2
Lo más leído
3
Lo más leído
Grupos y         Tabla                 Historia
periodos        periódica


                              Metales, no metales
Configuración                   y gases nobles
 electrónica
                Propiedades
                 periódicas




  Afinidad
 electrónica
Tabla periódica
Breve historia del Sistema Periódico
En 1817, Dobereiner Destaca la existencia de similitudes entre
elementos agrupados en tríos que él denomina “tríadas”.
En 1864 Chancourtois y el inglés Newlands anuncian la Ley de las
octavas
En 1869, el alemán Meyer pone en evidencia una cierta periodicidad
en el volumen atómico.
. Simultáneamente con el ruso Mendeleïev, la primera tabla con 63
elementos. De esta manera los elementos son clasificados
verticalmente. Las agrupaciones horizontales representan elementos
de la misma “familia".
Consiguió prever las propiedades químicas de tres de los elementos
que faltaban a partir de las propiedades de los cuatro elementos
vecinos. Cuando los elementos fueron descubiertos, ellos poseían las
propiedades predichas.
Sin embargo aunque la la clasificación de Mendeleïev marca un claro
progreso, contiene ciertas anomalías debidas a errores de
determinación de masa atómica
A principios del siglo XX Henry Moseley propuso la ordenación por
número atómico.
Ley de las octavas de Newlands

   1          2          3          4         5          6          7



                        B          C          N         O
   Li        Be                                                    F
                       10,8       12,0       14,0      16,0
  6,9        9,0                                                  19,0
                        Al         Si         P         S
   Na        Mg                                                    Cl
                       27,0       28,1       31,0      32,1
  23,0      24,3                                                  35,5

   K         Ca
  39,0      40,0




: las propiedades se repiten cada ocho elementos. Pero esta ley no puede
aplicarse a los elementos más allá del Calcio..
Triadas de Döbereiner

                   LiCl                   CaCl2                     H 2S
       Litio                  Calcio                  Azufre
                  LiOH                    CaSO4                     SO2




                  NaCl                    SrCl2                    H2Se
      Sodio                 Estroncio                 Selenio
                  NaOH                    SrSO4                    SeO2




                   KCl                    BaCl2                     H2Te
     Potasio                   Bario                  Telurio
                   KOH                    BaSO4                     TeO2


Pone en evidencia que la masa de uno de los tres elementos de la triada es
intermedia entre la de los otros dos.
Documento de laprimera versión de la tabla periódica en 1869. Los elementos se
clasificaban según sus masas atómicas, viéndose aparecer una periodicidad en lo
que concierne a ciertas propiedades de los elementos.
Henry Moseleyen 1913 estudió los espectros de rayos X de una serie de
elementos contiguos de la tabla periódica. Los espectros presentaban unas
rayas características que se desplazaban hacia menores longitudes de onda al
tiempo que se avanzaba de un elemento al siguiente de la clasificación
periódica.
La frecuencia de esas rayas se podía determinar mediante una fórmula
empírica que era función de un número Z que correspondía a la posición del
elemento en cuestión en la tabla. Este número recibió el nombre de número
atómico y representa además del lugar que ocupa un elemento en la tabla, el
número de protones del nucleo y por tanto de electrones en la corteza. La tabla
periódica pasaba entonces a ordenarse por número de protones o electrones
de cada elemento.
 Grup 0   Grup I      Grup II     Grup III      Grup IV      Grup V      Grup VI     Grup VII     Grup VIII
         a     b      a     b     a     b       a     b     a     b       a    b     a      b
       H1
 He 2 Li 3         Be 4        B5                     C6           N7          O8           F9
 Ne 10 Na 11       Mg 12       Al 13                Si 14         P 15        S 16       Cl 17
       K 19        Ca 20       Sc 21         Ti 22        V 23         Cr 24       Mn 25        Fe 26, Co 27,
 Ar 18       Cu 29       Zn 30       Ga 31         Ge 32        Ag 33        Se 34       Br 35      Ni 28
       Rb 37       Sr 38       Y 39          Zr 40        Nb 41        Mo 42       -            Ru 44, Rh 45,
 Kr 36       Ag 47       Cd 48         In 49       Sn 50        Sb 51        Te 52         I 53     Pd 46
       Cs 55       Ba 56       57-71         Hf 72        Ta 73        W 74        Re 75        Os 76, Ir 77, Pt
 Xe 54       Au 79       Hg 80         Tl 81       Pb 82         Bi 83       Po 84            -       78
Grupos y períodos
El sistema periódico consta de:
filas llamadas períodos y de columnas llamadas grupos.
Los elementos conocidos hasta el momento se organizan en siete períodos y
dieciocho grupos. Tenemos ocho grupos largos y diez cortos. También nos
encontramos con dos filas que habitualmente se colocan fuera de la tabla
periódica, las denominadas 'Tierras Raras' o 'Metales de transición externa',

Los elementos que tienen propiedades similares al lantano se denominan
lantánidos (primera de las dos filas) y los otros (segunda fila de las dos) con
propiedades parecidas al Actinio, actínidos.
Los grupos largos tienen nombre propio:
          Grupo que comienza con el elemento                  Se denomina
                        Litio (Li)                   Grupo de los alcalinos
                      Be (Berilio)                   Grupo de los alcalinotérreos
                       B (Boro)                      Grupo de los térreos
                     C (Carbono)                     Grupo de los carbonoideos
                     N (Nitrógeno)                   Grupo de los nitrogenoides
                     O (Oxígeno)                     Grupo de los anfígenos
                       F (Flúor)                     Grupo de los halógenos
                                                     Grupo de los gases nobles o
                       He (Helio)
                                                     grupo de los gases inertes
Metales, no metales, gases nobles y otros
Una primera clasificación de la tabla es entre Metales, No Metales y Gases
Nobles
Propiedades de los metales.

•Son buenos conductores.
•Son resistentes y duros.
•Son brillantes cuando se frotan o al corte.
•Son maleables, se convierten con facilidad en láminas muy finas.
•Son dúctiles, se transforman con facilidad en hilos finos.
•Se producen sonidos característicos (sonido metálico) cuando son golpeados.
•Tienen altos puntos de fusión y de ebullición.
•Poseen elevadas densidades; es decir, tienen mucha masa para su tamaño:
tienen muchos átomos juntos en un pequeño volumen.
•Algunos metales tienen propiedades magnéticas.
•Pueden formar aleaciones cuando se mezclan diferentes metales.
•Tienen tendencia a formar iones positivos.
Hay algunas excepciones a las propiedades generales enunciadas
anteriormente:
•El mercurio es un metal pero es líquido a temperatura ambiente.
•El sodio es metal pero es blando (se raya con facilidad) y flota (baja densidad)
Propiedades de los no metales:

•Son malos conductores
•Son poco resistentes y se desgastan con facilidad.
•No reflejan la luz como los metales, no tienen el denominado brillo metálico.
•Su superficie no es tan lisa como en los metales.
•Son frágiles, se rompen con facilidad.
•Tienen baja densidad.
•No son atraídos por los imanes.
•Tienen tendencia a formar iones negativos.

          Hay algunas excepciones a las propiedades generales enunciadas
anteriormente:
•El diamante es un no metal pero presenta una gran dureza.
•El grafito es un no metal pero conduce la electricidad.
•
Otras propiedades
Semimetales o metaloides.
Se encuentran entre lo metales y los no metales (B, Si, Ge, As, Sb, Te, Po).
Son sólidos a temperatura ambiente y forman iones positivos con dificultad.
Según las circunstancias tienen uno u otro comportamiento.

Hidrógeno.
Aunque lo consideremos un no metal, no tiene las características propias de
ningún grupo, ni se le puede asignar una posición en el sistema periódico:
puede formar iones positivos o iones negativos.

Gases Nobles o Gases Inertes.
La característica fundamental es que en condiciones normales son inertes, no
reaccionan con ningún elemento ni forman iones.
PROPIEDADES PERIÓDICAS
•¿Qué son?

Son propiedades que presentan los elementos químicos y que se repiten secuencialmente en
la tabla periódica. Por la colocación en la misma de un elemento, podemos deducir que
valores presentan dichas propiedades así como su comportamiento químico.


Estas propiedades presentan una periodicidad en la tabla. esto supone, por ejemplo, que la
variación de una de ellas en los grupos va a responder a una regla general. Esto nos permite,
al conocer estas reglas de variación, cual va a ser el comportamiento químico de un elemento,
ya que dicho comportamiento, depende en gran manera, de sus propiedades periódicas.

•Principales propiedades periódicas

Hay un gran número de propiedades periódicas. Entre las más importantes destacaríamos:

- Estructura electrónica – Potencial de ionización – Electronegatividad – Afinidad
electrónica – Carácter Metálico – Radio atómico

•Otras propiedades periódicas
 - Volumen atómico - Radio iónico – Densidad – Calor específico – Calor de vaporización –
Punto de ebullición – Punto de fusión –Caracter oxidante – valencia covalente -
Metales alcalinos Orbital ns1
                                                                                         G1



                                                   Alcalinos –térreos orbital ns2
                                                                                    G2




                                                             Orbitales nd
                                                          Metales de transición




Actínidos Orbitales 5f
                         Lantánidos Orbitales 4f




                                                     Halógenos Orbital ns2 np5

                                                    Gases inertes Orbital ns2 np6
Afinidad electrónica
La afinidad electrónica (AE) o electroafinidad se define como la energía
liberada cuando un átomo gaseoso neutro en su estado fundamental (de
mínima energía) captura un electrón y forma un ión mononegativo: . Dado
que se trata de energía liberada, tiene signo negativo. En los casos en los que
la energía sea absorbida, tendrá signo positivo.
La Electroafinidad aumenta cuando el tamaño del átomo disminuye, el efecto
pantalla aumenta y cuando el nº atómico disminuye. Visto de otra manera:
aumenta de izquierda a derecha, y de abajo hacia arriba, al igual que lo hace
la electronegatividad. En la tabla periodica tradicional no es posible encontrar
esta información.
Energía de ionización

El potencial de ionización o energía de ionización o EI
es la mínima energía que hay que suministrar a un átomo
neutro y en su estado fundamental, perteneciente a un
elemento en estado gaseoso, para arrancarle un electrón.
La reacción puede expresarse de la siguiente forma:
Radio Atómico
Es la distancia media que entre dos núcleos de átomos iguales . Por
medio del radio atómico es posible determinar el tamaño del átomo.
En los grupos, el radio atómico aumenta con el número atómico, es
decir hacia abajo.
En los períodos disminuye al aumentar Z, hacia la derecha, debido a la
atracción que ejerce el núcleo sobre los electrones de los orbitales más
externos, disminuyendo así la distancia núcleo-electrón.
Electronegatividad

 Es una medida de la fuerza de atracción que ejerce un átomo sobre los
electrones de otro en un enlace covalente. Los diferentes valores de
electronegatividad se clasifican según diferentes escalas, entre ellas la
escala de Pauling y la escala de Mulliken.
En general, los diferentes valores de electronegatividad de los átomos
determinan el tipo de enlace que se formará en la molécula que los
combina. Así, según la diferencia entre las electronegatividades de
éstos se puede determinar (convencionalmente) si el enlace será, según
la escala de Linus Pauling:
•Iónico (diferencia superior o igual a 1.7)
•* Covalente polar (diferencia entre 1.7 y 0.4)
•* Covalente no polar (diferencia inferior a 0.4)

Cuanto más pequeño es el radio atómico, mayor es la energía de ionización y
mayor la electronegatividad y viceversa.

Más contenido relacionado

PDF
Enlace quimico
PPT
CONFIGURACIÓN ELECTRÓNICA
PPTX
Ppt tabla periodica
PPS
Balanceo de ecuaciones químicas por método de tanteo
PDF
Ejercicios Enlace quimico y tabla periodica 2 medio
PPTX
Geometria molecular
PPTX
Enlace metálico y propiedades de los metales 1
PDF
Modelo atómico de Rutherford
Enlace quimico
CONFIGURACIÓN ELECTRÓNICA
Ppt tabla periodica
Balanceo de ecuaciones químicas por método de tanteo
Ejercicios Enlace quimico y tabla periodica 2 medio
Geometria molecular
Enlace metálico y propiedades de los metales 1
Modelo atómico de Rutherford

La actualidad más candente (20)

PPTX
Modelo atomico actual
PPT
Enlace metálico
PPTX
Dinámica (Segunda Ley de Newton). Presentación diseñada por el MTRO. JAVIER S...
PPTX
Enlace covalente
DOC
Informe 5 efecto fotoelectrico
PPT
ESTEQUIOMETRÍA
DOC
Importancia y utilidades de los elementos químicos
DOCX
Practica 2 (propiedades de metales
PPTX
Electronegatividad y la regla del octeto
PPTX
Estructura de Lewis
PPT
Importancia de la quimica
PPTX
Clase de configuracion electronica
DOCX
Ensayo de quimica
PPTX
Electronegatividad
PPT
CONFIGURACION ELECTRONICA
PPS
Historia de la tabla periódica
PPT
configuracion electronica
PPT
Diapositivas clasificacion de la materia
PPTX
El oxígeno
PPTX
Modelos Atómicos
Modelo atomico actual
Enlace metálico
Dinámica (Segunda Ley de Newton). Presentación diseñada por el MTRO. JAVIER S...
Enlace covalente
Informe 5 efecto fotoelectrico
ESTEQUIOMETRÍA
Importancia y utilidades de los elementos químicos
Practica 2 (propiedades de metales
Electronegatividad y la regla del octeto
Estructura de Lewis
Importancia de la quimica
Clase de configuracion electronica
Ensayo de quimica
Electronegatividad
CONFIGURACION ELECTRONICA
Historia de la tabla periódica
configuracion electronica
Diapositivas clasificacion de la materia
El oxígeno
Modelos Atómicos
Publicidad

Destacado (12)

PPT
La Tabla Periódica y la Ley Periódica
DOCX
Mapa conseptual sem 3
PPTX
Diapositivas blogger 1 u 1
PDF
Números cuánticos y configuración electrónica
DOCX
Cuadro conceptual
DOC
Mapa conceptual quimica
PDF
Matematica basica - Introducción al Cálculo
PPT
Numeros cuanticos configuracioin- tabla period
DOCX
Mapa conceptual (materia y sus propiedades) (1)
PDF
Geometria
PPTX
Propiedades de los agregados
PDF
La materia. mapa conceptual. español
La Tabla Periódica y la Ley Periódica
Mapa conseptual sem 3
Diapositivas blogger 1 u 1
Números cuánticos y configuración electrónica
Cuadro conceptual
Mapa conceptual quimica
Matematica basica - Introducción al Cálculo
Numeros cuanticos configuracioin- tabla period
Mapa conceptual (materia y sus propiedades) (1)
Geometria
Propiedades de los agregados
La materia. mapa conceptual. español
Publicidad

Similar a Tabla periódica (20)

PPT
TABLA PERIÓDICA
PDF
Tema 5
DOC
Trabajo PráCtico Estructura AtóMica
PDF
tablaperidicasi.pdf
PPT
Tabla periodica
DOCX
Tabla periodica
DOC
Tabla periodica eso
DOC
Tabla periodica eso
PPTX
Tabla periódica y propiedades periódicas
DOCX
Blog quimica
PPTX
HISTORIA DE LA TABLA PERIODICA DE LOS ELEMENTOS QUIMICOS Área Académica Quími...
PDF
TABLA PERIÓDICA
PPT
Sistema PerióDico
PPT
Prop periodicas
PPT
Tabla periodica quim fimaas
PPT
Tabla periodica quim fimaas
PPT
ELEMENTOS QUIMICOS.ppt
PPT
TABLA PERIODICA DIAPOSITIVAS.ppt
PPT
Tabla periodica
PPTX
La tabla periodica
TABLA PERIÓDICA
Tema 5
Trabajo PráCtico Estructura AtóMica
tablaperidicasi.pdf
Tabla periodica
Tabla periodica
Tabla periodica eso
Tabla periodica eso
Tabla periódica y propiedades periódicas
Blog quimica
HISTORIA DE LA TABLA PERIODICA DE LOS ELEMENTOS QUIMICOS Área Académica Quími...
TABLA PERIÓDICA
Sistema PerióDico
Prop periodicas
Tabla periodica quim fimaas
Tabla periodica quim fimaas
ELEMENTOS QUIMICOS.ppt
TABLA PERIODICA DIAPOSITIVAS.ppt
Tabla periodica
La tabla periodica

Último (20)

PDF
Ernst Cassirer - Antropologia Filosofica.pdf
PDF
UNIDAD 2 | La noticia como género: Informar con precisión y criterio
PDF
TALLER DE ESTADISTICA BASICA para principiantes y no tan basicos
PDF
KOF-2022-espanol-mar-27-11-36 coke.pdf jsja
PDF
MODULO I ENFERMERIA BASICA.pdf HIstoria en enfermeria
PDF
Jodorowsky, Alejandro - Manual de Psicomagia.pdf
PDF
La Inteligencia Emocional - Fabian Goleman TE4 Ccesa007.pdf
DOCX
Fisiopatologia bdjdbd resumen de cierta parte
DOCX
TEXTO DE TRABAJO DE EDUCACION RELIGIOSA - PRIMER GRADO.docx
PDF
CURRICULAR DE PRIMARIA santa ursula..pdf
PDF
Texto Digital Los Miserables - Victor Hugo Ccesa007.pdf
PDF
Uso de la Inteligencia Artificial en la IE.pdf
PDF
La Formacion Universitaria en Nuevos Escenarios Ccesa007.pdf
PPTX
RESUMENES JULIO - QUIRÓFANO HOSPITAL GENERAL PUYO.pptx
PDF
Los10 Mandamientos de la Actitud Mental Positiva Ccesa007.pdf
DOCX
TEXTO DE TRABAJO DE EDUCACION RELIGIOSA - CUARTO GRADO.docx
PDF
Házlo con Miedo - Scott Allan Ccesa007.pdf
PDF
El Genero y Nuestros Cerebros - Gina Ripon Ccesa007.pdf
PDF
Aprendizaje Emocionante - Begoña Ibarrola SM2 Ccesa007.pdf
PDF
Ficha de Atencion a Estudiantes RE Ccesa007.pdf
Ernst Cassirer - Antropologia Filosofica.pdf
UNIDAD 2 | La noticia como género: Informar con precisión y criterio
TALLER DE ESTADISTICA BASICA para principiantes y no tan basicos
KOF-2022-espanol-mar-27-11-36 coke.pdf jsja
MODULO I ENFERMERIA BASICA.pdf HIstoria en enfermeria
Jodorowsky, Alejandro - Manual de Psicomagia.pdf
La Inteligencia Emocional - Fabian Goleman TE4 Ccesa007.pdf
Fisiopatologia bdjdbd resumen de cierta parte
TEXTO DE TRABAJO DE EDUCACION RELIGIOSA - PRIMER GRADO.docx
CURRICULAR DE PRIMARIA santa ursula..pdf
Texto Digital Los Miserables - Victor Hugo Ccesa007.pdf
Uso de la Inteligencia Artificial en la IE.pdf
La Formacion Universitaria en Nuevos Escenarios Ccesa007.pdf
RESUMENES JULIO - QUIRÓFANO HOSPITAL GENERAL PUYO.pptx
Los10 Mandamientos de la Actitud Mental Positiva Ccesa007.pdf
TEXTO DE TRABAJO DE EDUCACION RELIGIOSA - CUARTO GRADO.docx
Házlo con Miedo - Scott Allan Ccesa007.pdf
El Genero y Nuestros Cerebros - Gina Ripon Ccesa007.pdf
Aprendizaje Emocionante - Begoña Ibarrola SM2 Ccesa007.pdf
Ficha de Atencion a Estudiantes RE Ccesa007.pdf

Tabla periódica

  • 1. Grupos y Tabla Historia periodos periódica Metales, no metales Configuración y gases nobles electrónica Propiedades periódicas Afinidad electrónica
  • 3. Breve historia del Sistema Periódico En 1817, Dobereiner Destaca la existencia de similitudes entre elementos agrupados en tríos que él denomina “tríadas”. En 1864 Chancourtois y el inglés Newlands anuncian la Ley de las octavas En 1869, el alemán Meyer pone en evidencia una cierta periodicidad en el volumen atómico. . Simultáneamente con el ruso Mendeleïev, la primera tabla con 63 elementos. De esta manera los elementos son clasificados verticalmente. Las agrupaciones horizontales representan elementos de la misma “familia". Consiguió prever las propiedades químicas de tres de los elementos que faltaban a partir de las propiedades de los cuatro elementos vecinos. Cuando los elementos fueron descubiertos, ellos poseían las propiedades predichas. Sin embargo aunque la la clasificación de Mendeleïev marca un claro progreso, contiene ciertas anomalías debidas a errores de determinación de masa atómica A principios del siglo XX Henry Moseley propuso la ordenación por número atómico.
  • 4. Ley de las octavas de Newlands 1 2 3 4 5 6 7 B C N O Li Be F 10,8 12,0 14,0 16,0 6,9 9,0 19,0 Al Si P S Na Mg Cl 27,0 28,1 31,0 32,1 23,0 24,3 35,5 K Ca 39,0 40,0 : las propiedades se repiten cada ocho elementos. Pero esta ley no puede aplicarse a los elementos más allá del Calcio..
  • 5. Triadas de Döbereiner LiCl CaCl2 H 2S Litio Calcio Azufre LiOH CaSO4 SO2 NaCl SrCl2 H2Se Sodio Estroncio Selenio NaOH SrSO4 SeO2 KCl BaCl2 H2Te Potasio Bario Telurio KOH BaSO4 TeO2 Pone en evidencia que la masa de uno de los tres elementos de la triada es intermedia entre la de los otros dos.
  • 6. Documento de laprimera versión de la tabla periódica en 1869. Los elementos se clasificaban según sus masas atómicas, viéndose aparecer una periodicidad en lo que concierne a ciertas propiedades de los elementos.
  • 7. Henry Moseleyen 1913 estudió los espectros de rayos X de una serie de elementos contiguos de la tabla periódica. Los espectros presentaban unas rayas características que se desplazaban hacia menores longitudes de onda al tiempo que se avanzaba de un elemento al siguiente de la clasificación periódica. La frecuencia de esas rayas se podía determinar mediante una fórmula empírica que era función de un número Z que correspondía a la posición del elemento en cuestión en la tabla. Este número recibió el nombre de número atómico y representa además del lugar que ocupa un elemento en la tabla, el número de protones del nucleo y por tanto de electrones en la corteza. La tabla periódica pasaba entonces a ordenarse por número de protones o electrones de cada elemento. Grup 0 Grup I Grup II Grup III Grup IV Grup V Grup VI Grup VII Grup VIII a b a b a b a b a b a b a b H1 He 2 Li 3 Be 4 B5 C6 N7 O8 F9 Ne 10 Na 11 Mg 12 Al 13 Si 14 P 15 S 16 Cl 17 K 19 Ca 20 Sc 21 Ti 22 V 23 Cr 24 Mn 25 Fe 26, Co 27, Ar 18 Cu 29 Zn 30 Ga 31 Ge 32 Ag 33 Se 34 Br 35 Ni 28 Rb 37 Sr 38 Y 39 Zr 40 Nb 41 Mo 42 - Ru 44, Rh 45, Kr 36 Ag 47 Cd 48 In 49 Sn 50 Sb 51 Te 52 I 53 Pd 46 Cs 55 Ba 56 57-71 Hf 72 Ta 73 W 74 Re 75 Os 76, Ir 77, Pt Xe 54 Au 79 Hg 80 Tl 81 Pb 82 Bi 83 Po 84 - 78
  • 8. Grupos y períodos El sistema periódico consta de: filas llamadas períodos y de columnas llamadas grupos. Los elementos conocidos hasta el momento se organizan en siete períodos y dieciocho grupos. Tenemos ocho grupos largos y diez cortos. También nos encontramos con dos filas que habitualmente se colocan fuera de la tabla periódica, las denominadas 'Tierras Raras' o 'Metales de transición externa', Los elementos que tienen propiedades similares al lantano se denominan lantánidos (primera de las dos filas) y los otros (segunda fila de las dos) con propiedades parecidas al Actinio, actínidos. Los grupos largos tienen nombre propio: Grupo que comienza con el elemento Se denomina Litio (Li) Grupo de los alcalinos Be (Berilio) Grupo de los alcalinotérreos B (Boro) Grupo de los térreos C (Carbono) Grupo de los carbonoideos N (Nitrógeno) Grupo de los nitrogenoides O (Oxígeno) Grupo de los anfígenos F (Flúor) Grupo de los halógenos Grupo de los gases nobles o He (Helio) grupo de los gases inertes
  • 9. Metales, no metales, gases nobles y otros Una primera clasificación de la tabla es entre Metales, No Metales y Gases Nobles
  • 10. Propiedades de los metales. •Son buenos conductores. •Son resistentes y duros. •Son brillantes cuando se frotan o al corte. •Son maleables, se convierten con facilidad en láminas muy finas. •Son dúctiles, se transforman con facilidad en hilos finos. •Se producen sonidos característicos (sonido metálico) cuando son golpeados. •Tienen altos puntos de fusión y de ebullición. •Poseen elevadas densidades; es decir, tienen mucha masa para su tamaño: tienen muchos átomos juntos en un pequeño volumen. •Algunos metales tienen propiedades magnéticas. •Pueden formar aleaciones cuando se mezclan diferentes metales. •Tienen tendencia a formar iones positivos. Hay algunas excepciones a las propiedades generales enunciadas anteriormente: •El mercurio es un metal pero es líquido a temperatura ambiente. •El sodio es metal pero es blando (se raya con facilidad) y flota (baja densidad)
  • 11. Propiedades de los no metales: •Son malos conductores •Son poco resistentes y se desgastan con facilidad. •No reflejan la luz como los metales, no tienen el denominado brillo metálico. •Su superficie no es tan lisa como en los metales. •Son frágiles, se rompen con facilidad. •Tienen baja densidad. •No son atraídos por los imanes. •Tienen tendencia a formar iones negativos. Hay algunas excepciones a las propiedades generales enunciadas anteriormente: •El diamante es un no metal pero presenta una gran dureza. •El grafito es un no metal pero conduce la electricidad. •
  • 12. Otras propiedades Semimetales o metaloides. Se encuentran entre lo metales y los no metales (B, Si, Ge, As, Sb, Te, Po). Son sólidos a temperatura ambiente y forman iones positivos con dificultad. Según las circunstancias tienen uno u otro comportamiento. Hidrógeno. Aunque lo consideremos un no metal, no tiene las características propias de ningún grupo, ni se le puede asignar una posición en el sistema periódico: puede formar iones positivos o iones negativos. Gases Nobles o Gases Inertes. La característica fundamental es que en condiciones normales son inertes, no reaccionan con ningún elemento ni forman iones.
  • 13. PROPIEDADES PERIÓDICAS •¿Qué son? Son propiedades que presentan los elementos químicos y que se repiten secuencialmente en la tabla periódica. Por la colocación en la misma de un elemento, podemos deducir que valores presentan dichas propiedades así como su comportamiento químico. Estas propiedades presentan una periodicidad en la tabla. esto supone, por ejemplo, que la variación de una de ellas en los grupos va a responder a una regla general. Esto nos permite, al conocer estas reglas de variación, cual va a ser el comportamiento químico de un elemento, ya que dicho comportamiento, depende en gran manera, de sus propiedades periódicas. •Principales propiedades periódicas Hay un gran número de propiedades periódicas. Entre las más importantes destacaríamos: - Estructura electrónica – Potencial de ionización – Electronegatividad – Afinidad electrónica – Carácter Metálico – Radio atómico •Otras propiedades periódicas - Volumen atómico - Radio iónico – Densidad – Calor específico – Calor de vaporización – Punto de ebullición – Punto de fusión –Caracter oxidante – valencia covalente -
  • 14. Metales alcalinos Orbital ns1 G1 Alcalinos –térreos orbital ns2 G2 Orbitales nd Metales de transición Actínidos Orbitales 5f Lantánidos Orbitales 4f Halógenos Orbital ns2 np5 Gases inertes Orbital ns2 np6
  • 15. Afinidad electrónica La afinidad electrónica (AE) o electroafinidad se define como la energía liberada cuando un átomo gaseoso neutro en su estado fundamental (de mínima energía) captura un electrón y forma un ión mononegativo: . Dado que se trata de energía liberada, tiene signo negativo. En los casos en los que la energía sea absorbida, tendrá signo positivo. La Electroafinidad aumenta cuando el tamaño del átomo disminuye, el efecto pantalla aumenta y cuando el nº atómico disminuye. Visto de otra manera: aumenta de izquierda a derecha, y de abajo hacia arriba, al igual que lo hace la electronegatividad. En la tabla periodica tradicional no es posible encontrar esta información.
  • 16. Energía de ionización El potencial de ionización o energía de ionización o EI es la mínima energía que hay que suministrar a un átomo neutro y en su estado fundamental, perteneciente a un elemento en estado gaseoso, para arrancarle un electrón. La reacción puede expresarse de la siguiente forma:
  • 17. Radio Atómico Es la distancia media que entre dos núcleos de átomos iguales . Por medio del radio atómico es posible determinar el tamaño del átomo. En los grupos, el radio atómico aumenta con el número atómico, es decir hacia abajo. En los períodos disminuye al aumentar Z, hacia la derecha, debido a la atracción que ejerce el núcleo sobre los electrones de los orbitales más externos, disminuyendo así la distancia núcleo-electrón.
  • 18. Electronegatividad Es una medida de la fuerza de atracción que ejerce un átomo sobre los electrones de otro en un enlace covalente. Los diferentes valores de electronegatividad se clasifican según diferentes escalas, entre ellas la escala de Pauling y la escala de Mulliken. En general, los diferentes valores de electronegatividad de los átomos determinan el tipo de enlace que se formará en la molécula que los combina. Así, según la diferencia entre las electronegatividades de éstos se puede determinar (convencionalmente) si el enlace será, según la escala de Linus Pauling: •Iónico (diferencia superior o igual a 1.7) •* Covalente polar (diferencia entre 1.7 y 0.4) •* Covalente no polar (diferencia inferior a 0.4) Cuanto más pequeño es el radio atómico, mayor es la energía de ionización y mayor la electronegatividad y viceversa.