
  • 42. Ejemplo 4 convertir un número hexadecimal a decimal 1D.8(16)→ N(10) A = 10 B = 11 C = 12 D = 13 E = 14 F = 15
  • 43. Ejemplo 3 convertir un número de base 5 a decimal 34.2(5)→ N(10) 3 4 . 2 (5) 0 -11 3(5)1 + 4(5)0 + 2 (5) -1 3(5)+ 4(1)0 + 2 (.2) = 19.4 (10)
  • 44. Ejemplo 4 convertir un número binario a decimal 1001.01(2)→ N(10) 0 -11 1 0 0 1 . 0 1 -223
  • 46. Multiplicar por la base y sumar N(X) → N(10) Para números enteros
  • 47. En un número de notación posicional el dígito más significativo es la tiene la ponderación más alta (MSD) y se encuentra más a la izquierda y el dígito menos significativo es la que tiene es la tiene la ponderación más baja (LSD) y se encuentra más a la derecha MSD Digito mas significativo LSD Digito menos significativo
  • 48. En el caso del sistema binario se le llama Bit (Dígito Binario) MSB Bit mas significativo LSB Bit menos significativo
  • 49. • Bit = La Unidad de medida más pequeña de la información digital. Un bit sólo tiene dos posibles valores: 0 o 1. La palabra "bit" se forma al combinar "b”- de binary y la letra "t" de digit, o sea dígito binario. Byte = Unidad de medida de la información digital, equivalente a 8 bits o un carácter de información. • El byte es una unidad común de almacenamiento en un sistema de cómputo y es sinónimo de carácter de datos o de texto; 100,000 bytes equivalen a 100,000 caracteres. • Los bytes se emplean para hacer referencia a la capacidad del hardware, al tamaño del software o la información. • Se llama también octeto.
  • 50. Multiplicar por la base y sumar Este método consiste en multiplicar el MSD o MSB (más significativo dígito o más significativo Bit) por la base y el producto se suma al valor del dígito siguiente, el resultado se multiplica de nuevo por la base y el producto se suma al dígito siguiente y así sucesivamente hasta llegar al LSD o LSB, de modo que el resultado de todas las operaciones es el número equivalente decimal.
  • 51. Multiplicar por la base y sumar Ejemplo 1 convertir un número binario a decimal: 1011011 (2)→ N(10)
  • 52. Multiplicar por la base y sumar 1X2=2 2 2X2=4 5 5X2=10 11 11X2=22 22 22X2=44 45 45X2=90 = 91(10)
  • 53. Ejemplo 2 convertir un número Octal a decimal: 352 (8)→ N(10) 3 5 2 (8) 3X8=24 29 29X8=232 = 234(10)
  • 54. = 719(10) Ejemplo 3 convertir un número Hexadecimal a decimal: 2CF (16)→ N(10) 2 C F (16) 2X16=32 44 44X16=704 A = 10 B = 11 C = 12 D = 13 E = 14 F = 15
  • 55. = 63(10) Ejemplo 4 convertir un número de base cinco a decimal: 223 (5)→ N(10) 2 2 3 (5) 2X5=10 12 12X5=60
  • 56. = 175(10) Ejemplo 5 convertir un número de base siete a decimal: 340 (7)→ N(10) 3 4 0 (7) 3X7=21 25 25X7=175
  • 57. 11001(2)= 25(10) Realice la siguiente Actividad convertir un número binario a decimal: 11001 (2)→ N(10)
  • 58. 1121(4)= 89(10) Realice la siguiente Actividad convertir un número de base 4 a decimal: 1121 (4)→ N(10)