SlideShare uma empresa Scribd logo
SAEB
Plano de Desenvolvimento da Educação
2011
Presidência da República
Ministério da Educação/Secretaria de Educação Básica
Diretoria de Concepções e Orientações Curriculares para a Educação Básica
Coordenação Geral de Ensino Fundamental
Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira (Inep)/Diretoria
de Avaliação da Educação Básica
Coordenação-Geral de Instrumentos e Medidas
Coordenação-Geral do Sistema Nacional de Avaliação da Educação Básica
Projeto Gráfico
Leonardo Monte-Mór
Produção de conteúdos/Revisão
Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira (Inep)
Equipe de Linguagens e Códigos
Equipe de Matemática
Dados Internacionais de Catalogação na Publicação (CIP)
Centro de Informação e Biblioteca em Educação (CIBEC)
Brasil. Ministério da Educação.
PDE : Plano de Desenvolvimento da Educação : SAEB : ensino médio :
matrizes de referência, tópicos e descritores. Brasília : MEC, SEB; Inep,
2008.
127 p. : il.
1. Avaliação da educação básica. 2. Ensino médio. 3. Língua portuguesa. 4.
Matemática. I. Brasil. Ministério da Educação. Secretaria de Educação Básica.
II. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira.
III. Título.
CDU 37.014.12
Plano de Desenvolvimento da Educação
2009
Índice	 APRESENTAÇÃO	
1	 AS AVALIAÇÕES DA EDUCAÇÃO BÁSICA								
1.1	 Programa Internacional de Avaliação de Alunos - PISA	
1.2	 Exame Nacional do Ensino Médio - ENEM
1.3	 Exame Nacional para Certificação de Competências de Jovens e Adultos - ENCCEJA	
1.4	 Provinha Brasil	
1.5	 O Saeb – Aneb e a Anresc (Prova Brasil)	
2	 O SISTEMA NACIONAL DE AVALIAÇÃO DA EDUCAÇÃO BÁSICA – SAEB	
2.1	 PROVA BRASIL E O DIREITO AO APRENDIZADO
3	 AS MATRIZES DE REFERÊNCIA DO SISTEMA NACIONAL DA AVALIAÇÃO
	 DA EDUCAÇÃO BÁSICA – SAEB	
3.1	 As Matrizes de Referência do SAEB	
3.2	 Competências	
3.3	 Habilidades	
4	 LÍNGUA PORTUGUESA	
4.1	 Aprendizagem em Língua Portuguesa	
4.2	 Texto	
4.3	 Gêneros de discurso	
4.4	 Tipos textuais	
4.5	 Os diferentes usos da língua	
4.6	 A Matriz de Referência de Língua Portuguesa: Tópicos e seus Descritores
	 3ª série do Ensino Médio	
4.7	 Exemplos de Itens de 3ª Série do Ensino Médio - Língua Portuguesa	
4.8	 Considerações finais – Língua Portuguesa	
5	 MATEMÁTICA	
5.1	 O que se avalia em Matemática e por que se avalia	
5.2	 A Matriz de Referência de Matemática: Temas e seus Descritores
	 3ª série do Ensino Médio	
5.3	 Exemplos de itens de 3ª série do Ensino Médio - Matemática	
5.4	 Considerações finais - Matemática
6 	 REFERENCIAL BIBLIOGRÁFICO	
4
6
6
6
7
7
7
9
11
17
17
17
18
19
19
19
20
20
20
21
24
75
77
77
77
80
128
130
APRESENTAÇÃO
Prezado(a) diretor (a), prezado(a) professor(a),
O Governo Federal, por meio do Ministério da Educação (MEC), lançou em 2007 o Plano
de Desenvolvimento da Educação (PDE) com o objetivo de melhorar substancialmente a edu-
cação oferecida às nossas crianças, jovens e adultos.
	 O PDE sistematiza várias ações na busca de uma educação eqüitativa e de boa quali-
dade e se organiza em torno de quatro eixos: educação básica; educação superior; educação
profissional e alfabetização.
	 A fim de mobilizar e impulsionar a sociedade para efetivar o PDE, foi criado o Plano
de Metas que estabelece um conjunto de diretrizes para que a União, os estados, o Distrito
Federal e os municípios, em regime de colaboração, conjuguem esforços para superar a ex-
trema desigualdade de oportunidades existente em nosso país. O Plano tem por objetivo criar
condições para que cada brasileiro tenha acesso a uma educação de qualidade e seja capaz
de atuar crítica e reflexivamente no contexto em que se insere, como cidadão cônscio de seu
papel num mundo cada vez mais globalizado.
	 No que tange à educação básica, as metas do PDE contribuem para que as escolas e se-
cretarias de educação possam viabilizar o atendimento de qualidade aos alunos. Isso, porque
para conseguirmos atingir as metas traçadas para a educação brasileira é necessário, em
primeiro lugar, que as iniciativas do MEC possam beneficiar as crianças na sala de aula.
	 Para identificar quais são as redes de ensino municipais e as escolas que apresentam
maiores fragilidades no desempenho escolar e que, por isso mesmo, necessitam de maior
atenção e apoio financeiro e de gestão, o PDE dispõe de um instrumento denominado Índice
de Desenvolvimento da Educação Básica (Ideb). O Ideb pretende ser o termômetro da quali-
dade da educação básica em todos os estados, municípios e escolas no Brasil, combinando
dois indicadores: fluxo escolar (passagem dos alunos pelas séries sem repetir, avaliado pelo
Programa Educacenso) e desempenho dos estudantes (avaliado pela Prova Brasil nas áreas
de Língua Portuguesa e Matemática).
	 O Ideb é um dos eixos do PDE que permite realizar uma transparente prestação de con-
tas para a sociedade de como está a educação em nossas escolas. Assim, a avaliação passa
a ser a primeira ação concreta para se aderir às metas do Compromisso e receber o apoio
técnico / financeiro do MEC, para que a educação brasileira dê um salto de qualidade.
	 Em relação à avaliação da educação básica brasileira, evidenciou-se a necessidade de
se apreender e analisar toda a diversidade e especificidades das escolas brasileiras. Em razão
disso foi criada a avaliação denominada Prova Brasil que possibilita retratar a realidade de
cada escola, em cada município. Tal como acontece com os testes do Sistema Nacional de
Avaliação da Educação Básica (Saeb), os da Prova Brasil avaliam competências construídas e
habilidades desenvolvidas e detectam dificuldades de aprendizagem. No caso da Prova Brasil,
o resultado, quase censitário, amplia a gama de informações que subsidiarão a adoção de
medidas que superem as deficiências detectadas em cada escola avaliada.
	 Os resultados do Saeb e da Prova Brasil (2005/2007) mostraram, com mais clareza e
objetividade, o desempenho dos alunos da educação básica, o que permite uma análise com
vistas a possíveis mudanças das políticas públicas sobre educação e de paradigmas utilizados
nas escolas brasileiras de ensino fundamental e médio.
	 O objetivo maior desta publicação é envolver docentes, gestores e demais profissionais
da educação nessa campanha de valorização e conhecimento do que são Saeb e Prova Brasil,
de constituição desse instrumento cognitivo de avaliação, de sua aplicação em 2009 e de sua
importância para o alcance das metas propostas pelo Ideb.
	 Esperamos, assim, contribuir para que o professor, os demais profissionais da área de
educação e a sociedade, como um todo, possam conhecer os pressupostos teóricos que em-
basam essas avaliações, exemplos de itens que constituem seus testes, associados a uma
análise pedagógica de itens baseada no resultado do desempenho dos alunos.
	 Particularizando o objetivo do caderno, a análise dos itens possibilita ao professor fazer
uma reflexão sobre a prática do ensino da leitura (Língua Portuguesa) e da resolução de pro-
blemas significativos (Matemática) em sala de aula, cujos resultados refletem a aprendiza-
gem de todas as áreas do conhecimento trabalhadas na escola.
	 Os resultados do Saeb e da Prova Brasil são importantes, pois contribuem para dimen-
sionar os problemas da educação básica brasileira e orientar a formulação, a implementação
e a avaliação de políticas públicas educacionais que conduzam à formação de uma escola de
qualidade.
	 Acreditamos, pois, que você, professor, possa fazer uso desse instrumental para uma
reflexão sobre sua prática escolar e sobre o processo de construção do conhecimento dos
alunos, considerando-se a aquisição de conhecimentos e o desenvolvimento das habilidades
necessárias para o alcance das competências exigidas na educação básica.
MINISTÉRIO DA EDUCAÇÃO
SECRETARIA DE EDUCAÇÃO BÁSICA
INSTITUTO NACIONAL DE ESTUDOS E PESQUISAS EDUCACIONAIS ANÍSIO TEIXEIRA
6
Unidade1ASAVALIAÇÕESDAEDUCAÇÃOBÁSICA
1. AS AVALIAÇÕES DA EDUCAÇÃO BÁSICA
	 O Instituto Nacional de Estudos e Pesquisas Educacionais “Anísio Teixeira”
(Inep) é uma autarquia federal vinculada ao Ministério da Educação (MEC), cuja
missão é promover estudos, pesquisas e avaliações sobre o Sistema Educacional
Brasileiro com o objetivo de subsidiar a formulação e implementação de políticas
públicas para a área educacional a partir de parâmetros de qualidade e eqüidade,
bem como produzir informações claras e confiáveis aos gestores, pesquisadores,
educadores e público em geral. Para gerar seus dados e estudos educacionais, o
Inep realiza levantamentos estatísticos e avaliativos em algumas etapas da educa-
ção básica, assim como na modalidade de educação de jovens e adultos.
	 Como parte integrante da estrutura organizacional do Inep, a Diretoria de
Avaliação da Educação Básica (Daeb) tem sob sua responsabilidade as seguintes
avaliações:
1.1. 	 Programa Internacional de Avaliação de Alunos (Pisa)
O Pisa é um programa de avaliação internacional padronizada, desenvolvido
conjuntamente pelos países participantes da Organização para a Cooperação e
Desenvolvimento Econômico (OCDE), aplicada a alunos de 15 anos. Além dos paí-
ses da OCDE, alguns outros são convidados a participar da avaliação, como é o
caso do Brasil.
	 O Pisa, cujas avaliações são realizadas a cada três anos, abrange as áreas
de Linguagem, Matemática e Ciências, não somente quanto ao domínio curricular,
mas também quanto aos conhecimentos relevantes e às habilidades necessárias
à vida adulta.
1.2.	 Exame Nacional do Ensino Médio (Enem)
	 O Enem é um exame individual, de caráter voluntário, oferecido anualmente
aos  estudantes  que  estão  concluindo  ou  que  já  concluíram  o  ensino  médio  em
anos anteriores. Seu objetivo principal é possibilitar uma referência para auto-
avaliação do(a) participante, a partir das competências e habilidades que o
estruturam, com vistas à continuidade de sua formação e à sua inserção no mundo
do trabalho.
Unidade1ASAVALIAÇÕESDAEDUCAÇÃOBÁSICA
7
1.3.	 Exame Nacional para Certificação de Competências de Jovens e Adultos
(Encceja)
	 O Exame Nacional para Certificação de Competências de Jovens e Adultos
é aplicado a brasileiros residentes no Brasil e no Exterior. Constitui-se em uma
avaliação para aferição de competências, habilidades e saberes adquiridos
em processo escolar ou extra-escolar de jovens e adultos que não tiveram
acesso aos estudos ou não puderam continuá-los na idade própria. Essesbrasileiros
são certificados por instituições credenciadas para tal fim. Visa, ainda, sinalizar,
para educadores, estudantes e interessados, a natureza e a função de uma
avaliação de competências fundamentais ao exercício pleno da cidadania.
1.4.	 Provinha Brasil
	 A Provinha Brasil é uma avaliação diagnóstica do nível de alfabetização das
crianças matriculadas no 2º ano de escolarização das escolas públicas brasileiras.
Essa avaliação acontece em duas etapas, uma no início e a outra ao término do
ano letivo.
	 A aplicação em períodos distintos possibilita aos professores e gestores
educacionais a realização de um diagnóstico que, por sua vez, permite conhecer o
que foi agregado na aprendizagem das crianças dentro do período avaliado.
	 A Provinha Brasil tem como objetivos: avaliar o nível de alfabetização
dos educandos; oferecer às redes de ensino um diagnóstico da qualidade da
alfabetização e colaborar para a melhoria da qualidade de ensino e redução das
desigualdadeseducacionaisemconsonânciacomasmetasepolíticasestabelecidas
pelas diretrizes da educação nacional.
	 Em 2011 haverá a primeira aplicação da Provinha Brasil de Matemática, que
avaliará o nível de alfabetização das crianças quanto às habilidades matemáticas.
1.5.	 O Saeb – Aneb e Anresc (Prova Brasil)
	 O Sistema de Avaliação da Educação Básica – Saeb – é composto por duas
avaliações complementares, a Aneb e a Anresc (Prova Brasil).
	 A avaliação denominada Avaliação Nacional da Educação Básica – Aneb
- permite produzir resultados médios de desempenho conforme os estratos
amostrais, promover estudos que investiguem a eqüidade e a eficiência dos
sistemas e redes de ensino por meio da aplicação de questionários, conforme
vem sendo implementado na avaliação desde o ano de 1995.
8
Unidade1ASAVALIAÇÕESDAEDUCAÇÃOBÁSICAUnidade1ASAVALIAÇÕESDAEDUCAÇÃOBÁSICA
	 Por ser amostral, oferece resultados de desempenho apenas para o Brasil,
regiões e unidade da Federação.
	 A avaliação denominada Avaliação Nacional do Rendimento Escolar –
Anresc (Prova Brasil), realizada a cada dois anos, avalia as habilidades em Língua
Portuguesa (foco na leitura) e em Matemática (foco na resolução de problemas).
	 É aplicada somente a estudantes de 4ª série/5º ano e 8ª série/9º ano de
escolas rede pública de ensino com mais de 20 estudantes matriculados por série
alvo da avaliação.Tem como prioridade evidenciar os resultados de cada unidade
escolar da rede pública de ensino, com os objetivos de:
a. contribuir para a melhoria da qualidade do ensino, redução de desigualdades e
democratização da gestão do ensino público;
b. buscar o desenvolvimento de uma cultura avaliativa que estimule o controle
social sobre os processos e resultados do ensino.
	 Por ser universal, a Prova Brasil expande o alcance dos resultados oferecidos
pela Aneb. Fornece médias de desempenho para o Brasil, regiões e unidades da
Federação, para cada um dos municípios e para as escolas participantes.
A seguir apresentamos o detalhamento das avaliações que compõem o Saeb,
foco desta publicação.
8
Unidade2OSISTEMANACIONALDEAVALIAÇÃODAEDUCAÇÃOBÁSICA–SAEB
9
2. O SISTEMA NACIONAL DE AVALIAÇÃO DA EDUCAÇÃO
BÁSICA (SAEB) 1
As discussões iniciais sobre a importância de se implantar um sistema de
avaliação em larga escala, no Brasil, aconteceram no período entre 1985 e 1986.
Na época, estava em curso o Projeto Edurural, um programa financiado com recur-
sos do Banco Mundial e voltado para as escolas da área rural do nordeste brasi-
leiro. Com o objetivo de se ter um instrumento que pudesse medir a eficácia das
medidas adotadas durante a sua execução, estudou-se a elaboração de uma pes-
quisa que avaliasse o desempenho dos alunos que estavam freqüentando as es-
colas beneficiadas pelo Projeto e compará-lo com o dos alunos não beneficiados.
A partir dessa experiência, em 1988, o MEC instituiu o Saep, Sistema de Avaliação
da Educação Primária que, com as alterações da Constituição de 1988, passa a
chamar-se Saeb, Sistema de Avaliação da Educação Básica. O objetivo do MEC era
oferecer subsídios para a formulação, reformulação e monitoramento de políticas
públicas, contribuindo, dessa maneira, para a melhoria da qualidade do ensino
brasileiro. A primeira avaliação ocorreu em 1990.
	 A partir de 1992, decidiu-se que a aplicação da avaliação ficaria por conta do
Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira, Inep.
O segundo ciclo da avaliação ocorreu em 1993 e, desde então, ininterrupta-
mente, a cada dois anos, um novo ciclo acontece.
Ao longo dos anos, a avaliação vem sendo aprimorada, sendo que impor-
tantes inovações aconteceram no período entre 1995 e 2001.
Em 1995, foi incorporada uma nova metodologia estatística conhecida como
Teoria de Resposta ao Item, TRI, que tem permitido, entre outras coisas, a compa-
rabilidade dos diversos ciclos de avaliação. Nesse ano e nos subseqüentes, foi ava-
liada uma amostra representativa dos alunos matriculados nas 4ª e 8ª séries do
ensino fundamental e na 3ª série do ensino médio. Como os resultados referiam-se
a uma amostra do total de alunos, estes, desde então, estão sendo divulgados
por rede de ensino com agregação nacional, regional e estadual, não permitindo
levantar resultados nem por escolas nem por municípios.
Em 1997, foram desenvolvidas as Matrizes de Referência com a descrição
das competências e habilidades que os alunos deveriam dominar em cada série
avaliada, permitindo uma maior precisão técnica tanto na construção dos itens
1
	 O texto, elaborado pelo MEC baseou-se em ��������������������������������������������������������HORTA NETO, J. L. . Um olhar retrospectivo sobre a aval-
iação externa no Brasil: das primeiras medições em educação até o SAEB de 2005. �����������Madrid: ���Re-
vista Iberoamericana de Educación (Online), v. 42, p. 1-14, 2007. Disponível em www.rieoei.org/
deloslectores/1533Horta.pdf .
Unidade2OSISTEMANACIONALDEAVALIAÇÃODAEDUCAÇÃOBÁSICA–SAEB
10
Unidade2OSISTEMANACIONALDEAVALIAÇÃODAEDUCAÇÃOBÁSICA–SAEB
10
do teste, como na análise dos resultados da avaliação. A construção dessas ma-
trizes, como não poderia deixar de ser, não foi feita de maneira arbitrária. Foi rea-
lizada uma consulta nacional sobre os conteúdos praticados nas escolas de ensino
fundamental e médio, incorporando a análise de professores, pesquisadores e
especialistas sobre a produção científica em cada área que seria objeto de avalia-
ção escolar e utilizando como referência as secretarias de educação estaduais e
das capitais que apresentaram ao Inep os currículos que estavam sendo praticados
em suas escolas.
Em  2001,  em  seu  sexto  ciclo,  as  Matrizes  de  Referência  foram  atualiza-
das em razão da ampla disseminação, pelo MEC, dos Parâmetros Curriculares
Nacionais – PCN. Para essa atualização, foi feita uma ampla consulta, repetindo-
se o procedimento usado em 1997. Foram consultados cerca de 500 professores
de 12 estados da Federação, com representação de todas as regiões do país, com
o objetivo de comparar as Matrizes de Referência existentes e o currículo utilizado
pelos sistemas estaduais com os PCN´s.
Em 2005, paralelamente à avaliação do Saeb, foi realizada uma outra ava-
liação, essa de natureza quase censitária, o que permitiria a divulgação dos resul-
tados por municípios e por escolas, ampliando as possibilidades de análise dos
resultados da avaliação. Nasce assim, a Prova Brasil, que utiliza os mesmos pro-
cedimentos utilizados pelo Saeb.
11
Unidade2OSISTEMANACIONALDEAVALIAÇÃODAEDUCAÇÃOBÁSICA–SAEB
2.1 Prova Brasil e o direito ao aprendizado1
Direito ao aprendizado
O direito à educação, que durante longos anos no Brasil significou o direito de matrícula em
alguma escola, depois dos avanços recentes e da reflexão sobre direitos individuais consa-
grados na Constituição Federal de 1988, significa hoje o direito ao aprendizado. Em relação
ao aprendizado, ficamos com o equilíbrio e a beleza da proposta de Antônio Nóvoa, sociólogo
português:
“vale a pena ser ensinado tudo o que une e tudo o que liberta.
Tudo o que une, isto é, tudo o que integra cada indivíduo num
espaço de cultura e de sentidos. Tudo o que liberta, isto é, tudo
o que promove a aquisição de conhecimentos, o despertar do
espírito científico. [...] e tudo o que torna a vida mais decente”
Como  são  muitas  as  competências  necessárias  à  cidadania,  as  diferentes  estruturas  edu-  
cativas têm ênfases diferentes. Por exemplo, a família e a religião são forças tão poderosas
quanto a escola na formação da visão de mundo e dos valores de cada criança ou jovem. As-
sim sendo, a escola não pode ser responsabilizada sozinha por insucessos nessas áreas, mas
deve responder majoritariamente pelo eventual fracasso de seus alunos no aprendizado de
competências cognitivas. Embora o letramento em matemática e em ciências seja hoje con-
siderado básico em muitos países, usaremos neste texto apenas a competência leitora para
conduzir o nosso raciocínio, que estará focado na educação básica.
Medida
O Brasil conta hoje com mais de 50 milhões de alunos matriculados em escolas de educa-
ção básica, todos, como argumentamos acima, com direito ao aprendizado de competências
cognitivas básicas e gerais. Diante disso, compete ao Estado definir uma maneira de verificar
se esse direito está garantido para cada um dos alunos. Parte dessa necessidade foi atendida
com  a  introdução  da  Prova  Brasil,  um  instrumento  de  medida  das  competências  leitora  
e matemática aplicado aos estudantes matriculados no quinto e no nono ano do ensino
fundamental (quarta e oitava séries). Tal Prova, aplicada pela primeira vez em 2005, ocorre de
dois em dois anos e terá em 2011 a sua quarta edição.
1
	 Este texto foi produzido pelo MEC com a colaboração do professor José Francisco Soares, membro do Grupo de Av-
aliação e Medidas Educacionais (GAME), da Faculdade de Educação(FAE) da Universidade Federal de Minas Gerais
(UFMG)
Unidade2OSISTEMANACIONALDEAVALIAÇÃODAEDUCAÇÃOBÁSICA–SAEB
12
A pertinência de dois elementos definidores da Prova Brasil - a padronização e o uso da me-
dida - precisa ser entendida. O direito ao aprendizado de competências cognitivas vale para
todos os alunos, e a todos deve ser garantido de forma equitativa. No entanto, considerando a
variação natural presente nos seres humanos, se aceita que, garantido um nível de domínio de
cada competência, compatível com o exercício da cidadania, alunos diferentes apresentem
domínio diferenciado em uma dada competência. Em outras palavras, alguns alunos terão a
competência leitora em nível mais avançado do que outros, ainda que todos devam ler acima
de um nível considerado adequado. Mas para que essas comparações possam ocorrer é
necessário que o instrumento verificador do direito seja o mesmo, no caso brasileiro a Prova
Brasil.
Importante observar que em outras áreas onde a ação do Estado é necessária para a garan-
tia de direitos, a idéia do uso de ações padronizadas já está consagrada. As campanhas de
vacinação são um exemplo. Parte-se do pressuposto de que todos têm direito a este serviço e
assim faz-se um enorme esforço para oferecê-lo de forma idêntica a todos os cidadãos.
Escala
Se o aprendizado da leitura é um direito, é necessário definir operacionalmente o que é saber
ler para uma criança de 11 anos ou um jovem de 14. A sociedade, diante dessa questão,
apresentaria um grande repertório de textos de gêneros, tamanhos, complexidade e temas
diferentes que, se lidos e entendidos, atestariam o domínio da competência leitora. Isto é es-
sencialmente o que é feito pela Prova Brasil para definir a escala de medida da competência
leitora, embora este grande repertório de textos não exista fisicamente. O importante é
entender que os textos que são lidos pelos estudantes que realizam na Prova Brasil foram
analisados previamente e, quando o aluno acerta ou erra cada item, sabemos em que nível
de leitura se encontra.
Para cada unidade escolar participante da Prova Brasil é calculada uma média da proficiência
dos seus estudantes que participaram da avaliação. Essa média é expressa em uma escala
de 0 a 500. Assim como nas provas realizadas em sala de aula, o número sozinho traz poucas
informações. Por isso, é necessário fazer uma interpretação pedagógica do significado desses
números. Isso é feito para grupos de números, conhecidos como níveis.
O que é um bom resultado na Prova Brasil
A proficiência média em leitura de uma escola participante da Prova Brasil é expressa em 10
níveis. Como a escala usada para registrar a nota dos alunos de quarta série/quinto ano
é a mesma utilizada para alunos de oitava série/nono ano, espera-se, naturalmente, que a
proficiência dos alunos da quarta série/quinto ano esteja situada em níveis mais baixos que a
proficiência dos da oitava série/ nono ano.
Unidade2OSISTEMANACIONALDEAVALIAÇÃODAEDUCAÇÃOBÁSICA–SAEB
13
Isso parece lógico na medida em que os alunos da quarta série/ quinto ano devem ter
desenvolvido menos competências leitoras que os alunos da oitava série/ nono ano.
No entanto, é preciso estabelecer claramente acima de qual desses níveis um aluno deve es-
tar quando domina a competência leitora de forma adequada. Embora muito relevante, esta
pergunta ainda não recebeu uma resposta clara e definitiva.
Interpretação pedagógica
Somentecoma interpretação pedagógica dos níveis da escala, a Prova Brasil poderá influenciar
mais decisivamente o ensino. Esse é exatamente o objetivo desta publicação que, por isso,
merece uma leitura atenta de todos os gestores e professores das escolas públicas do Brasil.
Há, no entanto, outras iniciativas no mesmo sentido que o leitor interessado pode também
consultar. O sítio do Instituto Nacional de Pesquisas Educacionais Anísio Teixeira (INEP), na
parte referente à Prova Brasil (http://provabrasil.inep.gov.br/), fornece muitas informações
úteis, assim como o sítio das secretarias estaduais que usam a mesma escala da Prova Brasil2
.
Há também um texto desenvolvido pelo Centro de Estudos e Pesquisas em Educação, Cultura
e Ação Comunitária (CENPEC) que é distribuído gratuitamente no sítio http://www.cenpec.
org. br/modules/biblioteca_digital/index.php?autor=21
A proficiência dos alunos reflete o acerto de muitos itens da Prova Brasil. É a partir da
identificação dos itens que os alunos de determinada proficiência acertaram na Prova
Brasil que é possível compreender quais seriam as fragilidades que deveriam ser
superadas. O quadro a seguir apresenta um item tipicamente acertado pelos alunos de
quarta série/quinto ano que demonstraram possuir proficiência acima de 250 em leitura.
Nas outras seções desta publicação, apresentam-se itens, com comentários substantivos, que
ilustram diferentes pontos da escala tanto de leitura como de matemática.
2
	 Foram identificadas informações úteis nos sítios das Secretarias Estaduais de Educação dos estados do Ceará,
Minas Gerais, São Paulo, Rio Grande do Sul e Espírito Santo.
Unidade2OSISTEMANACIONALDEAVALIAÇÃODAEDUCAÇÃOBÁSICA–SAEB
14
O bicho
vi ontem um bicho
Na imundice do pátio
Catando comida entre os detritos.
Quando achava alguma coisa,
Não examinava nem cheirava:
Engolia com voracidade.
O bicho não era um cão,
Não era um gato.
Não era um rato.
O bicho, meu Deus, era um homem.
BANDEIRA, Manuel. Poesias reunidas. Rio de Janeiro: Ática, 1985.
O que motivou o bicho a catar restos foi
A)	 a própria fome.
B)	 a imundice do pátio.
C)	 o cheiro da comida.
D)	 a amizade pelo cão.
A escola pode fazer a diferença
Os resultados da Prova Brasil podem ser usados de muitas maneiras. A mais simples é com-
parar a média da escola com um nível que se considera adequado para o ano/série. A escola
deve considerar também a porcentagem de seus alunos em cada um dos níveis, já que a
ação pedagógica necessária é diferente para alunos em níveis diversos. O cartaz que sintetiza
os resultados da Prova Brasil é enviado para cada escola, fornecendo estes dados, e pode
ser obtido no site do Inep no endereço eletrônico http://sistemasprovabrasil2.inep.gov.br/
ProvaBrasilResultados/home.seam .
Já sabemos que a maioria dos alunos das escolas públicas têm hoje desempenho baixo.
A explicação mais fácil para este fato é atribuí-lo às características socioeconômicas dos
estu dantes. Para entender melhor a influência dessas características dos estudantes, foi
montada a Tabela 1 construída a partir dos resultados de todas as escolas da rede municipal
de uma grande cidade brasileira.
Primeiramente, cada uma das escolas foi classificada, tendo em vista o alunado a que atende,
em uma das cinco categorias do Nível Socioeconômico – NSE. O grupo 1 agrega as escolas
Unidade2OSISTEMANACIONALDEAVALIAÇÃODAEDUCAÇÃOBÁSICA–SAEB
15
que atendem aos alunos de NSE mais baixo e as escolas do grupo 5 atendem àqueles de NSE
mais alto, ressaltando-se que apenas escolas públicas estão incluídas.
Para analisar esta tabela, observe primeiramente a terceira coluna, correspondente à média
das notas das escolas em cada um dos cinco grupos de NSE. Veja que, à medida que o NSE
cresce, também aumenta a nota da escola. Este é um fato já amplamente conhecido mos-
trando que o desempenho do aluno reflete, ainda que de forma não determinística, o capital
cultural de sua família, que, no Brasil, está muito associado ao NSE.
A informação de fato importante e interessante está nas linhas da tabela, que contém notas
médias na 4ª série/5º ano. Examine a linha 3 e constate que a escola com a pior nota tem
média de apenas 133, enquanto a nota da melhor escola é 208. A diferença entre estes dois
valores – 75 pontos – é tão relevante que corresponde a mais de três anos de escolarização.
Ou seja, há nesta cidade uma enorme diferença entre escolas que atendem a estudantes com
o mesmo NSE. Como tais escolas pertencem à mesma rede, têm os mesmos recursos finan-
ceiros e os professores recebem os mesmos salários, fica claro que as políticas e práticas de
cada escola podem fazer muita diferença no aprendizado de seus alunos.
Tabela 1 Notas da escola de menor e de maior desempenho e média das notas das escolas,
em cada grupo, definidos pelo nível socioeconômico dos alunos das escolas
Grupo de NSE
Escola com menor
desempenho
Média das escolas
Escola com maior
desempenho
1 144 173 206
2 136 180 205
3 133 182 208
4 172 190 222
5 174 207 224
Em outras palavras, como a diferença entre as escolas de um mesmo grupo de NSE não
está nos alunos, esta deve ser procurada na gestão pedagógica, na forma de ensinar, na
cultura, nos valores da escola ou no projeto pedagógico. Todos esses pontos passíveis de
serem mudados com a ação da escola3
.
3
	 Para conhecer escolas que têm ações que garantem o direito de aprender a todos os seus alunos, consulte o estudo
do MEC com o Unicef, “Aprova Brasil” no sítio do Ministério da Educação: www.mec.gov.br
Unidade2OSISTEMANACIONALDEAVALIAÇÃODAEDUCAÇÃOBÁSICA–SAEB
16
Unidade2OSISTEMANACIONALDEAVALIAÇÃODAEDUCAÇÃOBÁSICA–SAEB
No entanto, o grande efeito da ação da escola não deve obscurecer a diferença
entre as notas das escolas das diferentes linhas. Essa diferença é imposta à
escola pela sociedade. Junto com outras estruturas sociais, as escolas devem
procurar também mudá-la. Mas a sua priori- dade deve ser a diferença dentro de
cada linha.
Críticas
Como qualquer política pública, a Prova Brasil tem recebido críticas. Constitui o
instrumento que o Governo Federal está utilizando para verificar o cumprimento
da primeira diretriz do PDE – Plano de Desenvolvimento da Educação, criado
pelo Decreto no 6.094 de 24 de abril de 2007, que decidiu “estabelecer como
foco a aprendizagem, apontando resultados concre-tos a atingir”. Em um primeiro
momento, o uso do conceito de resultados, até então pouco usado em políticas
educacionais brasileiras, foi entendido por muitos como se as dimensões de apoio
financeiro e institucional às escolas tivessem sido relegadas. Como isto não ocorreu,
essas críticas com o passar do tempo têm se reduzido.
Outra crítica, cuja força vai se reduzindo à proporção que os itens usados se tornam
mais conhecidos, é que a medida das competências leitora e matemática obtida
com a Prova Brasil capta apenas os aspectos superficiais dessas competências.
Esses mesmos itens mostram que a Prova Brasil concentra-se em medir
competências básicas e essenciais e que, portanto, qualquer estratégia que dote
os alunos de capacidade de responder corretamente aos itens da Prova Brasil
estará lhes permitindo consolidar competências fundamentais para o exercício de
sua cidadania.
Os resultados da Prova Brasil não devem ser usados para comparar escolas
que recebem alunos muito diferentes. Esse tipo de comparação não é um uso
adequado dos resultados. Deve-se reconhecer ainda que a mera existência do
diagnóstico produzido pela Prova Brasilnãogaranteporsisóasoluçãodosproblemas
encontrados. A Prova Brasil convive com outras políticas públicas educacionais e
ajuda a direcioná-las para as escolas e redes municipais e estaduais com maior
fragilidade educacional.
A partir da introdução da Prova Brasil, o debate educacional deve considerar os
resultados de aprendizagem dos alunos como critério de análise das escolas
públicas brasileiras. Um diálogo aberto entre os que aceitam esse novo paradigma
e os que ainda têm restrições deve se estabelecer para que essa e outras políticas
públicas sejam mais eficazes para os alunos das escolas públicas brasileiras.
16
Unidade3ASMATRIZESDEREFERÊNCIADOSISTEMANACIONALDAAVALIAÇÃODAEDUCAÇÃOBÁSICA–SAEB
17
3. AS MATRIZES DE REFERÊNCIA DO SISTEMA NACIONAL
DA AVALIAÇÃO DA EDUCAÇÃO BÁSICA – SAEB
3.1.	 As Matrizes de Referência do Saeb
	 A realização de uma avaliação de sistema com amplitude nacional, para ser
efetiva, exige a construção de uma matriz de referência que dê transparência e
legitimidade ao processo de avaliação, informando aos interessados o que será
avaliado. De acordo com os pressupostos teóricos que norteiam os instrumentos
de avaliação, a Matriz de Referência é o referencial curricular do que será avaliado
em cada disciplina e série, informando as competências e habilidades esperadas
dos alunos.
	 Segundo Nery (2000), “toda Matriz Curricular representa uma operacionaliza-
ção das propostas ou guias curriculares, que não pode deixar de ser considerada,
mesmo que não a confundamos com procedimentos, estratégias de ensino ou ori-
entações metodológicas e nem com conteúdo para o desenvolvimento do trabalho
do professor em sala de aula”.
	 Torna-se necessário ressaltar que as matrizes de referência não englobam
todo o currículo escolar. É feito um recorte com base no que é possível aferir por
meio do tipo de instrumento de medida utilizado na Prova Brasil e que, ao mes-
mo tempo, é representativo do que está contemplado nos currículos vigentes no
Brasil.
	 Essas matrizes têm por referência os Parâmetros Curriculares Nacionais e
foram construídas a partir de uma consulta nacional aos currículos propostos pelas
Secretarias Estaduais de Educação e por algumas redes municipais. O Inep consul-
tou também professores regentes das redes municipal, estadual e privada e ainda,
examinou os livros didáticos mais utilizados para essas séries nas citadas redes.
	 As matrizes são, portanto, a referência para a elaboração dos itens da Prova
Brasil. Item é a denominação adotada para as questões que compõem a prova.
3.2.	Competências
	 Para a elaboração dos itens do Saeb e da Prova Brasil, buscou-se uma as-
sociação entre os conteúdos da aprendizagem e as competências utilizadas no
processo de construção do conhecimento.
	
Unidade3ASMATRIZESDEREFERÊNCIADOSISTEMANACIONALDAAVALIAÇÃODAEDUCAÇÃOBÁSICA–SAEB
17
Unidade3ASMATRIZESDEREFERÊNCIADOSISTEMANACIONALDAAVALIAÇÃODAEDUCAÇÃOBÁSICA–SAEB
18
Unidade3ASMATRIZESDEREFERÊNCIADOSISTEMANACIONALDAAVALIAÇÃODAEDUCAÇÃOBÁSICA–SAEB
18
	 No documento “Saeb 2001: Novas Perspectivas” (2002), define-se  competên-
cia, na perspectiva de Perrenoud, como sendo a “capacidade de agir eficazmente
em um determinado tipo de situação, apoiando-se em conhecimentos, mas sem se
limitar a eles”.
	 Para enfrentar uma situação, geralmente, colocam-se em ação vários recur-
sos cognitivos. Para Perrenoud, “quase toda ação mobiliza alguns conhecimentos,
algumas vezes elementares e esparsos, outras vezes complexos e organizados em
rede”.
	 Assim, as competências cognitivas podem ser entendidas como as diferentes
modalidades estruturais da inteligência que compreendem determinadas opera-
ções que o sujeito utiliza para estabelecer relações com e entre os objetos físicos,
conceitos, situações, fenômenos e pessoas.
3.3.	 Habilidades
	 Ainda no mesmo documento, é mencionado que habilidades referem-se, es-
pecificamente, ao plano objetivo e prático do saber fazer e decorrem, diretamente,
das competências já adquiridas e que se transformam em habilidades.
	 Cada matriz de referência apresenta tópicos ou temas com descritores que
indicam as habilidades de Língua Portuguesa e Matemática a serem avaliadas.
	 O descritor é uma associação entre conteúdos curriculares e operações men-
tais desenvolvidas pelo aluno, que traduzem certas competências e habilidades.
Os descritores:
	 •	 indicam habilidades gerais que se esperam dos alunos;
	 •	 constituem a referência para seleção dos itens que devem compor 	
		 uma prova de avaliação.
Unidade4LínguaPortuguesa
19
4.	 LÍNGUA PORTUGUESA
4.1.	 Aprendizagem em Língua Portuguesa
	 O ensino da Língua Portuguesa, de acordo com os Parâmetros Curriculares
Nacionais (PCNs), deve estar voltado para a função social da língua. Esta é requisito
básico para que a pessoa ingresse no mundo letrado, para que possa construir seu
processo de cidadania e, ainda, para que consiga se integrar à sociedade de forma
ativa e mais autônoma possível.
	 Nesse aspecto, para ser considerado competente em Língua Portuguesa, o
aluno precisa dominar habilidades que o capacitem a viver em sociedade, atuando,
de maneira adequada e relevante, nas mais diversas situações sociais de comuni-
cação. Para tanto, o aluno precisa saber interagir verbalmente, isto é, precisa ser
capaz de compreender e participar de um diálogo ou de uma conversa, de produzir
textos escritos, dos diversos gêneros que circulam socialmente.
	 Ler e escrever, por suas particularidades formais e funcionais, são também
competências mais especificamente desenvolvidas no ambiente escolar. Tanto os
textos escritos de uso mais familiar (como o bilhete, a carta) quanto os textos de
domínio público (como o artigo, a notícia, a reportagem, o aviso, o anúncio, o conto,
a crônica etc.) são objeto do estudo sistemático na escola.
	 Daí a importância de promover-se o desenvolvimento da capacidade do aluno
para produzir e compreender textos dos mais diversos gêneros e em diferentes
situações comunicativas, tanto na modalidade escrita quanto na modalidade oral.
4.2.	 Texto
	 De acordo com os PCNs, o eixo central do ensino da língua deve se instalar
no texto, como realização discursiva do gênero e, assim, explicar o uso efetivo da
língua.
	 Alguns lingüistas referem-se assim ao texto: ’texto’ emprega-se igualmente
com um valor mais preciso, quando se trata de apreender o enunciado como um
todo, como constituindo uma totalidade coerente. O ramo da lingüística que estuda
essa coerência chama-se precisamente ‘lingüística textual’. Com efeito, tende-se a
falar de ‘texto’ quando se trata de produções verbais orais ou escritas, estruturadas
de forma a perdurarem, a se repetirem, a circularem longe de seu contexto original.
É por isso que, no uso corrente, fala-se, de preferência, de ‘textos literários’, ‘textos
jurídicos’ [...]”
Unidade4LínguaPortuguesa
20
4.3.	 Gêneros de discurso
	 “Os gêneros do discurso pertencem a diversos tipos de discursos associados
a vastos setores de atividade social. [...]”
	 Koch (2005) afirma que os falantes/ouvintes sabem distinguir o que é                
adequado ou inadequado em cada uma de suas práticas sociais. Eles sabem dife-
renciar determinados gêneros textuais como, por exemplo, anedota, poema, con-
versa telefônica etc.
		 Para a autora,
4.4.	 Tipos textuais
	 Classificação que toma como critério a organização lingüística, o conjunto de
estruturas lingüísticas utilizadas no plano composicional do texto.
	 O plano composicional é constituído por palavras, frases, orações etc.
	 A partir de Longrace (apud Bonini, 1999), tipos textuais passaram a ser abor-
dados como modalidades retóricas ou modalidades discursivas que constituem as
estruturas e as funções textuais tradicionalmente reconhecidas como narrativas,
descritivas, argumentativas, procedimentais e exortativas.
4.5.	 Os diferentes usos da língua
	 O contraste entre a concepção tradicional e a chamada concepção discursi-
vo-interacionista da língua pode nos ajudar a compreender melhor o processo de
aprendizagem da Língua Portuguesa.
	 As abordagens tradicionais de ensino da Língua Portuguesa lidavam com a
“Há o conhecimento, pelo menos intuitivo, de estratégias de
construção e interpretação de um texto. A competência textual de
um falante permite-lhe, ainda, averiguar se em um texto predomi-
nam seqüências de caráter narrativo, descritivo, expositivo e/ou
argumentativo. Não se torna difícil, na maior parte dos casos, dis-
tinguir um horóscopo de uma anedota ou carta familiar, bem como,
por outro lado, um texto real de um texto fabricado, um texto de
opinião de um texto predominantemente informativo e assim por
diante...”
Unidade4LínguaPortuguesa
21
concepção instrumental de que a linguagem seria uma expressão fiel do nosso
pensamento, apenas por meio de um conjunto de regras que deveriam ser rigoro-
samente seguidas. Isso fez com que o ensino do idioma materno se tornasse uma
prática mecânica, calcada na memorização (listas de coletivos, adjetivos, conjuga-
ção de verbos, regras de concordância, pontuação, entre outras) ou na exploração
da metalinguagem (classificação de termos e de funções).
	 Para a perspectiva discursivo-interacionista, a língua é uma atividade intera-
tiva, inserida no universo das práticas sociais e discursivas. Envolve interlocutores
e propósitos comunicativos determinados e realiza-se sob a forma de textos – con-
cretamente sob a forma de diferentes gêneros de textos.
	 Os testes de Língua Portuguesa da Prova Brasil estão estruturados com o
Foco leitura, que requer a competência de apreender um texto como construção
de conhecimento em diferentes níveis de compreensão, análise e interpretação. O
fato de se avaliar apenas a leitura não reduz a importância dessas avaliações, ten-
do em vista que a leitura é fundamental para o desenvolvimento de outras áreas
do conhecimento e para o conseqüente exercício da cidadania.
	 Em relação ao teste de Língua Portuguesa, a Matriz de Referência traz descri-
tores que têm como base algumas habilidades discursivas tidas como essenciais
na situação de leitura.
4.6.	 A Matriz de Referência de Língua Portuguesa: Tópicos e seus Descri-
tores – 3ª série do Ensino Médio
	 A Matriz de Referência de Língua Portuguesa apresenta a relação entre os te-
mas, os descritores e as habilidades estabelecidos para a avaliação dos alunos dos
4ª série/5º ano e 8ª série/9º ano do ensino fundamental e da 3ª série do ensino
médio.
	 No total, a Matriz de Referência de Língua Portuguesa da Prova Brasil e
do Saeb é composta por seis tópicos: Procedimentos de Leitura; Implicações do  
Suporte, do Gênero e/ou do Enunciador na Compreensão do Texto; Relação entre
Textos, Coerência e Coesão no Processamento do Texto; Relações entre Recursos
Expressivos e Efeitos de Sentido e Variação Lingüística.
	 Estruturalmente, a Matriz de Língua Portuguesa divide-se em duas dimensões:
uma denominada Objeto do Conhecimento, em que são listados os seis tópicos; e
outra denominada Competência, com descritores que indicam habilidades a serem
avaliadas em cada tópico. Para a 4ª série/5º ano do Ensino Fundamental(EF), são
contemplados 15 descritores; para a 8ª série/ 9º ano do EF e 3ª série do Ensino
Médio(EM) são acrescentados mais 6, totalizando 21 descritores. Os descritores
aparecem, dentro de cada tópico, em ordem crescente de aprofundamento e/ou
ampliação de conteúdos ou das habilidades exigidas.
Unidade4LínguaPortuguesa
22
Localizar informações explícitas em um texto 	 D1	
Inferir o sentido de uma palavra ou expressão	 D3	
Inferir uma informação implícita em um texto	 D4	
Identificar o tema de um texto	 D6	
Distinguir um fato da opinião relativa a esse fato	 D14	
Tópico I. Procedimentos de Leitura
Identificar a finalidade de textos de diferentes gêneros	 D12	
Tópico II. Implicações do Suporte, Gênero e/ou Enunciador na Compreensão do Texto
Tópico III. Relação entre Textos
Interpretar texto com auxílio de material gráfico diverso
(propagandas, quadrinhos, foto etc.)
Descritores 3ª EM
D5
Descritores 3ª EM
Reconhecer diferentes formas de tratar uma informação na
comparação de textos que tratam do mesmo tema, em fun-
ção das condições em que ele foi produzido e daquelas em
que será recebido
Descritores 3ª EM
D20
Reconhecer posições distintas entre duas ou mais opiniões
relativas ao mesmo fato ou ao mesmo tema
D21
Tópico IV. Coerência e Coesão no Processamento do Texto
Estabelecer relações entre partes de um texto, identificando
repetições ou substituições que contribuem para a continui-
dade de um texto
Identificar o conflito gerador do enredo e os elementos que
constroem a narrativa
Estabelecer relação causa/conseqüência entre partes e       
elementos do texto
Estabelecer relações lógico-discursivas presentes no texto,
marcadas por conjunções, advérbios etc.
Identificar a tese de um texto.
Estabelecer relação entre a tese e os argumentos oferecidos
para sustentá-la
Diferenciar as partes principais das secundárias em um texto.
D2
D10
D11
D15
D7
D8
D9
Descritores 3ª EM
Unidade4LínguaPortuguesa
23
Tópico V. Relações entre Recursos Expressivos e Efeitos de Sentido
Descritores 3ª EM
Identificar efeitos de ironia ou humor em textos variados
Identificar o efeito de sentido decorrente do uso da pontua-
ção e de outras notações
Reconhecer o efeito de sentido decorrente da escolha de
uma determinada palavra ou expressão
Reconhecer o efeito de sentido decorrente da exploração de
recursos ortográficos e/ou morfossintáticos.
D16
D17
D18
D19
Tópico VI. Variação Lingüística
Descritores 3ª EM
Identificar as marcas lingüísticas que evidenciam o locutor e
o interlocutor de um texto D13
	 Em relação aos textos de Língua Portuguesa, há que se considerar a escolha
de gêneros  mais complexos, que exigem estratégias interpretativas diversificadas,
de acordo com o nível de escolaridade. O grau de complexidade do texto resulta,
entre outras razões, da temática desenvolvida, das estratégias textuais usadas em
sua composição, da escolha de um vocabulário mais ou menos incomum, dos re-
cursos sintático-semânticos utilizados, bem como das determinações específicas
do gênero e da época em que foi produzido. Ou seja, apesar de 15 descritores
serem os mesmos da matriz de 4ª série/5º ano, os itens construídos para o teste
de 8ª série/9º ano do EF e da 3ª série do EM requerem processos cognitivos mais
complexos para sua resolução, levando-se em conta que os alunos avaliados en-
contram-se em faixas etárias e escolaridade mais avançadas.
	 Isso quer dizer que, de um mesmo descritor, podem ser derivados itens de
graus de complexidade distintos, tanto do ponto de vista do objeto analisado, o
texto, quanto do ponto de vista da tarefa, como as determinações específicas do
gênero e da época em que foi produzido. Assim, os conteúdos, competências e
habilidades são diferenciados, para que se possa detectar o que o aluno sabe,
resolvendo os itens do teste, em razão das etapas próprias do processo de seu de-
senvolvimento.
Unidade4LínguaPortuguesa
24
4.7.	 Exemplos de itens de 3ª série do Ensino Médio – Língua Portuguesa
	 Foram selecionados itens que avaliaram as habilidades indicadas pelos
descritores que compõem a matriz de referência. Com base nos resultados, são
formuladas hipóteses sobre o desempenho dos alunos e apresentadas sugestões
de atividades que poderão ser desenvolvidas em sala de aula e de gêneros textuais
mais apropriados ao desenvolvimento de determinadas habilidades.
	 A análise do item está centrada em alguns pontos como: o texto utilizado
como suporte para a composição do item; a habilidade indicada pelo descritor; o
quadro com percentuais de respostas dadas a cada alternativa.
	 A seguir, são apresentados itens que foram utilizados no Saeb e na Prova
Brasil. Inicialmente, discorre-se sobre cada Tópico; depois, há a apresentação de
cada descritor e da habilidade por ele indicada. Para cada descritor, há dois exem-
plos de itens: o primeiro, com percentuais de respostas para cada alternativa assi-
nalada, com base nos quais é feita uma análise pedagógica e oferecidas algumas
sugestões para o professor trabalhar com seus alunos no sentido de desenvolver as
habilidades apontadas pelos descritores; o segundo, com a indicação do gabarito e
sem percentuais de respostas.
Tópico I – Procedimentos de Leitura
	
	 Este tópico agrega um conjunto de descritores que indicam as habilidades
lingüísticas necessárias à leitura de textos de gêneros variados. O leitor compe-
tente deve saber localizar informações explícitas e fazer inferências sobre informa-
ções que extrapolam o texto. Deve identificar a idéia central de um texto, ou seja,
apreender o sentido global e fazer abstrações a respeito dele. Deve também per-
ceber a intenção do autor, saber ler as entrelinhas e fazer a distinção entre opinião
e fato. Deve, ainda, saber o sentido de uma palavra ou expressão pela inferência
contextual.
	 Apresentamos, a seguir, itens referentes aos descritores 1, 3, 4, 6 e 14 que
compõem o Tópico I.
D1	 D3 D4 D6 D14Descritores
Unidade4LínguaPortuguesa
25
Descritor 1 – Localizar informações explícitas em um texto
Que habilidade pretendemos avaliar?
	 Um texto, em geral, traz informações que se situam na sua superfície – e são,
assim, explícitas – ou traz informações apenas implícitas ou subentendidas. A ha-
bilidade prevista nesse descritor concerne à capacidade do aluno para localizar, no
percurso do texto, uma informação que, explicitamente, consta na sua superfície.
Como se vê, corresponde a uma habilidade bastante elementar.
	 Assim, espera-se que o item relativo a esse descritor solicite do aluno a identifi-
cação de uma determinada informação, entre várias outras expressas no texto.
	 Com este item, pretendemos avaliar a habilidade do aluno em localizar a infor-
mação solicitada.
Exemplo de item:
Namoro
	 O melhor do namoro, claro, é o ridículo. Vocês dois no telefone:
	 — Desliga você.
	 — Não, desliga você.
	 — Você.
	 — Você.
	 — Então vamos desligar juntos.
	 — Tá. Conta até três.
	 — Um... Dois... Dois e meio...
	 Ridículo agora, porque na hora não era não. Na hora nem os apelidos secretos
que vocês tinham um para o outro, lembra? Eram ridículos. Ronron.
	 Suzuca. Alcizanzão. Surusuzuca. Gongonha (Gongonhal) Mamosa. Purupupu-
ca...
	 Não havia coisa melhor do que passar tardes inteiras num sofá, olho no olho,
dizendo:
	 — As dondozeira ama os dondozeiro?
	 — Ama.
	 — Mas os dondozeiro ama as dondozeira mais do que as dondozeira ama os
dondozeiro.
	 Na-na-não. As dondozeira ama os dondozeiro mais do que, etc.
	 E, entremeando o diálogo, longos beijos, profundos beijos, beijos mais do que
de línguas, beijos de amígdalas, beijos catetéricos. Tardes inteiras. Confesse: ridículo
5
10
15
20
Unidade4LínguaPortuguesa
26
só porque nunca mais.
	 Depois de ridículo, o melhor do namoro são as brigas. Quem diz que nunca,
como quem não quer nada, arquitetou um encontro casual com a ex ou o ex só para
ver se ela ou ele está com alguém, ou para fingir que não vê, ou para ver e ignorar, ou
para dar um abano amistoso querendo dizer que ela ou ele agora significa tão pouco
que podem até ser amigos, está mentindo. Ah, está mentindo.
	 E melhor do que as brigas são as reconciliações. Beijos ainda mais profundos,
apelidos ainda mais lamentáveis, vistos de longe. A gente brigava mesmo era para
se reconciliar depois, lembra? Oito entre dez namorados transam pela primeira vez
fazendo as pazes. Não estou inventando. O IBGE tem as estatísticas.
VERÍSSIMO, Luís Fernando. Correio Braziliense. 13/06/1999.
No texto, considera-se que o melhor do namoro é o ridículo associado
(A)	 às brigas por amor.
(B)	 às mentiras inocentes.
(C)	 às reconciliações felizes.
(D)	 aos apelidos carinhosos.
(E)	 aos telefonemas intermináveis.
Observações:
1.	 O quadro explicativo com os percentuais de respostas às alternativas refere-se
ao desempenho de alunos em testes do Saeb e da Prova Brasil, com abrangência em
todo o País.
2.	 A soma dos percentuais não perfaz, necessariamente, 100%, pois não estão
apresentados os correspondentes às respostas em branco ou nulas. Isso vale para
todos os itens comentados.
O que o resultado do item indica?
	 Um texto apresenta informações explícitas e implícitas. As explícitas estão na
base textual. Para encontrá-las, é necessário que o aluno, após uma leitura geral do
texto e da questão proposta, saiba retornar ao ponto do texto em que se encontra a
resposta. No caso deste item, a tarefa é mais complexa, tendo em vista que o leitor
terá de associar a noção de “ridículo” do namoro, abordado no início do texto, às bri-
gas e às reconciliações.
Percentual de respostas às alternativas
A B C D E
23% 4% 27% 24% 20%
25
30
Unidade4LínguaPortuguesa
27
	 Observando-se os percentuais de respostas, verifica-se que, à exceção da al-
ternativa “B”, houve uma dispersão quase homogênea para as demais alternativas
“A”, “D” e “E”, somando 67% dos respondentes, numa demonstração de que, mesmo
após 11 anos de escolaridade, os alunos não dominam, ainda, o processo de leitura
de textos simples. Percebe-se que, além da relevância da informação que, mesmo
objetiva, requeria uma associação, os alunos podem não estar familiarizados com o
gênero “crônica”, mesmo com uma temática, não só conhecida, mas vivenciada já
na idade deles.
	 Os que escolheram a alternativa correta “C” (27%) demonstraram competência
de leitura de textos simples e souberam seguir as pistas lingüísticas necessárias
para localizar a informação pedida.
Que sugestões podem ser dadas para melhor desenvolver essa habilidade?
	 Os professores podem ajudar os alunos, por exemplo, levando para a sala de
aula textos de diferentes gêneros e de temáticas variadas para que as atividades de
leitura sejam diversificadas. Dessa forma, é possível estimular o aluno a articular o
sentido literal do que lê com outros fatores de significação. Isso o levará a desen-
volver a habilidade de localizar informações e, ao mesmo tempo, compreender que
aquilo que consta em um texto adquire vários sentidos dependendo das circunstân-
cias de sua produção.
Descritor 3 – Inferir o sentido de uma palavra ou expressão
Que habilidade pretendemos avaliar?
	 As palavras são providas de sentido e, na maioria das vezes, são polissêmicas;
ou seja, podem assumir, em contextos diferentes, significados também diferentes.
Assim, para a  compreensão de um texto,  é fundamental que se identifique, entre
os vários sentidos possíveis de uma determinada palavra, aquele que foi particular-
mente utilizado no texto.
	 O aluno precisa decidir, então, entre várias opções, qual aquela que apresenta
o sentido com que a palavra foi usada no texto. Ou seja, o que se sobressai aqui não
é apenas que o aluno conheça o vocabulário dicionarizado, pois todas as alternativas
trazem significados que podem ser atribuídos à palavra analisada.
Unidade4LínguaPortuguesa
28
	 O que se pretende é que, com base no contexto, o aluno seja capaz de reco-
nhecer o sentido com que a palavra está sendo usada no texto em apreço. Vejamos
o item a seguir.
Exemplo de item:
Todo ponto de vista é a vista de um ponto
	 Ler significa reler e compreender, interpretar. Cada um lê com os olhos que
tem. E interpreta a partir de onde os pés pisam.
Todo ponto de vista é um ponto. Para entender como alguém lê, é necessário saber
como são seus olhos e qual é sua visão de mundo. Isso faz da leitura sempre uma
releitura.
	 A cabeça pensa a partir de onde os pés pisam. Para compreender, é essencial
conhecer o lugar social de quem olha. Vale dizer: como alguém vive, com quem
convive, que experiências tem, em que trabalha, que desejos alimenta, como as-
sume os dramas da vida e da morte e que esperanças o animam. Isso faz da com-
preensão sempre uma interpretação.
Boff, Leonardo. A águia e a galinha. 4ª ed. RJ: Sextante, 1999.
A expressão “com os olhos que tem” (ℓ.1), no texto, tem o sentido de
(A)	 enfatizar a leitura.
(B)	 incentivar a leitura.
(C)	 individualizar a leitura.
(D)	 priorizar a leitura.
(E)	 valorizar a leitura.
O que o resultado do item indica?
	 Uma operação inferencial exige dos leitores um raciocínio que toma por base
informações já conhecidas para que ele chegue a informações novas que não estão
objetivamente marcadas no texto. Aqui os alunos foram solicitados a fazer uma
inferência para dar novo sentido à expressão “com os olhos que tem”, expressão
esta que não pertence usualmente a seu repertório. Para que isso ocorresse, esses
Percentual de respostas às alternativas
A B C D E
10% 30% 20% 10% 20%
5
10
Unidade4LínguaPortuguesa
29
alunos teriam de se valer não só de informações novas como também de seu co-
nhecimento de mundo sobre o tema.
	 O desempenho deles ilustra bem a dificuldade da tarefa. A maioria foi atraída
pela alternativa “B” (30%), possivelmente, porque a expressão “incentivar a leitura”
é muito falada, constituindo-se senso comum. É interessante observar a dispersão
homogênea para as alternativas “A” e “D” (10%) e para as alternativas “C” – gabarito
– e “E”.  À exceção do gabarito, essas opções de resposta contêm expressões que
também são senso comum. Isso pode ter-se constituído numa pista lingüística falsa,
porquanto não bastava escolher aleatoriamente uma delas; era necessário identificar
a opção que fosse coerente com o novo sentido que a expressão do gabarito adquiriu
no contexto.
	 Um contingente de apenas 20% acertou o item, o que comprova a dificuldade
de leitura de textos mais complexos, ainda que abordem uma temática conhecida.
Que sugestões podem ser dadas para melhor desenvolver essa habilidade?
	 O professor pode utilizar algumas estratégias para desenvolver nos alunos a
compreensão do sentido que algumas palavras ou expressões ganham de acordo
com as circunstâncias em que o texto foi produzido e com a visão de mundo que cada
um tem. Uma boa estratégia é a técnica de, após leitura silenciosa pelos alunos, o
professor pedir que eles compartilhem as inferências feitas no texto. Dessa forma, o
professor pode aproveitar a relação que os alunos estabelecem entre a estrutura e
o conteúdo do texto e as experiências que cada um traz, para explorar os diferentes
significados que palavras ou expressões podem assumir.
	 Como sugestão, o professor pode trabalhar essa habilidade utilizando uma
mesma palavra em textos diferentes, de diferentes gêneros textuais. É necessário
ressaltar que essa habilidade deve levar em consideração a experiência de mundo do
aluno.
	 É importante que o professor mostre para seus alunos que o sentido das pala-
vras não está no dicionário, mas nos diferentes contextos nos quais elas são enun-
ciadas. Isso não significa que o professor não deva incentivar o aluno a localizar o
significado das palavras no dicionário. Os textos poéticos, literários e publicitários são
especialmente úteis para o trabalho com os diferentes sentidos das palavras.
Unidade4LínguaPortuguesa
30
Descritor 4 – Inferir uma informação implícita no texto
Que habilidade pretendemos avaliar?
	 Numa perspectiva discursivo-interacionista, assumimos que a compreensão
de um texto se dá não apenas pelo processamento de informações explícitas mas,
também, por meio de informações implícitas. Ou seja, a compreensão se dá pela
mobilização de um modelo cognitivo, que integra as informações expressas com os
conhecimentos prévios do leitor ou com elementos pressupostos no texto. 	
	 Para que tal integração ocorra, é fundamental que as proposições explícitas
sejam articuladas entre si e com o conhecimento de mundo do leitor, o que exige
uma identificação dos sentidos que estão nas entrelinhas do texto (sentidos não
explicitados pelo autor). Tais articulações só são possíveis, no entanto, a partir da
identificação de pressupostos ou de processos inferenciais, ou seja, de processos
de busca dos “vazios do texto”, isto é, do que não está “dado” explicitamente no
texto.
	 Os itens relativos a esse descritor devem envolver elementos que não con-
stam na superfície do texto, mas que podem ser reconhecidos por meio da identifi-
cação de dados pressupostos ou de processos inferenciais.
Exemplo de item:
Motoristas de batom conquistam a Urca
Moradores aprovam adoção de mulheres na linha 107
	 Batom, lápis nos olhos, brincos. Foi a essa mistura que a empresa Amigos
Unidos apelou para contornar as constantes reclamações dos moradores da Urca
contra os motoristas da linha 107 (Central-Urca). Há um mês, a empresa removeu
sete mulheres de outros trajetos para formar um time de primeira linha. “O público
da Urca é muito exigente.” Os passageiros reclamavam que os motoristas homens
não paravam no ponto e dirigiam de forma perigosa. “Agora só recebemos elogios”,
contou o gerente de Recursos Humanos da empresa, Mario Mattos.
	 Elogios que, às vezes, não se limitam ao desempenho profissional. “Hoje (on-
tem), um homem falou que queria ser o meu volante”, contou a motorista Ana
Paula da Silva, 24 anos. Na empresa há três meses, Ana Paula da Silva faz da
profissão uma forma de dar carinho a idosos e deficientes – os que mais têm difi-
culdades para entrar nos ônibus. “Às vezes, levanto para ajudar alguém a descer.
Já parei o carro para atravessar a rua com um deficiente visual”, contou.
	 Casada com um motorista de ônibus, Márcia Cristina Pereira, 38 anos, diz que
5
10
Unidade4LínguaPortuguesa
31
não enfrenta dificuldades com os colegas de profissão, ainda que reconheça que,
no começo, a desconfiança não foi pequena. “Eles me dão força. Recebo muitos
elogios”, disse. Ao contrário de Márcia, a motorista Janaína de Lima, 32 anos,
diz que se relaciona bem com todos os colegas, mas acha que já há competição.
“Falta muito para os homens se relacionarem bem com os idosos e deficientes”,
comparou. Morador da Urca há 25 anos, Ednei Bernardes aprovou a adoção de mo-
toristas mulheres no bairro. “Elas respeitam mais as pessoas e as leis de trânsito”,
resumiu.
JB, 23/07/02 – Cidade. C1.
Um dos usuários do ônibus concluiu:
“Elas respeitam muito mais as pessoas e as leis do trânsito.”Tal afirmativa, no con-
texto, permite concluir que
(A)	 as empresas de ônibus preferem os serviços da mulher.
(B)	 os homens são grosseiros e desrespeitam as lei de trânsito.
(C)	 os idosos e deficientes passam a receber um tratamento melhor.
(D)	 os homens criam mais problemas com colegas de profissão.
(E)	 a população da Urca tornou-se exigente no transporte urbano.
O que o resultado do item indica?
	 Um texto apresenta informações explícitas e implícitas. As implícitas não es-
tão presentes de forma clara e exigem, portanto, que o leitor construa seu sentido
por meio de inferências. Para realizar essas inferências, o leitor deverá observar
marcas do texto que permitam chegar a alguma informação implícita.
	 Dessa forma, ao leitor competente, não basta apenas a habilidade de lo-
calizar informações explícitas no texto, mas também é preciso conseguir ler nas
entrelinhas, ou seja, é preciso inferir o que o texto quer dizer a partir do que está
explícito, pois só assim será possível descobrir aquilo que está subentendido.
	 Com este item, pretende-se que o aluno leia nas entrelinhas. O item represen-
tativo deste descritor tem um texto informativo retirado de um jornal de grande cir-
culação como base. Esse texto trata de um tema atual por meio de uma linguagem
acessível aos alunos com esse nível de escolaridade.
Percentual de respostas às alternativas
A B C D E
9% 43% 33% 5% 10%
15
20
Unidade4LínguaPortuguesa
32
	 Para obter êxito neste item, seria necessário, primeiramente, compreender
bem o enunciado; já que, para responder à questão, dever-se-ia relacionar a afirma-
tiva do texto transcrita no enunciado com o contexto (que é o próprio texto). A afir-
mativa transcrita no enunciado deixa implícito, por meio do termo mais, que há uma
oposição em relação ao comportamento de dois grupos diferentes. Dessa forma, se
“elas” respeitam mais, há um outro grupo que respeita menos (que, por oposição,
seriam “eles”).
	 O aluno deveria, portanto, fazer a associação do enunciado com o contexto e
com as opções; fazer oposição entre o pronome “elas” e o pronome “eles” e ser ca-
paz de sintetizar a idéia mais relevante do texto como um todo.
	 Ressalta-se que o aluno deveria restringir, da compreensão global do texto, o
que era pertinente ao item para chegar ao gabarito (alterantiva “B”). Por isso, a lei-
tura atenta do enunciado mostra-se tão relevante.
	 Considerando a variação nas respostas, conclui-se que o grau de dificuldade do
item foi alto. Marcaram o gabarito esperado apenas 43% dos alunos. Esses alunos
demonstraram habilidade na inferência de informações implícitas. Muitos dos que
obtiveram maior resultado na prova, como um todo, marcaram a resposta esperada.
É relevante ressaltar também que 33% consideraram a alternativa “C” como gabari-
to. Essa opção trazia realmente uma idéia bastante coerente com o texto, entretanto
não bastava somente avaliar isso, era necessário também identificar a opção mais
pertinente ao item, a mais precisa.
	 Considera-se, portanto, que a compreensão global de um texto só será efeti-
vada se o aluno for capaz de identificar aquilo que não está textualmente escrito,
mas fica subentendido. Além disso, para a resolução do item, a leitura e a compreen-
são do enunciado mostraram-se decisivas para a obtenção de êxito nas respostas.
Que sugestões podem ser dadas para melhor desenvolver essa habilidade?
	 Atividades com textos sobre temas atuais, com espaço para as várias possibili-
dades de leitura possíveis, permitem desenvolver a interpretação tanto por meio do
explícito como do implícito. Trabalhar com textos que evidenciam situações do cotidi-
ano. As informações implícitas exigem que o leitor construa seu sentido por meio de
inferências, pois elas não estão claramente presentes no texto. Dessa forma, o leitor
necessita observar marcas do texto que o permitam chegar a essa informação.
Unidade4LínguaPortuguesa
33
Descritor 6 – Identificar o tema de um texto
Que habilidade pretendemos avaliar?
	 Um texto é tematicamente orientado; quer dizer, desenvolve-se a partir de um
determinado tema, o que lhe dá unidade e coerência.
	 A identificação desse tema é fundamental, pois só assim é possível apreender
o sentido global do texto, discernir entre suas partes, principais e outras secundárias,
parafraseá-lo, dar-lhe um título coerente ou resumí-lo.
	 Em um texto dissertativo, as idéias principais, sem dúvida, são aquelas que
mais diretamente convergem para o tema central do texto.
	 Um item vinculado a esse descritor deve centrar-se na dimensão global do texto,
no núcleo temático que lhe confere unidade semântica.
	 Por meio deste descritor, pode-se avaliar a habilidade de o aluno identificar do
que trata o texto, com base na compreensão do seu sentido global, estabelecido pe-
las múltiplas relações entre as partes que o compõem. Isso é feito ao relacionarem-
se diferentes informações para construir o sentido completo do texto.
	 Para ilustrar o desempenho dos alunos em relação à habilidade indicada por
este descritor, apresentamos o exemplo a seguir:
Exemplo de item:
Um arriscado esporte nacional
	 Os leigos sempre se medicaram por conta própria, já que de médicos e de
loucos todos temos um pouco, mas esse problema jamais adquiriu contornos tão
preocupantes no Brasil como atualmente. Qualquer farmácia conta hoje com um ar-
senal de armas de guerra para combater doenças de fazer inveja à própria indústria
de material bélico nacional. Cerca de 40% das vendas realizadas pelas farmácias
nas metrópoles brasileiras destinam-se a pessoas que se automedicam. A indústria
farmacêutica de menor porte e importância retira 80% de seu faturamento da venda
“livre” de seus produtos – isto é, das vendas realizadas sem receita médica.
	 Diante desse quadro, o médico tem o dever de alertar a população para os
perigos ocultos em cada remédio, sem que, necessariamente, faça junto com essas
advertências uma sugestão para que os entusiastas da automedicação passem a
gastar mais em consultas médicas. Acredito que a maioria das pessoas se auto-
medicam por sugestão de amigos, leitura, fascinação pelo mundo maravilhoso das
drogas “novas” ou simplesmente para tentar manter a juventude. Qualquer que seja
a causa, os resultados podem ser danosos.
MEDEIROS, Geraldo. – Revista Veja, 18 de dezembro, 1985.
5
10
15
Unidade4LínguaPortuguesa
34
O tema abordado no texto é
(A)	 os riscos constantes da automedicação.
(B)	 o crescimento da indústria farmacêutica.
(C)	 a venda ilegal de medicamentos.
(D)	 a luta pela manutenção da juventude.
(E)	 o faturamento das consultas médicas.
O que o resultado do item indica?
	 Os alunos identificaram o tema deste texto com relativa facilidade. Tanto que
o desempenho dos que responderam acertadamente ao item ficou acima da média
(53%). Estes demonstraram ter capacidade de identificar a idéia central de gêneros
textuais que tratam de assuntos relativos à automedicação.
	 Os alunos que escolheram a alternativa errada “B” (12%) provavelmente
seguiram alguma informação explícita, como o alto percentual de faturamento livre
com vendas sem receita médica. Os que escolheram a alternativa errada “C” (17%)
ativeram-se à idéia de “venda ilegal de medicamentos”.
	 Os alunos que não conseguiram acertar o item deveriam demonstrar a habili-
dade de reconhecer, entre as opções dadas pelas alternativas, as informações im-
plícitas do texto e, a partir de inferências textuais, abstrair aquela que identifica a
idéia central, ou seja, “os riscos constantes da automedicação”.
Que sugestões podem ser dadas para melhor desenvolver essa habilidade?
	 Cabe aos professores trabalhar em um nível de atividade que ultrapasse a su-
perfície do texto, conduzindo o aluno a estabelecer relações entre as informações ex-
plícitas e implícitas, a fim de que ele faça inferências textuais e elabore uma síntese
do texto. Ou seja, o aluno considera o texto como um todo, mas prende-se ao eixo no
qual o texto é estruturado. Os textos informativos são excelentes para se desenvolver
essa habilidade.
Descritor 14 – Distinguir um fato da opinião relativa a esse fato
Que habilidade pretendemos avaliar?
Percentual de respostas às alternativas
A B C D E
53% 12% 17% 7% 4%
Unidade4LínguaPortuguesa
35
	 É comum, sobretudo em textos dissertativos, que, a respeito de determinados
fatos, algumas opiniões sejam emitidas. Ser capaz de localizar a referência aos fa-
tos, distinguindo-a das opiniões relacionadas a eles, representa uma condição de
leitura eficaz.
	 Um item que avalie essa habilidade deve apoiar-se em um material que conte-
nha um fato e uma opinião sobre ele, a fim de poder estimar a capacidade do aluno
para fazer tal distinção.
	 Há, neste item, a intenção de que o aluno identifique uma opinião sobre um
fato apresentado. É importante que ele tenha uma visão global do texto e do que está
sendo solicitado no enunciado do item.
Neste texto, a diferença entre o fato e a opinião relativa a ele está bem marcada, o
que facilita a tarefa do aluno.
Exemplo de item:
Não se perca na rede
	 A Internet é o maior arquivo público do mundo. De futebol a física nuclear, de
cinema a biologia, de religião a sexo, sempre há centenas de sites sobre qualquer
assunto. Mas essa avalanche de informações pode atrapalhar. Como chegar ao que
se quer sem perder tempo? É para isso que foram criados os sistemas de busca.
Porta de entrada na rede para boa parte dos usuários, eles são um filão tão bom que
já existem às centenas também. Qual deles escolher? Depende do seu objetivo de
busca.
	 Há vários tipos. Alguns são genéricos, feitos para uso no mundo todo (Google,
por exemplo). Use esse site para pesquisar temas universais. Outros são nacionais
ou estrangeiros com versões específicas para o Brasil (Cadê, Yahoo e Altavista). São
ideais para achar páginas “com.br”.
(Paulo D’Amaro)
Disponível em: <http://galileu.globo.com/edic/116/rep_internet.htm>. Acesso em Julho /2008.
O artigo foi escrito por Paulo D’Amaro. Ele misturou informações e análises do fato.
O período que apresenta uma opinião do autor é
(A)	 “foram criados sistemas de busca.”
(B)	 “essa avalanche de informações pode atrapalhar.”
(C)	 “sempre há centenas de sites sobre qualquer assunto.”
(D)	 “A internet é o maior arquivo público do mundo.”
(E)	 “Há vários tipos.”
5
10
Unidade4LínguaPortuguesa
36
O que o resultado do item indica?
	 Nos textos argumentativos – e também em alguns informativos –, apresen-
tam-se evidências e análises dessas evidências. As evidências são os fatos e a
análise é a opinião relativa a esses fatos. Nos itens deste descritor, espera-se que
o leitor competente reconheça os fatos em um texto argumentativo ou informativo;
bem como distinga um fato da opinião relativa a ele.
	 O texto “Não se perca na rede”, que serviu como base para o item represen-
tativo deste descritor, requer a habilidade fundamental de saber distinguir um fato
da opinião relativa a ele para a sua compreensão. Este texto tem um bom grau de
informatividade e, com uma linguagem simples, trata de um assunto relevante na
atualidade: a Internet como instrumento para a obtenção de informações.
	 Para responder ao item, o aluno poderia recorrer à observação das formas
verbais, pois, assim, conseguiria chegar à opção considerada adequada. No gabari-
to, opção “B” (“essa avalanche de informações pode atrapalhar”), percebe-se que,
para o autor do texto, embora haja no senso comum a idéia de que o acesso a uma
grande quantidade de informações é imprescindível, o excesso de informações
também é negativo. Ao usar a forma verbal “pode” em um período no qual emite
sua opinião, o autor procura suavizar sua afirmação, considerando que existe uma
possibilidade de o exagero em relação à quantidade de informações trazer conse-
qüências negativas para as pessoas.
	 Acertaram este item 38% dos alunos, o que demonstra um alto grau de difi-
culdade. Aqueles que obtiveram um resultado satisfatório na prova como um todo
acertaram este item. Houve, porém, 32% que consideraram a opção “D” como
gabarito. Possivelmente, aqueles que marcaram essa opção consideraram que a
expressão maior, por qualificar um termo, seria uma forma de expressar subjetivi-
dade e, por isso, esse exemplo consistiria em uma análise, e não na apresentação
de um fato.
	 Percebe-se, portanto, a necessidade de desenvolver nos alunos a habilidade
de leitura por meio de textos argumentativos para que eles possam ser capazes de
distinguir um acontecimento, algo real, concreto, daquilo que é a opinião relativa a
um fato, fruto da subjetividade do emissor.
Percentual de respostas às alternativas
A B C D E
7% 38% 11% 32% 10%
Unidade4LínguaPortuguesa
37
Que sugestões podem ser dadas para melhor desenvolver essa habilidade?
	 Sugerimos que o professor, para trabalhar a habilidade de o aluno estabelecer
a diferença entre fato e opinião sobre o fato, recorra a gêneros textuais variados,
especialmente os que apresentam estrutura narrativa, tais como contos (fragmen-
tos) e crônicas. Os textos argumentativos também se prestam para trabalhar essa
habilidade. Entretanto, torna-se necessário trabalhar nos textos as situações criadas
por instrumentos gramaticais, como as expressões adverbiais e as denotativas em
relações de mera referencialidade textual ou de influência externa de intromissão do
locutor/produtor/narrador.
Tópico II – Implicações do Suporte, Gênero e/ou Enunciador na Compreen-
são do Texto
	 Este tópico requer do aluno habilidades lingüísticas de interpretar textos que
conjuguem as linguagens verbal e não-verbal ou, ainda, textos não-verbais. O aluno
deve, também, demonstrar conhecimento de gêneros textuais variados para que pos-
sa reconhecer a função social dos textos.
	 A seguir, temos análises de itens referentes aos descritores 5 e 12, que com-
põem o Tópico II.
Descritor 5 – Interpretar texto com auxílio de material gráfico diverso (propa-
gandas, quadrinhos, fotos etc)
Que habilidade pretendemos avaliar?
	 Além do material especificamente lingüístico, muitos textos lançam mão de
signos ou sinais de outros códigos, de outras linguagens, que, de muitas formas, con-
correm para o entendimento global de seu sentido. Articular esses diferentes sinais
representa uma habilidade de compreensão de grande significação, sobretudo atual-
mente, pois são muitos os textos que misturam tais tipos de representação, fazendo
demandas de leitura de elementos não-verbais para o entendimento global do texto
exposto.
	 Um item que se destina a avaliar essa habilidade deve ter como estímulo um
texto que conjugue diferentes linguagens, com o intuito, no entanto, de o aluno poder
Descritores D5 D12
Unidade4LínguaPortuguesa
38
Eu gosto do natal porque
as pessoas se amam
muito mais.
Ah!... Você
também sente isso?
Como fico feliz!
Quer dizer que você também se
ama muito mais no natal?
Eu, então, você nem imagina o
quanto eu me amo no natal!
Por que será que as pessoas
se amam muito mais
no natal?
articulá-las em razão de um sentido global.
	 Para demonstrar essa habilidade, não basta apenas decodificar sinais e sím-
bolos, mas ter a capacidade de perceber a interação entre a imagem e o texto
escrito. A integração de imagens e palavras contribui para a formação de novos
sentidos do texto.
Exemplo de item:
QUINO. Mafalda inédita. São Paulo: Martins Fontes, 1993, p. 42.
A respeito da tirinha da Mafalda, é correto afirmar que ela
(A)	 gosta do Natal pelo mesmo motivo de sua amiga.
(B)	 pensa em resposta à pergunta da amiga.
(C)	 concorda com a forma de pensar de sua amiga.
(D)	 e a amiga têm as mesmas opiniões.
(E)	 percebe que a amiga não compreendeu sua fala.
O que o resultado do item indica?
	 O texto escrito conta, muitas vezes, com o apoio necessário de material gráfico
diverso. Há casos, inclusive, em que esse material é o próprio texto. Dados estatís-
ticos, traços físicos refletindo estados psicológicos, mapas, tabelas, propagandas,
fotos, são diversas as maneiras de externalizar o pensamento. Tornar o estudante
apto a compreender textos a partir de elementos não-verbais é imprescindível nos
dias de hoje. Espera-se que a habilidade de reconhecer sentidos e significados em
Percentual de respostas às alternativas
A B C D E
12% 5% 10% 9% 63%
Unidade4LínguaPortuguesa
39
linguagem não-verbal seja aferida, principalmente quando ela estiver associada à
linguagem verbal.
	 O item em análise foi construído a partir de um texto que tem como tema o
Natal. O texto escrito, nesse caso, não é o único recurso a ser explorado pelo leitor.
A própria estrutura em quadrinhos mostra a necessidade de se ler as imagens, es-
pecificamente as expressões faciais das personagens. O tema é atual e recorrente,
levantando uma discussão que envolve o amor de si versus o amor de um para com
o outro. As interpretações geradas pela estrutura “se amam” no primeiro quadrinho
tornam-se evidentes com os demais quadrinhos: enquanto uma das personagens
apropriou-se da leitura reflexiva (“eu me amo no Natal!”), a outra demonstrou, por
meio de uma face decepcionada, que pretendia expressar uma noção de reciproci-
dade (“as pessoas se amam” umas às outras).
	 O item vem justamente solicitar ao leitor que demonstre compreensão do texto
a partir da combinação da leitura do material escrito e do material gráfico (as ex-
pressões faciais). Acertaram a alternativa correta (letra “E”) 63% dos estudantes.
Ressalta-se que houve certo equilíbrio em relação à escolha das respostas incorretas
“A”, “C” e “D”, fato devido à proximidade de sentido que existe entre elas. Esse fato
valoriza, ainda mais, o estudante que escolheu a alternativa correta, dado que re-
velou ter ele também a habilidade de reconhecer opções incorretas próximas. O item
tem grau alto de dificuldade e o estudante que acertou a resposta teve muito bom
desempenho na prova como um todo.
Que sugestões podem ser dadas para melhor desenvolver essa habilidade?
	 Levando em conta que grande parte dos textos com os quais nos deparamos
nas diversas situações sociais de leitura exige que se integre texto escrito e mate-
rial gráfico para sua compreensão, a escola pode contribuir para o desenvolvimento
dessa habilidade explorando a integração de múltiplas linguagens como forma de
expressão de idéias e sentimentos.
	 Para trabalhar essa habilidade, o professor deve levar para a sala de aula a
maior variedade possível de textos desse gênero. Além das revistas em quadrinhos e
das tirinhas, pode-se explorar materiais diversos que contenham apoio em recursos
gráficos. Esses materiais vão de peças publicitárias e charges de jornais aos textos
presentes em materiais didáticos de outras disciplinas, tais como gráficos, mapas,
tabelas, roteiros.
Descritor 12 – Identificar a finalidade de textos de diferentes gêneros
Unidade4LínguaPortuguesa
40
Que habilidade pretendemos avaliar?
	 Todo texto se realiza com uma determinada finalidade. Ou seja, tem um
propósito interativo específico. Pode pretender, por exemplo, informar ou esclarecer,
expor um ponto de vista, refutar uma posição, narrar um acontecimento, fazer uma
advertência, persuadir alguém de alguma coisa etc. O entendimento bem sucedido
de um texto depende, também, da identificação das intenções pretendidas por esse
texto.
	 Um item relacionado a esse descritor deve incidir, exatamente, sobre as preten-
sões reconhecíveis para o texto. Elementos lingüísticos e outros contextuais funcio-
nam como pistas para a identificação da finalidade pretendida pelo texto.
	 Esse descritor indica a habilidade de o aluno reconhecer, na leitura de gêne-
ros textuais diferenciados, a função social dos textos: informar, convencer, advertir,       
instruir, explicar, comentar, divertir, solicitar, recomendar etc.
Exemplo de item:
Qual a origem do doce brigadeiro?
	 Em 1946, seriam realizadas as primeiras eleições diretas para presidente
após os anos do “Estado Novo”, de Getúlio Vargas. O candidato da aliança PTB/PSD,
Eurico Gaspar Dutra, venceu com relativa folga. Mas o título de maior originalidade
na campanha ficou para as correligionárias do candidato derrotado, Eduardo Gomes
(da UDN).
	 Brigadeiro da Aeronáutica, com pinta de galã, Eduardo Gomes tinha um apoio,
digamos, entusiasmado. Para fazer o “corpo-a-corpo” com o eleitorado, senhoras
da sociedade saiam às ruas convocando as mulheres a votar em Gomes, com o
slogan: “Vote no brigadeiro. Ele é bonito e solteiro”. Não satisfeitas ainda promoviam
almoços e chás, nos quais serviam um irresistível docinho coberto com chocolate
granulado. Ao qual deram o nome, claro, de brigadeiro.
Almanaque das curiosidades, p. 89.
A finalidade desse gênero de texto é
(A)	 propor mudanças.
(B)	 refutar um argumento.
(C)	 advertir as pessoas.
(D)	 trazer uma informação.
(E)	 orientar procedimentos.
5
10
Unidade4LínguaPortuguesa
41
O que o resultado do item indica?
	 Textos diferentes normalmente têm intenções comunicativas diferentes. Algu-
mas vezes, a finalidade do texto, ou seja, sua função na situação de interlocução,
é definida no próprio gênero textual que o autor escolheu. Reconhecer a finalidade
do texto apresentado revelou-se uma tarefa de dificuldade mediana, já que mais da
metade dos alunos acertaram a alternativa correta “D”. Acrescente-se a isso o fato
de a estrutura do texto ser simples e o vocabulário comum, com referência a um
doce que é conhecido na maior parte do país.
	 As demais alternativas (erradas) atraíram alunos que, ou não leram o texto até
o final, ou não estão familiarizados com a variedade de gêneros textuais que circu-
lam em nossa sociedade letrada.
Que sugestões podem ser dadas para melhor desenvolver essa habilidade?
	 É imprescindível que a escola trabalhe com os alunos a leitura de textos de
diferentes gêneros, como notícias, avisos, anúncios, cartas, convites, instruções, pro-
pagandas, telefonema, sermão, romance, bilhete, aula expositiva, ata de reunião de
condomínio, entre muitos outros, em que é solicitado ao aluno identificar a função
social de cada texto.
Tópico III – Relação entre Textos
	 Este tópico  apresenta dois descritores (D20 e D21) que identificam a habili-
dade de comparar textos que tratam do mesmo tema, analisando a relação entre o
modo de tratamento do tema e as condições de produção, recepção e circulação dos
textos. Temos, então, a análise de itens representativos deste tópico.
Descritor 20 – Reconhecer diferentes formas de tratar uma informação na
comparação de textos que tratam do mesmo tema, em função das condições
em que ele foi produzido e daquelas em que será recebido
Percentual de respostas às alternativas
A B C D E
16% 11% 16% 49% 6%
Descritores D20 D21
Unidade4LínguaPortuguesa
42
Que habilidade pretendemos avaliar?
	 Por meio deste item, podemos avaliar a habilidade de se comparar dois textos
do mesmo gênero e com a mesma temática e perceber características que não são
comuns aos dois. Nesse caso, o aluno deve analisar dois textos sobre o mesmo as-
sunto, publicado em jornais diferentes.
Exemplo de item:
Texto I
“Sou completamente a favor da flexibilização das relações trabalhistas, pois a velhís-
sima legislação brasileira, além de anacrônica, vem comprometendo seriamente a
nossa competitividade em nível global.”
Texto II
“É uma falácia dizer que com a eliminação dos direitos trabalhistas se criarão mais
empregos. O trabalhador brasileiro já é por demais castigado para suportar mais
essa provocação.”
O Povo, 17 abr. 1997.
Os textos acima tratam do mesmo assunto, ou seja, da relação entre patrão e em-
pregado. Os dois se diferenciam, porém, pela abordagem temática. O texto II em
relação ao texto I apresenta uma
(A)	 ironia.
(B)	 semelhança.
(C)	 oposição.
(D)	 aceitação.
(E)	 confirmação.
O que o resultado do item indica?
	 O objetivo do descritor é justamente medir a habilidade que todo cidadão pre-
cisa ter: diferenciar evidências e análises, tendo em vista que um mesmo objeto
pode ser alvo de inúmeros olhares. A quantidade de informações veiculadas na mídia
Percentual de respostas às alternativas
A B C D E
19% 19% 42% 8% 11%
Unidade4LínguaPortuguesa
43
exige a formação de um leitor crítico, atento, seguro e capaz de extrair o fato em
meio às opiniões que se formam em torno dele. A habilidade de comparar dois ou
mais textos sobre um mesmo tema exige maturidade e discernimento, que devem
ser desenvolvidos também na escola.
	 Os textos utilizados nesse item são provenientes de jornal, um veículo muito
importante para uma sociedade da informação como a nossa, sendo ele um dos
principais meios de divulgação de fatos e opiniões. O tema do texto, apesar de ele
ter sido escrito em 1997, é atual. As relações trabalhistas, a legislação e os aspectos
da economia diretamente ligados ao dia-a-dia do cidadão comum são prioridade na
atual realidade brasileira.
	 O item explora a habilidade de o estudante reconhecer as posições conflitantes
de dois textos, quando confrontados entre si. O enunciado destaca que os textos
tratam do mesmo assunto, embora apresentem posições diferentes. Diante disso,
espera-se que o leitor seja capaz de detectar qual é o tipo de relação que existe en-
tre os textos. Acertaram a resposta (letra “C”) 42% dos estudantes. Possivelmente,
os estudantes que marcaram as alternativas “A” e “B”, respostas com percentual de
19% cada uma, tiveram dificuldades quanto ao vocabulário dos textos, embora isso
não devesse ter sido um fator determinante, visto que o próprio enunciado traz pistas
para a resolução do item, cujo grau de dificuldade é médio.
	 Espera-se que seja desenvolvida a capacidade crítica de leitura do mundo a
partir da leitura de textos com posições diferentes sobre um mesmo tópico.
Que sugestões podem ser dadas para melhor desenvolver essa habilidade?
	 A escola pode favorecer o desenvolvimento da capacidade crítica do aluno a
partir da leitura de textos com posições diferentes sobre um mesmo tema, formando
leitores mais atentos, seguros e capazes de extrair o fato em meio às opiniões que
se formam em torno dele. A habilidade de comparar dois ou mais textos sobre um
mesmo tema exige maturidade do aluno e discernimento, proporcionando-lhe maior
autonomia para se posicionar e analisar criticamente os argumentos utilizados pelo
autor do texto.
	 As estratégias utilizadas podem ser: a) a contraposição da interpretação da
realidade a diferentes opiniões; b) a inferência das possíveis intenções do autor mar-
cadas no texto; c) a identificação das referências intertextuais presentes no texto;           
d) a percepção dos processos de convencimento utilizados pelo autor para atuar so-
bre o interlocutor/leitor; d) a identificação e o repensar dos juízos de valor tanto sócio-
ideológicos (preconceituosos ou não) quanto histórico-culturais (inclusive estéticos)
associados à linguagem e à língua e, e) a reafirmação da sua identidade pessoal e
social.
Unidade4LínguaPortuguesa
44
Descritor 21 – Reconhecer posições distintas entre duas ou mais opiniões
relativas ao mesmo fato ou ao mesmo tema
Que habilidade pretendemos avaliar?
	 Diferentemente do que é exposto no descritor anterior, dois ou mais textos que
desenvolvem o mesmo tema podem ser confrontados para se procurar perceber os
pontos em que tais textos divergem. Também pode acontecer de um único texto
apresentar opiniões distintas em relação a um mesmo fato. A habilidade para esta-
belecer esses pontos divergentes é de grande relevância na vida social de cada um,
pois, constantemente, somos submetidos a informações e opiniões distintas acerca
de um fato ou de um tema.
	 O item que se destina a avaliar essa habilidade deve apoiar-se em um, dois ou
mais textos diferentes e focalizar os pontos em que esses textos divergem.
	 A habilidade avaliada por meio deste descritor relaciona-se, pois, à identifica-
ção, pelo aluno, das diferentes opiniões emitidas sobre um mesmo fato ou tema. A
construção desse conhecimento é um dos principais balizadores de um dos objetivos
do ensino da Língua Portuguesa, qual seja, o de capacitar o aluno a analisar critica-
mente os diferentes discursos, inclusive o próprio, desenvolvendo a capacidade de
avaliação dos textos.
Exemplo de item:
Texto I
Tio Pádua
	 Tio Pádua e tia Marina moravam em Brasília. Foram um dos primeiros. Mu-
daram-se para lá no final dos anos 50. Quando Dirani, a filha mais velha, fez dezoito
anos, ele saiu pelo Brasil afora atrás de um primo pra casar com ela. Encontrou Jairo,
que morava em Marília. Estão juntos e felizes até hoje. Jairo e Dirani casaram-se em
1961. Fico pensando se os casamentos arranjados não têm mais chances de dar
certo do que os desarranjados.
Ivana Arruda Leite. Tio Pádua.  Internet: http://www.doidivana.zip net. Acesso em 07/01/2007.
Unidade4LínguaPortuguesa
45
Texto II
O casamento e o amor na Idade Média
(fragmento)
	 Nos séculos IX e X, as uniões matrimoniais eram constantemente combina-
das sem o consentimento da mulher, que, na maioria das vezes, era muito jovem.
Sua pouca idade era um dos motivos da falta de importância que os pais davam a
sua opinião. Diziam que estavam conseguindo o melhor para ela. Essa total falta de
importância dada à opinião da mulher resultava muitas vezes em raptos. Como o
consentimento da mulher não era exigido, o raptor garantia o casamento e ela de-
veria permanecer ligada a ele, o que era bastante difícil, pois os homens não davam
importância à fidelidade. Isso acontecia talvez principalmente pelo fato de a mulher
não poder exigir nada do homem e de não haver uma conduta moral que proibisse
tal ato.
Ingo Muniz Sabage. O casamento e o amor na Idade Média.  Internet: <http://www.milenio.com.br/
ingo/ideias/hist/casament.htm>.  Acesso em 07/01/2007 (com adaptações).
Sobre o “casamento arranjado”, o texto I e o texto II apresentam opiniões
(A)	 complementares.
(B)	 duvidosas.
(C)	 opostas.
(D)	 preconceituosas.
(E)	 semelhantes.
O que o resultado do item indica?
	 Analisando a dificuldade do item pelos percentuais de respostas às alternativas,
percebe-se que uma percentagem de 46% dos alunos responderam corretamente ao
item, dando a ele um status médio de complexidade, em virtude de ter havido uma
dispersão quase homogênea pelas alternativas incorretas.  Era de se esperar que alu-
nos nesse ano de escolaridade soubessem reconhecer opiniões diferenciadas sobre
um tema, em textos diferentes.
Percentual de respostas às alternativas
A B C D E
12% 15% 46% 11% 14%
5
10
Unidade4LínguaPortuguesa
46
	 Os alunos que se houveram bem neste item possivelmente estão familiarizados
com a comparação de textos que tratam de um mesmo tema e expostos a textos
mais complexos, como o caso do Texto II. São leitores capazes de ler criticamente e
conseguem distinguir as diferentes opiniões sobre o tema.
Que sugestões podem ser dadas para melhor desenvolver essa habilidade?
	 Aos professores incumbe oportunizar aos alunos o exercício de comparação
de textos que abordem uma mesma temática. O desenvolvimento dessa habilidade
ajuda o aluno a perceber-se como um ser autônomo, dotado da capacidade de se
posicionar e transformar a realidade, ao inferir as possíveis intenções do autor mar-
cadas no texto e ao identificar referências intertextuais presentes nele.
Tópico IV – Coerência e Coesão no Processamento do Texto
	 A competência indicada neste tópico vai exigir do aluno habilidades que o levem
a identificar a linha de coerência do texto. A coerência e a coesão ocorrem nos diver-
sos tipos de texto. Cada tipo de texto tem uma estrutura própria, por isso, os meca-
nismos de coerência e de coesão também vão se manifestar de forma diferente,
conforme se trate de um texto narrativo, descritivo, ou dissertativo-argumentativo.
	 Com relação a este tópico, são apresentados itens referentes aos descritores 2,
10, 11, 15, 7, 8 e 9.
Descritor 2 – Estabelecer relações entre partes de um texto, identificando
repetições ou substituições que contribuem para a continuidade de um
texto
Que habilidade pretendemos avaliar?
	 Com este item pretendemos avaliar a habilidade de o aluno reconhecer
as relações coesivas do texto, mais especificamente as repetições ou substitu-
ições, que servem para estabelecer a continuidade textual. No texto a seguir, por
exemplo, destacamos o entrelaçamento das idéias e a sua continuidade. A com-
preensão de informações e idéias apresentadas pelo autor ultrapassa a simples
decodificação e depende da devida percepção dessas relações para o efetivo
entendimento da leitura.
Descritores D2 D10 D11 D15 D7 D8 D9
Unidade4LínguaPortuguesa
47
Exemplo de item:
Sermão do Mandato
	 O primeiro remédio que dizíamos, é o tempo. Tudo cura o tempo, tudo faz es-
quecer, tudo gasta, tudo digere, tudo acaba. Atreve-se o tempo a colunas de már-
more, quanto mais a corações de cera? São as afeições como as vidas, que não há
mais certo de haverem de durar pouco, que terem durado muito. São como as li-
nhas, que partem do centro para a circunferência, que tanto mais continuadas, tanto
menos unidas. Por isso os Antigos sabiamente pintaram o amor menino; porque
não há amor tão robusto que chegue a ser velho. De todos os instrumentos com que
o armou a natureza, o desarma o tempo. Afrouxa-lhe o arco, com que já não atira;
embota-lhe as setas, com que já não fere; abre-lhe os olhos, com que vê o que não
via; e faz-lhe crescer as asas, com que voa e foge. A razão natural de toda esta dife-
rença, é porque o tempo tira a novidade às cousas, descobre-lhe defeitos, enfastia-
lhe o gosto, e basta que sejam usadas para não serem as mesmas. Gasta-se o ferro
com o uso, quanto mais amor? O mesmo amor é a causa de não amar, e o de ter
amado muito, de amar menos.
VIEIRA, Antônio. Sermão do Mandato. In: Sermões. 8. ed. Rio de Janeiro: Agir, 1980.
Em “...para não serem as mesmas...” (ℓ.12), a expressão destacada refere-se a
(A)	 afeições.
(B)	 asas.
(C)	 cousas.
(D)	 linhas.
(E)	 setas.
O que o resultado do item indica?
	 O descritor 2 procura medir a habilidade desenvolvida pelo leitor no esta-
belecimento de relações entre partes de um texto, identificando repetições ou                          
substituições de termos, o que contribui para a coesão, ou seja, o entrelaçamento
das idéias e a sua progressividade ou continuidade. A compreensão de informações
e idéias apresentadas pelo autor ultrapassa a simples decodificação e depende da
devida percepção dessas relações. Quando a interpretação das referências não é
correta, há risco de incompreensão.
Percentual de respostas às alternativas
A B C D E
34% 5% 53% 5% 2%
5
10
Unidade4LínguaPortuguesa
48
	 O enunciado deste item solicita ao leitor que identifique qual a expressão do
texto que é retomada pelo termo “as mesmas”. Trata-se de um texto adequado a alu-
nos do ensino médio, pois, embora apresente sintaxe complexa, focaliza tema de in-
teresse permanente (o tempo e suas conseqüências), provoca a reflexão, apresenta
riqueza de recursos estilísticos, representa de forma exemplar um período literário e,
mesmo assim, suas referências são facilmente apreensíveis.
	 O item apresentou resultados satisfatórios, pois, além de obter um percentual
alto de repostas corretas – alternativa “C” – (53%), os alunos com melhor resultado
na prova como um todo escolheram o gabarito. A expressão “as mesmas” retoma o
termo antecedente “cousas”, que é retomado antes disso duas vezes pelo pronome
“lhe”, o que pode ter representado uma dificuldade adicional. O significativo índice
de respostas na alternativa “A” sugere que essa atração decorreu, provavelmente,
do fato de o texto apresentar uma mudança de referente em cadeia, ou seja, um
mesmo referente retomado várias vezes. Há várias elipses do termo “afeições” antes
da retomada de “cousas” pela expressão “as mesmas”. Apenas os leitores mais ex-
perientes e estratégicos percebem adequadamente essa mudança.
Que sugestões podem ser dadas para melhor desenvolver essa habilidade?
	 Partindo do nível de acertos apresentados pelos alunos neste item, parece
adequado que a escola desenvolva mais atividades voltadas para a reconstrução
textual. Devemos considerar as especificidades dos tipos e gêneros textuais, to-
mando os textos lidos como objeto de estudo, sempre que possível, em situações
reais de uso.
	 Nas atividades de leitura em sala de sala, também é relevante reconstruirmos
com os alunos a linha de organização do texto seguida pelo autor, destacando as
expressões que estabelecem as relações parte/todo e as idéias que o texto traz.
Além disso, podemos questionar o percurso de análise promovida pelo aluno, apre-
sentando contra-exemplos, auxiliando-o a reconstruir os significados do texto.
Descritor 10 – Identificar o conflito gerador do enredo e os elementos que
constroem a narrativa
	 Toda narrativa obedece a um esquema de constituição, de organização, que,
salvo algumas alterações, compreende as seguintes partes:
I) Introdução ou Apresentação – corresponde ao momento inicial da narrativa,
marcado por um estado de equilíbrio, em que tudo parece conformar-se à normali-
dade. Do ponto de vista da construção da narrativa, nesta parte, são indicadas as
Unidade4LínguaPortuguesa
49
circunstâncias da história, ou seja, o local e o tempo em que decorrerá a ação e
são apresentada(s) a(s) personagem (ns) principais (os protagonistas); tal apresen-
tação se dá por meio de elementos descritivos (físicos, psicológicos, morais e ou-
tros). Cria-se, assim, um cenário e um tempo para os personagens iniciarem suas
ações; já se pode antecipar alguma direção para o enredo da narrativa. É, portanto,
o segmento da ordem existente.
II) O segundo momento – Desenvolvimento e Complicação – corresponde ao
bloco em que se sucedem os acontecimentos, numa determinada ordem e com a
intervenção do(s) protagonistas. Corresponde, ainda, ao bloco em que se instala o
conflito, a complicação, ou a quebra daquele equilíbrio inicial, com a intervenção
opositora do(s) antagonista(s) – (personagem (ns) que, de alguma forma, tenta(m)
impedir o protagonista de realizar seus projetos, normalmente positivos). É, portanto,
o segmento da ordem perturbada.
III) O terceiro momento – Clímax – corresponde ao bloco em que a narrativa chega
ao momento crítico, ou seja, ao momento em que se viabiliza o desfecho da nar-
rativa.
IV) O quarto e último momento – Desfecho ou desenlace – corresponde ao seg-
mento em que se dá a resolução do conflito. Dentro dos padrões convencionais,
em geral, a narrativa acaba com um desfecho favorável. Daí, o tradicional “final
feliz”. Esse último bloco é o segmento da ordem restabelecida.
	 Um item vinculado a esse descritor deve levar o aluno a identificar um desses  
elementos constitutivos da estrutura da narrativa. Evidentemente, o texto utilizado
deve ser do tipo narrativo. Vejamos o item a seguir.
Exemplo de item:
O Mato
	 Veio o vento frio, e depois o temporal noturno, e depois da lenta chuva que pas-
sou toda a manhã caindo e ainda voltou algumas vezes durante o dia, a cidade entar-
deceu em brumas. Então o homem esqueceu o trabalho e as promissórias, esqueceu
a condução e o telefone e o asfalto, e saiu andando lentamente por aquele morro
coberto de um mato viçoso, perto de sua casa. O capim cheio de água molhava seu
sapato e as pernas da calça; o mato escurecia sem vaga-lumes nem grilos.
	 Pôs a mão no tronco de uma árvore pequena, sacudiu um pouco, e recebeu
nos cabelos e na cara as gotas de água como se fosse uma bênção. Ali perto mesmo
a cidade murmurava, estava com seus ruídos vespertinos, ranger de bondes, buzi-
nar impaciente de carros, vozes indistintas; mas ele via apenas algumas árvores,
um canto de mato, uma pedra escura. Ali perto, dentro de uma casa fechada, um
5
10
Unidade4LínguaPortuguesa
50
telefone batia, silenciava, batia outra vez, interminável, paciente, melancólico.
Alguém, com certeza já sem esperança, insistia em querer falar com alguém.
	 Por um instante o homem voltou seu pensamento para a cidade e sua vida.
Aquele telefone tocando em vão era um dos milhões de atos falhados da vida ur-
bana. Pensou no desgaste nervoso dessa vida, nos desencontros, nas incertezas,
no jogo de ambições e vaidades, na procura de amor e de importância, na caça ao
dinheiro e aos prazeres. Ainda bem que de todas as grandes cidades do mundo o rio
é a única a permitir a evasão fácil para o mar e a floresta. Ele estava ali num desses
limites entre a cidade dos homens e a natureza pura; ainda pensava em seus pro-
blemas urbanos - mas um camaleão correu de súbito, um passarinho piou triste em
algum ramo, e o homem ficou atento àquela humilde vida animal e também à vida
silenciosa e úmida das árvores, e à pedra escura, com sua pele de musgo e seu mis-
terioso coração mineral.
ARRIGUCCI, Jr. Os melhores contos de Rubem Braga. São Paulo: Editora Global Ltda, 1985.
No texto, o elemento que gera a história narrada é
(A)	 a preocupação do homem com os problemas alheios.
(B)	 a proximidade entre a casa do homem e o morro com mato viçoso.
(C)	 o desejo do homem de buscar alento próximo da natureza.
(D)	 o toque insistente do telefone em uma casa fechada e silenciosa.
(E)	 os ruídos vespertinos da cidade, com seus murmúrios constantes.
O que o resultado do item indica?
	 Toda narrativa obedece a um esquema de constituição, de organização. O foco
do item está no segundo momento – Desenvolvimento e Complicação. Corresponde
ao bloco em que se sucedem os acontecimentos, numa determinada ordem e com
a intervenção dos protagonistas. Corresponde, ainda, ao bloco em que se instala o
conflito, a complicação, ou a quebra daquele equilíbrio inicial, com a intervenção
opositora do(s) antagonista(s) – (personagem (ns) que, de alguma forma, tenta(m)
impedir o protagonista de realizar seus projetos, normalmente positivos). É, portanto,
o segmento da ordem perturbada.
	 É um item de difivuldade mediana com 52% de acertos. Os alunos que es-
colheram o gabarito “C” demonstram familiaridade com textos narrativos e sabem
identificar os elementos que constituem a superestrutura esquemática da narrativa.
Percentual de respostas às alternativas
A B C D E
15% 16% 52% 7% 9%
15
20
Unidade4LínguaPortuguesa
51
Os que escolheram as demais alternativas erradas são leitores imaturos que não
souberam identificar a situação que quebrou o equilíbrio apresentado no primeiro
momento do texto e provocou o conflito gerador do enredo.
Que sugestões podem ser dadas para melhor desenvolver essa habilidade?
	 Cabe aos professores fazerem uma seleção de textos clássicos – narrativas,
poemas, crônicas – para que os alunos se familiarizem com as construções sintáti-
cas e recursos estilísticos característicos de épocas diferentes. Com esses textos,
o trabalho deve centrar-se na identificação dos elementos que constituem a narra-
tiva.
Descritor 11 – Estabelecer relação causa/conseqüência entre partes e
elementos do texto
Que habilidade pretendemos avaliar?
	 Em geral, os fatos se sucedem numa ordem de causa e conseqüência, ou de
motivação e efeito. Estabelecer esse nexo constitui um recurso significativo para a
apreensão dos sentidos do texto, sobretudo quando estão em jogo relações lógicas
ou argumentativas.
	 O propósito do item ligado a esse descritor é, portanto, solicitar do aluno que
ele identifique os elementos que, no texto, estão na interdependência de causa e
conseqüência.
	 Por meio deste descritor, pode-se avaliar a habilidade do aluno em identificar
o motivo pelo qual os fatos são apresentados no texto, ou seja, o reconhecimento
de como as relações entre os elementos organizam-se de forma que um torna-se o
resultado do outro. Entende-se como causa/conseqüência todas as relações entre
os elementos que se organizam de tal forma que um é resultado do outro.
Exemplo de item:
O Quiromante
	 Há muitos anos atrás, havia um rapaz cigano que, nas horas vagas, ficava lendo
as linhas das mãos das pessoas.
	 O pai dele, que era muito austero no que dizia respeito à tradição cigana de
somente as mulheres lerem as mãos, dizia sempre para ele não fazer isso, que não
era ofício de homem, que fosse fazer tachos, tocar música, comerciar cavalos.5
Unidade4LínguaPortuguesa
52
	 E o jovem cigano teimava em ser quiromante. Até que um dia ele foi ler a sorte
de uma pessoa e, quando ela se virou de frente, ele viu, assustado, que ela não tinha
mãos.
	 A partir daí, abandonou a quiromancia.
PEREIRA, Cristina da Costa. Lendas e histórias ciganas.  Rio de Janeiro: Imago, 1991.
O trecho “A partir daí, abandonou a quiromancia” (ℓ. 8) apresenta, com relação ao
que foi dito no parágrafo anterior, o sentido de
(A)	 comparação.
(B)	 condição.
(C)	 conseqüência.
(D)	 finalidade.
(E)	 oposição.
O que o resultado do item indica?
	 A leitura do texto não exige domínio da nomenclatura de classificação gramati-
cal (conjunções), mas da compreensão efetiva da natureza e do sentido das articu-
lações e ligações entre os diversos segmentos dos períodos e do texto.
	 Este item apresenta certo nível de dificuldade, provavelmente, em virtude de
os alunos terem de relacionar dois parágrafos e fazer uma operação inferencial para
a reconstrução da relação causa/conseqüência. Embora 59% dos alunos tivessem
acertado o  item, um número significativo (41%) optou pelas alternativas incorretas,
o que demonstra desconhecimento da organização textual e dificuldade de identi-
ficar a relação causa/conseqüência quando o conectivo não se encontra presente
no texto. São leitores ainda imaturos e não apreenderam o sentido global do texto e
podem ter seguido pistas verbais falsas.
Que sugestões podem ser dadas para melhor desenvolver essa habilidade?
	 Para trabalhar as relações de causa e conseqüência, o professor pode se valer
de textos verbais de gêneros variados, em que os alunos possam reconhecer as múl-
tiplas relações que contribuem para dar ao texto coerência e coesão. As notícias de
jornais, por exemplo, são excelentes para trabalhar essa habilidade, tendo em vista
que, nesse tipo de gênero textual, há sempre a explicitação de um fato, das conse-
qüências que provoca e das causas que lhe deram origem.
Percentual de respostas às alternativas
A B C D E
9% 11% 59% 16% 5%
Unidade4LínguaPortuguesa
53
Descritor 15 – Estabelecer relações lógico-discursivas presentes no texto,
marcadas por conjunções, advérbios etc.
Que habilidade pretendemos avaliar?
	 Em todo texto de maior extensão, aparecem expressões conectoras – sejam
conjunções, preposições, advérbios e respectivas locuções – que criam e sinalizam
relações semânticas de diferentes naturezas. Entre as mais comuns, podemos citar
as relações de causalidade, de comparação, de concessão, de tempo, de condição,
de adição, de oposição etc. Reconhecer o tipo de relação semântica estabelecida por
esses elementos de conexão é uma habilidade fundamental para a apreensão da
coerência do texto.
	 Um item voltado para o reconhecimento de tais relações deve focalizar as ex-
pressões sinalizadoras e seu valor semântico, sejam conjunções, preposições ou
locuções adverbiais.
	 Com este item, pretendemos avaliar a habilidade do aluno em perceber a
coerência textual, partindo da identificação dos recursos coesivos e de sua função
textual. No texto a seguir, enfatizamos a relação lógico-discursiva das conjunções.
Exemplo de item:
Câncer
As novas frentes de ataque
A ciência chega finalmente à fase de atacar o mal pela raiz sem efeito colateral.
	 A luta contra o câncer teve grandes vitórias nas últimas décadas do século 20,
mas deve-se admitir que houve também muitas esperanças de cura não concretiza-
das. Após sucessivas promessas de terapias revolucionárias, o século 21 começou
com a notícia de uma droga comprovadamente capaz de bloquear pela raiz a gênese
de células tumorais. Ela foi anunciada em maio deste ano, na cidade de San Fran-
cisco, no EUA, em uma reunião com a presença de cerca de 26 mil médicos e pes-
quisadores. A genética, que já vinha sendo usada contra o câncer em diagnósticos e
avaliações de risco, conseguiu, pela primeira vez, realizar o sonho das drogas “inteli-
gentes”: impedir a formação de tumores. Com essas drogas, será possível combater
a doença sem debilitar o organismo, como ocorre na radioterapia e na quimioterapia
convencional.
5
10
Unidade4LínguaPortuguesa
54
O próximo passo é assegurar que as células cancerosas não se tornem resistentes à
medicação. São, portanto, várias frentes de ataque. Além das mais de 400 drogas
em testes, aposta-se no que já vinha dando certo, como a prevenção e o diagnóstico
precoce.
Revista Galileu. Julho de 2001, p. 41.
O conectivo “portanto”, (ℓ. 13), estabelece com as idéias que o antecedem uma rela-
ção de
(A)	 adversidade.
(B)	 conclusão.
(C)	 causa.
(D)	 comparação.
(E)	 finalidade.
O que o resultado do item indica?
	 Aqui a leitura também não exige domínio da nomenclatura de classificação
gramatical, mas da compreensão efetiva da natureza e do sentido das articulações e
ligações entre os diversos segmentos dos períodos e do texto.
	 O enunciado do item solicita ao leitor que reconheça que a relação marcada
pela palavra “portanto” é de conclusão, conhecimento considerado adequado e de
grau médio de dificuldade para alunos de 3ª série do EM. É interessante ressaltar
que a relação conclusiva ocorre no último parágrafo, o que reforça a probabilidade
de identificação e reconhecimento. Para demonstrar essa habilidade, o leitor pode
lançar mão de seu conhecimento de mundo e não é necessário que domine a no-
menclatura de classificação gramatical.
	 Os resultados indicam que 50% dos alunos acertaram e que muitos dos que
obtiveram melhor resultado na avaliação como um todo estão entre os que escolhe-
ram o gabarito. É muito provável que o sucesso neste item advenha da familiaridade
com a escrita, já que o conectivo em pauta não é de uso freqüente na fala, isto é, na
linguagem coloquial informal. Possivelmente, esse fato tenha levado uma grande
parcela de alunos a serem atraídos por respostas incorretas, dispersando, de forma
equilibrada, as escolhas pelas outras alternativas.
Percentual de respostas às alternativas
A B C D E
12% 50% 13% 10% 13%
15
Unidade4LínguaPortuguesa
55
Que sugestões podem ser dadas para melhor desenvolver essa habilidade?
	 Para desenvolver essa habilidade, o professor pode se valer de textos de gêne-
ros variados, a fim de trabalhar as relações lógico-discursivas, mostrando aos alunos
a importância de reconhecer que todo texto se constrói a partir de múltiplas relações
de sentido que se estabelecem entre os enunciados que compõem o texto. As notí-
cias de jornais, por exemplo, os textos argumentativos, os textos informativos são
excelentes para trabalhar essa habilidade.
Descritor 7 – Identificar a tese de um texto
Que habilidade pretendemos avaliar?
	 Em geral, um texto dissertativo expõe uma tese, isto é, defende um determi-
nado posicionamento do autor em relação a uma idéia, a uma concepção ou a um
fato. A exposição da tese constitui uma estratégia discursiva do autor para mostrar
a relevância ou consistência de sua posição e, assim, ganhar a adesão do leitor pela
adoção do mesmo conjunto de conclusões.
	 Um item que avalia essa habilidade deve ter como base um texto dissertativo-
argumentativo, no qual uma determinada posição ou ponto de vista são defendidos
e propostos como válidos para o leitor.
	 Este descritor indica a habilidade de o aluno reconhecer o ponto de vista ou a
idéia central defendida pelo autor. A tese é uma proposição teórica de intenção per-
suasiva, apoiada em argumentos contundentes sobre o assunto abordado.
Exemplo de item:
O teatro da etiqueta
	 No século XV, quando se instalavam os Estados nacionais e a monarquia ab-
soluta na Europa, não havia sequer garfos e colheres nas mesas de refeição: cada
comensal trazia sua faca para cortar um naco da carne – e, em caso de briga, para
cortar o vizinho. Nessa Europa bárbara, que começava a sair da Idade Média, em que
nem os nobres sabiam escrever, o poder do rei devia se afirmar de todas as manei-
ras aos olhos de seus súditos como uma espécie de teatro. Nesse contexto surge a
etiqueta, marcando momento a momento o espetáculo da realeza: só para servir o
vinho ao monarca havia um ritual que durava até dez minutos.
	 Quando Luís XV, que reinou na França de 1715 a 1774, passou a usar lenço não
como simples peça de vestuário, mas para limpar o nariz, ninguém mais na corte de
5
10
Unidade4LínguaPortuguesa
56
15
Versalhes ousou assoar-se com os dedos, como era costume. Mas todas essas regras,
embora servissem para diferenciar a nobreza dos demais, não tinham a petulância
que a etiqueta adquiriu depois. Os nobres usavam as boas maneiras com naturali-
dade, para marcar uma diferença política que já existia. E representavam esse teatro
da mesma forma para todos. Depois da Revolução Francesa, as pessoas começam a
aprender etiqueta para ascender socialmente. Daí por que ela passou a ser usada de
forma desigual – só na hora de lidar com os poderosos.
Revista Superinteressante, junho 1988, nº 6 ano 2.
Nesse texto, o autor defende a tese de que
(A)	 a etiqueta mudou, mas continua associada aos interesses do poder.
(B)	 a etiqueta sempre foi um teatro apresentado pela realeza.
(C)	 a etiqueta tinha uma finalidade democrática antigamente.
(D)	 as classes sociais se utilizam da etiqueta desde o século XV.
(E)	 as pessoas evoluíram a etiqueta para descomplicá-la.
O que o resultado do Item indica?
	 O descritor 7 procura analisar a habilidade do leitor em relação às estruturas
próprias de textos argumentativos, pois se espera que identifique o ponto de vista ou
a idéia central defendida pelo autor. Trata-se de um descritor importante para alunos
de ensino médio, já que esses devem apresentar maior capacidade de lidar com o
pensamento lógico e com o raciocínio abstrato.
	 O texto selecionado apresenta-se difícil para os jovens, que necessitam, inclu-
sive, de conhecimentos históricos para compreender o texto. A temática também
apresenta certo nível de dificuldade, por não fazer parte do cotidiano dos alunos. O
nível de dificuldade do item relaciona-se ao fato de as informações das alternativas
serem inferenciais e não textuais.
	 Apenas 40% dos estudantes acertaram o item. De toda forma, esses alunos
podem ser considerados leitores competentes, pois souberam estabelecer hierarquia
entre as idéias do texto e distinguir a afirmativa que apresenta a idéia defendida pelo
autor. É de se observar que a atração maior para a alternativa “D” (30%) e que as
dispersões homogêneas para as demais alternativas revelam o desconhecimento por
parte de uma parcela dos alunos (60%) do que seja a idéia do autor sobre o tema.
Percentual de respostas às alternativas
A B C D E
40% 10% 10% 30% 10%
Unidade4LínguaPortuguesa
57
Todas as outras alternativas focalizam a língua de forma parcial, especificando a-
penas um detalhe do universo lingüístico: as regras, a gramática, os manuais de
redação, a escrita.
Que sugestões podem ser dadas para melhor desenvolver essa habilidade?
	 A exposição da tese constitui uma estratégia discursiva do autor para mostrar
a relevância ou consistência de sua posição e, assim, ganhar a adesão do leitor pela
adoção do mesmo conjunto de conclusões.
	 A diversidade de convívio com gêneros e com suportes é uma das diretrizes da
pedagogia de leitura na atualidade.
	 O professor deve trabalhar, em sala de aula, com textos argumentativos para
que os alunos tenham a oportunidade de desenvolver habilidades de identificar as
teses e os argumentos utilizados pelos autores para sustentá-las. Essa tarefa exige
que o leitor reconheça o ponto de vista que está sendo defendido. O grau de dificul-
dade dessa tarefa será maior se um mesmo texto apresentar mais de uma tese.
Descritor 8 – Estabelecer a relação entre a tese e os argumentos oferecidos
para sustentá-la
Que habilidade pretendemos avaliar?
	 Expor uma tese, naturalmente, exige a apresentação de argumentos que a fun-
damentem. Ou seja, os argumentos apresentados funcionam como razões, ou como
fundamentos de que a tese defendida tem sentido e consistência. Nas práticas so-
ciais que envolvem a proposição de um certo posicionamento ou ponto de vista, a
estratégia de oferecer argumentos – não por acaso chamada de argumentação – é
um recurso de primeira importância.
	 Um item relacionado a esse descritor deve levar o aluno a identificar, em uma
passagem de caráter argumentativo, as razões oferecidas em defesa do posiciona-
mento assumido pelo autor.
	 Pretende-se, com este descritor, que o leitor identifique os argumentos utiliza-
dos pelo autor na construção de um texto argumentativo. Essa tarefa exige que o
leitor, primeiramente, reconheça o ponto de vista que está sendo defendido e rela-
cione os argumentos usados para sustentá-lo.
Unidade4LínguaPortuguesa
58
Exemplo de item:
A língua está viva
Ivana Traversim
	 Na gramática, como muitos sabem e outros nem tanto, existe a exceção da
exceção. Isso não quer dizer que vale tudo na hora de falar ou escrever. Há normas
sobre as quais não podemos passar, mas existem também as preferências de de-
terminado autor – regras que não são regras, apenas opções. De vez em quando
aparece alguém querendo fazer dessas escolhas uma regra. Geralmente são os que
não estão bem inteirados da língua e buscam soluções rápidas nos guias práticos de
redação. Nada contra. O problema é julgar inquestionáveis as informações que es-
ses manuais contêm, esquecendo-se de que eles estão, na maioria dos casos, sendo
práticos – deixando para as gramáticas a explicação dos fundamentos da língua
portuguesa.
	 (...)
	 Com informação, vocabulário e o auxílio da gramática, você tem plenas
condições de escrever um bom texto. Mas, antes de se aventurar, considere quem
vai ler o que você escreveu. A galera da faculdade, o pessoal da empresa ou a turma
da balada? As linguagens são diferentes.
	 Afinal, a língua está viva, renovando-se sem parar, circulando em todos os lu-
gares, em todos os momentos do seu dia. Estar antenado, ir no embalo, baixar um
arquivo, clicar no ícone – mais que expressões – são maneiras de se inserir num
grupo, de socializar-se.
(Você S/A, jun. 2003.)
A tese da dinamicidade da língua comprova-se pelo fato de que
(A)	 as regras gramaticais podem transformar-se em exceção.
(B)	 a gramática permite que as regras se tornem opções.
(C)	 a língua se manifesta em variados contextos e situações.
(D)	 os manuais de redação são práticos para criar idéias.
(E)	 é possível buscar soluções praticas na hora de escrever
Percentual de respostas às alternativas
A B C D E
11% 17% 42% 7% 21%
5
10
15
Unidade4LínguaPortuguesa
59
O que o resultado do item indica?
	 O descritor 8 procura também analisar a habilidade do leitor em relação às
estruturas próprias de textos argumentativos, pois se espera que ele identifique os        
elementos que são apresentados como fatores que reforçam, sustentam ou confir-
mam uma determinada tese, ou seja, que o leitor compreenda a relação entre a
tese e seus argumentos. Trata-se de um descritor importante para alunos de ensino
médio, já que esses devem apresentar maior capacidade de lidar com o pensamento
lógico e com o raciocínio abstrato.
	 Nesse sentido, o texto apresentado é adequado ao público, pois apresenta lin-
guagem formal atual, tema importante e de interesse geral, nível de dificuldade apro-
priado e é proveniente de um veículo de comunicação de ampla circulação. O título é
significativo em relação à idéia central e favorece a interpretação do leitor.
	 O item em pauta solicita ao leitor que identifique, entre vários argumentos apre-
sentados no texto e retomados nas diversas opções, aquele que reforça a idéia da di-
namicidade da língua, já apresentada no título. No enunciado, entretanto, essa idéia
é apresentada por meio de uma substituição lexical, uma nova denominação – “di-
namicidade” – o que exige a habilidade de reconhecer vocabulário mais complexo
em uma outra formulação, ou seja, uma paráfrase.
	 Este item apresentou resultados muito satisfatórios, pois, além de obter um
percentual considerável de respostas corretas na alternativa “C” (42%), os alunos
com melhor resultado na prova como um todo escolheram o gabarito. Entretanto,
muitos alunos foram atraídos para a alternativa “E” (21%) e para a alternativa “B”
(17%). Indicar corretamente a resposta exige do leitor a habilidade de estabelecer
hierarquia entre as idéias do texto e distinguir a afirmativa que apresenta maior grau
de generalização. Todas as outras alternativas focalizam a língua de forma parcial,
especificando apenas um detalhe do universo lingüístico: as regras, a gramática, os
manuais de redação, a escrita.
Que sugestões podem ser dadas para melhor desenvolver essa habilidade?
	 O professor deve trabalhar, em sala de aula, com textos argumentativos para
que os alunos tenham a oportunidade de desenvolver habilidades de identificar as
teses e os argumentos utilizados pelos autores para sustentá-las. Essa tarefa exige
que o leitor, primeiramente, reconheça o ponto de vista que está sendo defendido
para depois relacionar os argumentos usados para sustentá-lo. O grau de dificuldade
dessa tarefa será maior, se um mesmo texto apresentar mais de uma tese.
Unidade4LínguaPortuguesa
60
Descritor 9 – Diferenciar as parte principais das secundárias em um texto
Que habilidade pretendemos avaliar?
	 Se um texto é uma rede de relações, um “tecido” em que diferentes fios se
articulam, nem todos “os fios” têm a mesma importância para o seu entendimento
global. Tudo não pode ser percebido, portanto, como tendo igual relevância. Ou seja,
há uma espécie de hierarquia entre as informações ou idéias apresentadas, de modo
que umas convergem para o núcleo principal do texto, enquanto outras são apenas
informações adicionais, acessórias, que apenas ilustram ou exemplificam o que está
sendo dito. Perceber essa hierarquia das informações, das idéias, dos argumentos
presentes em um texto constitui uma habilidade fundamental para a constituição de
um leitor crítico e maduro.
	 Um item voltado para a avaliação dessa habilidade deve levar o aluno a distin-
guir, entre uma série de segmentos, aqueles que constituem elementos principais ou
secundários do texto. É comum, entre os alunos, confundir “partes secundárias” do
texto com a “parte principal”. A construção dessa competência é muito importante
para desenvolver a habilidade de resumir textos.
Exemplo de item:
Animais no espaço
Vários animais viajaram pelo espaço como astronautas.
	 Os russos já usaram cachorros em suas experiências. Eles têm o sistema
cardíaco parecido com o dos seres humanos. Estudando o que acontece com eles,
os cientistas descobrem quais problemas podem acontecer com as pessoas.
	 A cadela Laika, tripulante da Sputnik-2, foi o primeiro ser vivo a ir ao espa-
ço, em novembro de 1957, quatro anos antes do primeiro homem, o astronauta
Gagarin.
	 Os norte-americanos gostam de fazer experiências científicas espaciais com
macacos, pois o corpo deles se parece com o humano. O chimpanzé é o preferido
porque é inteligente e convive melhor com o homem do que as outras espécies de
macacos. Ele aprende a comer alimentos sintéticos e não se incomoda com a roupa
espacial.
	 Além disso, os macacos são treinados e podem fazer tarefas a bordo, como
acionar os comandos das naves, quando as luzes coloridas acendem no painel, por
exemplo.
	 Enos foi o mais famoso macaco a viajar para o espaço, em novembro de 1961,
5
10
15
Unidade4LínguaPortuguesa
61
a bordo da nave Mercury/Atlas 5. A nave de Enos teve problemas, mas ele voltou
são e salvo, depois de ter trabalhado direitinho. Seu único erro foi ter comido muito
depressa as pastilhas de banana durante as refeições.
(Folha de São Paulo, 26 de janeiro de 1996)
Entre as informações do texto acima, uma das principais é que
(A)	 o chimpanzé mais famoso viajou para o espaço a bordo da Mercury-Atlas 5.
(B)	 os cientistas descobrem problemas que podem acontecer com as pessoas.
(C)	 a cadela Laika viajou ao espaço quatro anos depois de Gagarin.
(D)	 a viagem do mais famoso macaco para o espaço aconteceu em 1961.
(E)	 na nave espacial serviam pastilhas de banana durante as refeições.
O que o resultado do item nos indica?
	 O item mostrou-se relativamente fácil, visto que 69% dos alunos marcaram a
resposta correta “B” e podem ser considerados bons leitores. O percentual significa-
tivo de alunos atraídos pela alternativa “D” (18%), provavelmente, seguiram pistas
verbais falsas que os induziram a confundir a informação secundária com a principal.
Aqueles que se dispersaram entre as alternativas “A”, “C” e “E” são leitores precários
que não conseguem localizar o que é essencial e o que é acessório no texto.
Como podemos trabalhar essa habilidade?
	 Essa habilidade é característica, principalmente, de textos informativos e argu-
mentativos. Dada a importância dessa habilidade para a compreensão das partes
constitutivas do texto, sugere-se ao professor que, além de levar os alunos a se fami-
liarizarem com esses textos, trabalhe efetivamente o desenvolvimento dessa habili-
dade por meio de outras práticas, tais como a elaboração de resumos, de esquemas,
de quadros sinóticos etc.
Percentual de respostas às alternativas
A B C D E
7% 69% 6% 15% 2%
Unidade4LínguaPortuguesa
62
Tópico V – Relações entre Recursos Expressivos e Efeitos de Sentido
	 Em diferentes gêneros textuais, tais como a propaganda, os recursos expres-
sivos são largamente utilizados. Os poemas também se valem desses recursos, exi-
gindo atenção redobrada e sensibilidade do leitor para perceber os efeitos de sentido
subjacentes ao texto.
	 Vale destacar que os sinais de pontuação e outros mecanismos de notação,
como o itálico, o negrito, a caixa alta e o tamanho da fonte podem expressar sentidos
variados. O ponto de exclamação, por exemplo, nem sempre expressa surpresa. Faz-
se necessário, portanto, que o leitor, ao explorar o texto, perceba como esses elemen-
tos constroem a significação, na situação comunicativa em que se apresentam.
	 Em relação a este tópico, apresentamos itens referentes aos descritores 16, 17,
18 e 19.
Descritor 16 – Identificar efeitos de ironia ou humor em textos variados
Que habilidade pretendemos avaliar?
	 A forma como as palavras são usadas ou a quebra na regularidade de seus usos
constituem recursos que, intencionalmente, são mobilizados para produzir no inter-
locutor certos efeitos de sentido. Entre tais efeitos, são comuns os efeitos de ironia
ou aqueles outros que provocam humor ou outro tipo de impacto. Para que a preten-
são do autor tenha sucesso, é preciso que o interlocutor reconheça tais efeitos. Por
exemplo, na ironia, o ouvinte ou leitor devem entender que o que é dito corresponde,
na verdade, ao contrário do que é explicitamente afirmado.
	 Um item relacionado a essa habilidade deve ter como base textos em que tais
efeitos se manifestem (como anedotas, charges, tiras etc.) e deve levar o aluno a
reconhecer quais expressões ou outros recursos criaram os efeitos em jogo.
	 Por meio deste descritor, pode-se avaliar a habilidade do aluno em reconhecer
os efeitos de ironia ou humor causados por expressões diferenciadas utilizadas no
texto pelo autor ou, ainda, pela utilização de pontuação e notações. No caso deste
item, o que se pretende é que o aluno reconheça o fato que provocou o efeito de iro-
nia no texto.
Descritores D16 D17 D18 D19
Unidade4LínguaPortuguesa
63
Exemplo de item:
Prova falsa
	 Quem teve a idéia foi o padrinho da caçula — ele me conta. Trouxe o cachorro
de presente e logo a família inteira se apaixonou pelo bicho. Ele até que não é contra
isso de se ter um animalzinho em casa, desde que seja obediente e com um mínimo
de educação.
	 — Mas o cachorro era um chato — desabafou.
	 Desses cachorrinhos de caça, cheios de nhenhenhém, que comem comidinha
especial, precisam de muitos cuidados, enfim, um chato de galocha. E, como se isto
não bastasse, implicava com o dono da casa.
	 — Vivia de rabo abanando para todo mundo, mas quando eu entrava em casa
vinha logo com aquele latido fininho e antipático, de cachorro de francesa.
	 Ainda por cima era puxa-saco. Lembrava certos políticos da oposição, que es-
pinafram o ministro, mas quando estão com o ministro, ficam mais por baixo que
tapete de porão. Quando cruzavam num corredor ou qualquer outra dependência da
casa, o desgraçado rosnava ameaçador, mas quando a patroa estava perto, abanava
o rabinho, fingindo-se seu amigo.
	 — Quando eu reclamava, dizendo que o cachorro era um cínico, minha mulher
brigava comigo, dizendo que nunca houve cachorro fingido e eu é que implicava com
o “pobrezinho”.
	 Num rápido balanço poderia assinalar: o cachorro comeu oito meias suas, roeu
a manga de um paletó de casemira inglesa, rasgara diversos livros, não podia ver
um pé de sapato que arrastava para locais incríveis. A vida lá em sua casa estava se
tornando insuportável. Estava vendo a hora em que se desquitava por causa daquele
bicho cretino. Tentou mandá-lo embora umas vinte vezes e era uma choradeira das
crianças e uma espinafração da mulher.
	 — Você é um desalmado — disse ela, uma vez.
	 Venceu a guerra fria com o cachorro graças à má educação do adversário. O
cãozinho começou a fazer pipi onde não devia. Várias vezes exemplado, prosseguiu
no feio vício. Fez diversas vezes no tapete da sala. Fez duas na  boneca da filha maior.
Quatro ou cinco vezes fez nos brinquedos da caçula. E tudo culminou com o pipi que
fez em cima do vestido novo de sua mulher.
	 — Aí mandaram o cachorro embora? — perguntei.
	 — Mandaram. Mas eu fiz questão de dá-lo de presente a um amigo que adora
cachorros. Ele está levando um vidão em sua nova residência.
	 — Ué... mas você não o detestava? Como é que ainda arranjou essa sopa pra
ele?
	 — Problema de consciência — explicou: O pipi não era dele.
	 E suspirou cheio de remorso.
PONTE PRETA, Stanislaw. Para gostar de ler. Gol de padre e outras crônicas. São Paulo: Ática, 1998.
v. 23. p. 24-25.
5
10
15
20
25
30
35
Unidade4LínguaPortuguesa
64
O que gera humor no texto é o fato de
(A)	 a família se apaixonar pelo cachorro.
(B)	 a mulher dizer que nunca houve cachorro fingido.
(C)	 o cachorro fazer pipi onde não devia.
(D)	 o dono da casa achar o cachorro um chato.
(E)	 o pipi feito no vestido novo não ser do cachorro.
Que habilidade pretendemos avaliar?
	 Por meio dessa habilidade, pretendemos avaliar a capacidade do aluno em
perceber humor a partir de marcas do texto. O humor está presente em textos de
gêneros variados, mas, na maioria dos casos, oferece dificuldade para o leitor, pois
muitas vezes exige o conhecimento de situações que não são marcadas no texto,
mas que devem ser inferidas a partir de sua formação, de seu universo cultural e de
seu conhecimento de mundo.
O que o desempenho do item nos indica?
	 A dificuldade desse item reside no fato de que os alunos deveriam identificar
o efeito de humor decorrente de um fato atribuído ao cachorro e que gerou conse-
qüências. A omissão do autor da ação e a revelação no final do texto é que provoca
o humor.
	 O índice de acerto de apenas (20%) indica a dificuldade do item, o que deve
ser explicado pela falta de entendimento do texto, tanto que 70% dos alunos esco-
lheram erroneamente as demais alternativas.
	 Os alunos que escolheram a alternativa correta “E” podem ser considerados
leitores proficientes que, além de apreenderem o sentido do texto como um todo,
souberam reconhecer a situação que provocou o humor no texto.
Como podemos trabalhar essa habilidade?
	 Sugere-se que o professor trabalhe mais, em sala de aula, textos variados que
busquem provocar um efeito de humor, pois, na maioria das vezes, esse resulta do
deslocamento do sentido convencional de uma palavra.
Percentual de respostas às alternativas
A B C D E
30% 20% 10% 10% 20%
Unidade4LínguaPortuguesa
65
	 É importante chamar a atenção para o fato de que muitas vezes o efeito de
humor pode ser resultante de contextos evidenciados pela imagem ou ainda pela
combinação das linguagens verbal e não-verbal.
	 Essa habilidade é avaliada por meio de textos verbais e de textos verbais e
não-verbais, sendo muito valorizadas neste descritor atividades com textos de gêne-
ros variados sobre temas atuais, com espaço para várias possibilidades de leituras,
como os textos publicitários, as charges, os textos de humor ou letras de músicas,
levando o aluno a perceber o sentido irônico ou humorístico do texto, que pode es-
tar representado, por exemplo, por uma expressão verbal inusitada ou por uma ex-
pressão facial da personagem.
Descritor 17 – Identificar o efeito de sentido decorrente do uso da pontuação
e de outras notações
Que habilidade pretendemos avaliar?
	 Entre os recursos referidos acima, estão os sinais de pontuação. Além de es-
tarem vinculados intimamente à coerência do texto, esses sinais podem acumular
outras funções discursivas, como aquelas ligadas à ênfase, à reformulação ou à
justificação de certos segmentos. Nessa perspectiva, a pontuação tem de ser vista
muito mais além; isto é, não são simples sinais para separar ou marcar segmentos
da superfície do texto.
	 Um item relativo a essa habilidade deve, portanto, conceder primazia aos
efeitos discursivos produzidos por notações como itálico, negrito, caixa alta etc. e
pelo uso dos sinais; muito mais, portanto, do que simplesmente a identificação de
suas funções na sintaxe da frase.
	 Com este item, pretendemos avaliar a habilidade de o aluno identificar o efeito
provocado no texto pelo uso das aspas, que colabora para a construção do seu sen-
tido global, não se restringindo ao seu aspecto puramente gramatical. Consideremos
o item a seguir:
Exemplo de item:
A culpa é do dono?
	 A reportagem “Eles estão soltos” (17 de janeiro), sobre os cães da raça pit bull
que passeiam livremente pelas praias cariocas, deixou leitores indignados com a
Unidade4LínguaPortuguesa
66
defesa que seus criadores fazem de seus animais. Um deles dizia que os cães só se
tornam agressivos quando algum movimento os assusta. Sandro Megale Pizzo, de
São Carlos, retruca que é difícil saber quais de nossos movimentos “assustariam” um
pit bull. De Siegen, na Alemanha, a leitora Regina Castro Schaefer diz que pergunta a
si mesma que tipo de gente pode ter como animal de estimação um cachorro que é
capaz de matar e desfigurar pessoas.
Veja, Abril. 28/2/2001.
O que sugere o uso de aspas na palavra “assustariam”?
(A)	 raiva.
(B)	 ironia.
(C)	 medo.
(D)	 insegurança.
(E)	 ignorância.
O que o resultado do item indica?
	 O item focaliza o uso das aspas na palavra “assustariam” e o feito que isso pro-
voca no leitor.
	 Menos da metade dos alunos assinalou, corretamente, a alternativa “B”, de-
monstrando ter percebido que as aspas transmitem ao leitor o efeito irônico que o
autor do texto quis provocar no interlocutor. No entanto, houve uma dispersão quase
homogênea para as alternativas “C” e “D”, em uma demonstração de que identificam
apenas a função gramatical das notações, mas não conseguem identificar o efeito de
sentido decorrente de seu uso.
	 Por meio do item, evidencia-se a importância de se construir não apenas o co-
nhecimento dos usos convencionais desses recursos, como também das funções tex-
tuais que podem vir a exercer em relação a um uso não-convencional.
	 Tanto a pontuação (aspas, reticências, parênteses etc.) quanto as demais no-
tações (tipo e tamanho da letra, caixa alta etc.) são recursos gráficos, próprios do
sistema da escrita, que promovem e/ou intensificam efeitos de sentido, sendo es-
senciais para o processamento da leitura.
Percentual de respostas às alternativas
A B C D E
10% 44% 20% 21% 4%
5
Unidade4LínguaPortuguesa
67
Que sugestões podem ser dadas para melhor desenvolver essa habilidade?
	 Ao longo do processo de leitura, podemos oferecer aos nossos alunos o con-
tato com gêneros textuais que utilizam largamente recursos, como propagandas,
reportagens, quadrinhos, entre outros, orientando-os a perceber e analisar os efeitos
de sentido dos sinais de pontuação (travessão, interrogação, exclamação, reticên-
cias etc.) e das notações (itálico, negrito, caixa alta, entre outros) como elementos
significativos para construção de sentidos.
Descritor 18 – Reconhecer o efeito de sentido decorrente da escolha de uma
determinada palavra ou expressão
Que habilidade pretendemos avaliar?
	 Se é verdade que nada no texto acontece aleatoriamente, ganha relevo admitir
que a seleção de determinada palavra em lugar de uma outra pode responder a uma
intenção particular do interlocutor de produzir certo efeito discursivo. Optar por um
diminutivo, por exemplo, pode ser um recurso para expressar uma ressalva, para
desprestigiar um objeto, como pode, ao contrário, revelar afeto, carinho, aceitação.
	 Optar por uma palavra estrangeira também tem seus efeitos. Portanto a com-
petência comunicativa inclui a capacidade de não apenas conhecer os significados
das palavras, mas, sobretudo, de discernir os efeitos de sentido que suas escolhas
proporcionam. Isso nos leva a ultrapassar a simples identificação “do que o outro
diz” para perceber “por que ele diz com essa ou aquela palavra”.
	 Um item destinado a avaliar essa habilidade deve focalizar uma determinada
palavra ou expressão e solicitar do aluno o discernimento de por que essa, e não
outra palavra ou expressão, foi selecionada.
	 Com este item, pretendemos avaliar a habilidade do aluno em reconhecer a
alteração de significado ou a criação de um determinado termo ou vocábulo, decor-
rente da escolha do autor. Devemos compreender a seleção vocabular como uma
estratégia do autor para que o leitor depreenda seus propósitos. Vejamos o exemplo
a seguir:
Exemplo de item:
Leite
	 Vocês que têm mais de 15 anos, se lembram quando a gente comprava leite
Unidade4LínguaPortuguesa
68
em garrafa, na leiteria da esquina? (...)
	 Mas vocês não se lembram de nada, pô! Vai ver nem sabem o que é vaca. Nem
o que é leite. Estou falando isso porque agora mesmo peguei um pacote de leite −
leite em pacote, imagina, Tereza! − na porta dos fundos e estava escrito que é pas-
terizado ou pasteurizado, sei lá, tem vitamina, é garantido pela embromatologia, foi
enriquecido e o escambau.
	 Será que isso é mesmo leite? No dicionário diz que leite é outra coisa: “líquido
branco, contendo água, proteína, açúcar e sais minerais”. Um alimento pra ninguém
botar defeito. O ser humano o usa há mais de 5.000 mil anos. É o único alimento só
alimento. A carne serve pro animal andar, a fruta serve para fazer outra fruta, o ovo
serve pra fazer outra galinha (...) O leite é só leite. Ou toma ou bota fora.
	 Esse aqui examinando bem, é só pra botar fora. Tem chumbo, tem benzina, tem
mais água do que leite, tem serragem, sou capaz de jurar que nem vaca tem por trás
desse negócio.
	 Depois o pessoal ainda acha estranho que os meninos não gostem de leite.
Mas, como não gostam? Não gostam como? Nunca tomaram! Múúúúúúú!
Millôr Fernandes. O Estado de São Paulo. 22/08/1999.
Ao criar a palavra “embromatologia” (ℓ. 6), o autor pretendeu ser
(A)	 conciso.
(B)	 sério.
(C)	 formal.
(D)	 cordial.
(E)	 irônico.
O que o resultado do item indica?
	 A seleção vocabular deve ser compreendida como estratégia pela qual se po-
dem depreender propósitos do autor do texto.
	 Os alunos que responderam corretamente à questão, assinalando a alternativa
“E” (irônico), demonstraram não apenas habilidade de usar conhecimento vocabular
relevante (embromar + bromatologia), como também de identificar o uso estratégico
que se faz de uma palavra criada com base em outras e reconhecer que o autor usou
esse artifício para expressar sua ironia diante da propaganda dos elementos consti-
tutivos do leite, recurso utilizado para atrair o consumidor.
Percentual de respostas às alternativas
A B C D E
4% 13% 22% 9% 43%
5
10
15
Unidade4LínguaPortuguesa
69
	 Aqueles que optaram pelas demais alternativas erradas são leitores imaturos
que não apreenderam o sentido do texto, nem souberam ler as entrelinhas para
chegar à intenção do autor em criticar as estratégias de venda do leite.
Que sugestões podem ser dadas para melhor desenvolver essa habilidade?
	 Para desenvolvermos essa habilidade, podemos utilizar textos publicitários,
literários, entre outros, nos quais sejam explorados recursos expressivos impor-
tantes, proporcionando ao aluno a percepção das estratégias utilizadas pelo autor
para a ampliação do significado do texto.
	 Seria desejável que a exploração de outros recursos expressivos (metáforas,
ironia, pontuação etc.) acompanhasse, nas atividades em sala de aula, o estudo da
construção dos diferentes elementos da narrativa (narrador, personagens, enredo,
espaço e tempo).
Descritor 19 – Reconhecer o efeito de sentido decorrente da exploração de
recursos ortográficos e/ou morfossintáticos
Que habilidade pretendemos avaliar?
	 As explicações dadas para o descritor anterior, em parte, podem valer para
este. Ou seja, as escolhas que fazemos para a elaboração de um texto respondem a
intenções discursivas específicas, sejam escolhas de palavras, sejam escolhas de es-
truturas morfológicas ou sintáticas. Assim, não é por acaso que, em certos textos, o
autor opta por períodos mais curtos – para dar um efeito de velocidade, por exemplo;
ou opta por inversões de segmentos – para surtir certos efeitos de estranhamento,
de impacto, de encantamento, afinal (“tinha uma pedra no meio do caminho; no
meio do caminho tinha uma pedra”). Ou seja, mais do que identificar a estrutura
sintática apresentada, vale discernir sobre o efeito discursivo provocado no leitor.
	 Um item relativo a essa habilidade deve, pois, conceder primazia aos efeitos
discursivos produzidos pela escolha de determinada estrutura morfológica ou sintáti-
ca. Incide, portanto, sobre os motivos de uma escolha para alcançar certos efeitos.
	 Com este item, pretende-se avaliar a habilidade do aluno em identificar o efeito
de sentido decorrente das variações relativas aos padrões gramaticais da língua.
No texto a seguir, exploramos, como recurso expressivo, a repetição lexical (verbo
querer).
Unidade4LínguaPortuguesa
70
Exemplo de item:
Você não entende nada
Quando eu chego em casa nada me consola
Você está sempre aflita
Com lágrimas nos olhos de cortar cebola
Você é tão bonita
Você traz coca-cola
Eu tomo
Você bota a mesa
Eu como eu como eu como eu como eu como
Você
Não tá entendendo quase nada do que eu digo
Eu quero é ir-me embora
Eu quero dar o fora
E quero que você venha comigo
Eu me sento
Eu fumo
Eu como
Eu não agüento
Você está tão curtida
Eu quero é tocar fogo nesse apartamento
Você não acredita
Traz meu café com suíta
Eu tomo
Bota a sobremesa
Eu como eu como eu como eu como eu como
Você
Tem que saber que eu quero é correr mundo
Correr perigo
Eu quero é ir-me embora
Eu quero dar o fora
E quero que você venha comigo.
(VELOSO, Caetano. Literatura Comentada:  Você Não Entende Nada. 2 Ed. Nova Cultura. 1998)
5
10
15
20
25
30
Unidade4LínguaPortuguesa
71
A repetição da expressão “eu quero”, em diversos versos, tem por objetivo
(A)	 fazer associações de sentido.
(B)	 refutar argumentos anteriores.
(C)	 detalhar sonhos e pretensões.
(D)	 apresentar explicações novas.
(E)	 reforçar a expressão dos desejos.
O que o resultado do item indica?
	 O texto analisado recorre à estratégia da repetição lexical (querer) com o
propósito de reforçar a expressão de um desejo. Assim, este é um item por meio do
qual se pode avaliar se o aluno sabe identificar a função textual do recurso em foco,
sabendo diferenciá-la de outras que também seriam possíveis pelo uso do mesmo
recurso expressivo. Os alunos que marcaram a alternativa correta “E” (57%) sou-
beram estabelecer essa diferença. Os alunos que optaram pelas alternativas erradas
têm dificuldades de leitura num nível mais abstrato e não construíram ainda a com-
petência de investigar as diferentes funções textuais utilizadas pelo autor.
Que sugestões podem ser dadas para melhor desenvolver essa habilidade?
	 As atividades de leitura e de análise lingüística possibilitam ao aluno inves-
tigar diferentes funções textuais produzidas por um único recurso expressivo e os
diferentes efeitos de sentido que podem daí derivar. Temos, muitas vezes, a idéia
equivocada de que a repetição de palavras e expressões é um recurso típico de textos
produzidos na modalidade oral, que indica falta de maestria no uso da linguagem. O
recurso da repetição é, entretanto, estratégia que pode promover múltiplos e vários
efeitos (por exemplo, topicalização, seqüenciação textual, entre outros).
Tópico VI – Variação Lingüística
	 Este tópico expõe o descritor 13, que avalia a habilidade do aluno de perceber
as marcas lingüísticas identificadoras do locutor e do interlocutor, assim como as
situações de interlocução do texto e as possíveis variações da fala.
Percentual de respostas às alternativas
A B C D E
11% 5% 16% 7% 57%
Descritor D13
Unidade4LínguaPortuguesa
72
Descritor 13 – Identificar as marcas lingüísticas que evidenciam o locutor e
o interlocutor de um texto.
Que habilidade pretendemos avaliar?
	 As variações lingüísticas, evidentemente, manifestam-se por formas, marcas,
estruturas que revelam características (regionais ou sociais) do locutor e, por vezes,
do interlocutor a quem o texto se destina. Essas variações são, portanto, resultado
do empenho dos interlocutores para se ajustarem às condições de produção e de
circulação do discurso.
	 Um item relacionado a essa habilidade deve, portanto, centrar-se no reconheci-
mento das variações (gramaticais ou lexicais) que, mais especificamente, revelam
as características dos locutores e dos interlocutores.
	 Essa habilidade vai exigir do aluno a habilidade em identificar as variações
lingüísticas resultantes da influência de diversos fatores, como o grupo social a que
o falante pertence, o lugar e a época em que ele nasceu e vive, bem como verificar
quem fala no texto e a quem este se destina, reconhecendo as marcas lingüísticas
expressas por meio de registros usados, vocabulário empregado, uso de gírias ou
expressões ou níveis de linguagem.
Exemplo de item:
13 de Dezembro
	 Passei de carro pela Esplanada e vi a multidão. Estranhei aquilo. O motorista
me lembrou: “Hoje é 13 de dezembro, Dia de Santa Luzia. A igreja dela está cheia,
ela protege os olhos da gente”.
	 Agradeci a informação, mas fiquei inquieto. Bolas, o 13 de dezembro tinha
alguma coisa a ver comigo e nada com Santa Luzia e sua eficácia nas doenças que
ainda não tenho. O que seria?
	 Aniversário de um amigo? Uma data inconfessável, que tivesse marcado um
relacionamento para o bom ou para o pior?
	 Não lembrava de nada de importante naquele dia, mas ele piscava dentro de
mim. E as horas se passaram iluminadas pelo intermitente piscar da luzinha ver-
melha dentro de mim. 13 de dezembro! Preciso tomar um desses tonificantes da
memória, vivo em parte dela e não posso ter brancos assim, um dia importante e
não me lembro por quê.
	 Somente à noite, quando não era mais 13 de dezembro, ao fechar o livro que
estava lendo, de repente a luz parou de piscar e iluminou com nitidez a cena noturna:
eu chegando no prédio em que morava, no Leme, a Kombi que saiu dos fundos da
garagem, o homem que se aproximou e me avisou que o comandante do 1º Exército
5
10
15
Unidade4LínguaPortuguesa
73
queria falar comigo.
	 Eram 11 horas da noite, estranhei aquele convite, nada tinha a falar com o
general Sarmento e não acreditava que ele tivesse alguma coisa a falar comigo.
	 Mas o homem insistiu. E outro homem que saíra da Kombi já entrava dentro do
meu carro, com uma pequena metralhadora. Naquela mesma hora, a mesma cena
se repetia pelo Brasil afora, o governo baixara o AI-5, eu nem ouvira o decreto lido no
rádio. Num motel da Barra, eu estivera à toa na vida, e meu amor me chamara e eu
não vira a banda passar.
	 Tantos anos depois, ninguém me chama nem me convida para falar com o
comandante do 1º Exército. O País talvez tenha melhorado, mas eu certamente pi-
orei.
CONY, Carlos Heitor. Folha de São Paulo. 16/12/2001.
A fala do motorista (ℓ. 2) é exemplo de linguagem
(A)	 culta.
(B)	 coloquial.
(C)	 vulgar.
(D)	 técnica.
(E)	 regional.
O que o resultado do item indica?
	 A linguagem verbal não é uniforme. Toda língua natural passa por transforma-
ções. O próprio português falado no Brasil é resultante de um conjunto de influências
de diversos tipos, registrados ao longo de nossa história. Com o texto, não é dife-
rente, sendo ele a expressão dessa linguagem humana. Todo texto apresenta mar-
cas lingüísticas, que revelam, por exemplo, características dos falantes envolvidos,
como origem social ou regional, grau de escolaridade, sexo, profissão, idade, entre
outras. Como parte da leitura plena de um texto, é fundamental que o leitor iden-
tifique quem fala ou quem escreve, para quem se fala ou para quem se escreve e
de que maneira os traços dos indivíduos envolvidos na produção de um texto são
expressos nele e chegam até o receptor.
	 O tema da crônica é histórico, como já sugere o próprio título. Mesmo assim,
não é um texto que se prende a uma mera descrição histórica. Ele gira em torno de
um indivíduo que se vê diante de uma data importante, mas que não consegue se
Percentual de respostas às alternativas
A B C D E
23% 41% 7% 6% 22%
20
25
Unidade4LínguaPortuguesa
74
lembrar por que ela é importante. Ao chegar a noite, com ela chegou também a lem-
brança do que acontecera na noite do dia 13 de dezembro, quando foram cassados
os direitos dos brasileiros pelo AI-5 (Ato Institucional nº 5), promulgado no ano de
1968. Espera-se, com textos dessa natureza, que o estudante tenha base para for-
mar opinião, a partir do acesso a fatos importantes de nossa história mais recente.
	 O item explora os atores do texto, colocando em relevo uma das vozes que são
utilizadas nele, a voz do motorista. Espera-se que o leitor consiga, a partir do exem-
plo de discurso direto escolhido, identificar o tipo de linguagem dos interlocutores do
texto. Acertaram a resposta (letra “B”) 41% dos estudantes, optaram pela alternativa
“A”, 23%, talvez por não terem lido a fala do motorista até o fim, em que fica evidente
o seu caráter coloquial. Outros 22%, que tiveram relativo sucesso na prova como um
todo, marcaram a alternativa “E”. Supõe-se que optaram por essa resposta dado o
preconceito de que a classe “motorista” tenha, necessariamente, uma linguagem
regional, fato que pode estar mostrando que não houve leitura, nem análise da fala
e de suas marcas lingüísticas.
Que sugestões podem ser dadas para melhor desenvolver essa habilidade?
	 O professor deve trabalhar com textos que contenham muitas variantes lingüísti-
cas, privilegiando expressões informais, expressões regionais, expressões caracterís-
ticas de certa faixa etária ou de uma época etc. O trabalho com variação lingüística
é essencial para o desenvolvimento de uma postura não preconceituosa dos alu-
nos em relação a usos lingüísticos distintos dos seus. É importante que o profes-
sor mostre aos seus alunos as razões dos diferentes usos lingüísticos por diferentes
grupos de falantes, para que eles adquiram a noção do valor social atribuído a essas
variações. Podemos, também, trabalhar a variação lingüística em gravações de áu-
dio e vídeo de textos orais (por exemplo, programas de televisão), dramatização de
textos de vários gêneros e em atividades com músicas de estilos variados (regionais,
sertanejas, entre outras).
	 Atividades de análise lingüística a partir das quais os alunos possam refletir
sobre a interferência dos fatores variados, que se manifestam tanto na modalidade
oral como na escrita, favorecem o desenvolvimento desta habilidade. Os fatores que
intervêm no uso da língua e provocam tal variação são de ordem geográfica (em fun-
ção das regiões do país e de seus espaços rurais e urbanos), histórica (o que envolve
a época histórica de sua produção), sociológica (tais como classe social ou gênero
sexual), do contexto social, entre outros.
Unidade4LínguaPortuguesa
75
4.8.	 Considerações finais – Língua Portuguesa
	 Os itens apresentados neste caderno foram aplicados no Saeb da 3ª série do
Ensino Médio. Eles revelam a condição em que os estudantes se situam em relação
à construção das competências lingüísticas reunidas no foco leitura.
	 A análise pedagógica destes itens mostra que determinadas competências
foram construídas ao término de oito ou nove anos de escolaridade; que outras não
foram construídas e que algumas estão em processo de construção. Naturalmente,
com base nas análises, o professor pode refletir sobre o que está ensinando e como
está ensinando as estratégias de leitura, bem como reavaliar sua prática em sala de
aula.
	 É de se notar que muitas dessas habilidades requeridas pelos itens já deveriam
ter sido desenvolvidas nas séries iniciais do ensino fundamental e que, na 3ª série
do ensino médio, os alunos deveriam apresentar um melhor desempenho nos itens
que medem algumas habilidades já trabalhadas até a 8ª série/9º ano do ensino fun-
damental.
	 A competência estabelecida no Tópico V é de grande importância para a com-
preensão do texto, tendo em vista que as habilidades indicadas pelos descritores 16,
17, 18 e 19 são fundamentais para a construção de significados do texto, levando o
leitor para além do que está na superfície dele.
	 O efeito de sentido decorrente do uso de pontuação e de outras notações con-
figura-se uma competência de fundamental importância, tendo em vista que os alu-
nos, desde a 4ª série/5° ano do Ensino Fundamental, deveriam ter desenvolvido a
habilidade de fazer a distinção entre a função gramatical dos sinais e o efeito de
sentido que estes causam no leitor (surpresa, exagero, ironia, indignação, deboche,
indiferença etc.).
	 No que diz respeito ao conhecimento da variação lingüística, consideramos que
a escola deve praticar uma pedagogia culturalmente sensível aos saberes dos alu-
nos. Identificar as várias realizações da fala é de fundamental importância para a
inclusão dos alunos considerados lingüisticamente fora do processo ensino/apren-
dizagem. Importante, ainda, é que a escola pratique o respeito às características
culturais e psicológicas dos alunos.
	 Bagno (2000) defende um ensino crítico da norma-padrão. Para ele, a escola
deve dar espaço ao máximo possível de manifestações lingüísticas concretizadas no
maior número possível de gêneros textuais e de variedades de línguas: rurais, urba-
nas, orais, escritas, formais, informais, cultas, não-cultas etc.
Unidade4LínguaPortuguesa
76
Unidade4LínguaPortuguesa
76
	 É importante reforçar que a construção da competência lingüística dos alunos
depende necessariamente da variedade de gêneros textuais que circulam na escola
e das práticas sociais de letramento de que os alunos participam.
	 Considerando que a leitura é condição essencial para que o aluno possa com-
preender o mundo, os outros, suas próprias experiências e para que possa inserir-se
no mundo da escrita, torna-se imperativo que a escola proporcione as oportunidades
de construção das competências lingüísticas necessárias para se formar um leitor
competente.
	 Ademais, as formas de se trabalhar com a leitura não se esgotam em apenas
um item ou no desenvolvimento de uma habilidade. Na verdade, são inúmeras as
possibilidades de que o professor pode lançar mão em sala de aula e que, em uma
avaliação como esta, devido às limitações operacionais e à metodologia utilizada, as
quais permitem medir apenas uma habilidade por item, não são passíveis de serem
mensuradas.
	 O desenvolvimento das habilidades de leitura, além de proporcionar um melhor
resultado nas avaliações institucionais, possibilitam aos alunos terem outra postura
diante do quantitativo de informações que lhes chegam aos sentidos. Passam a com-
preender e controlar o sistema de representação e suas potencialidades, deixando
de ser meros críticos para serem vistos como reconstrutores e transformadores dos
signos.
	 Finalizando, espera-se que as observações feitas sobre o desempenho dos alu-
nos e a sinalização de quais competências não foram ainda construídas, de outras
que estão em fase de construção ou daquelas que já foram construídas possam ser-
vir de subsídios que permitam ao professor fazer uma reflexão sobre a importância
de um espaço, no currículo escolar do ensino fundamental brasileiro, para a prática
da leitura.
Unidade5Matemática
77
5.	 MATEMÁTICA
5.1.	 O que se avalia em Matemática e por que se avalia
	 As matrizes de referência que norteiam os testes de Matemática do Saeb e da
Prova Brasil estão estruturadas sobre o foco Resolução de Problemas. Essa opção
traz implícita a convicção de que o conhecimento matemático ganha significado
quando os alunos têm situações desafiadoras para resolver e trabalham para desen-
volver estratégias de resolução.
	 As Matrizes de Referência de Matemática, diferentemente do que se espera
de um currículo, não trazem orientações ou sugestões de como trabalhar em sala
de aula. Além disso, não mencionam certas habilidades e competências que, em-
bora sejam importantes, não podem ser medidas por meio de uma prova escrita.
Em outras palavras, as Matrizes de Referências de Matemática do Saeb e da Prova
Brasil não avaliam todos os conteúdos que devem ser trabalhados pela escola no
decorrer dos períodos avaliados. Sob esse aspecto, parece também ser evidente que
o desempenho dos alunos em uma prova com questões de múltipla escolha não for-
nece ao professor indicações de todas as habilidades e competências desenvolvidas
nas aulas de matemática.
	 Desse modo, as Matrizes envolvem habilidades relacionadas a conhecimen-
tos e a procedimentos que podem ser objetivamente verificados. Um exemplo: o
conteúdo “utilizar procedimentos de cálculo mental”, que consta nos Parâmetros
Curriculares Nacionais, apesar de indicar uma importante capacidade que deve ser
desenvolvida ao longo de todo o Ensino Fundamental, não tem nessa Matriz um de-
scritor correspondente.
	 Assim, a partir dos itens do Saeb e da Prova Brasil, é possível afirmar que um
aluno desenvolveu uma certa habilidade, quando ele é capaz de resolver um prob-
lema a partir da utilização/aplicação de um conceito por ele já construído. Por isso,
o teste busca apresentar, prioritariamente, situações em que a resolução de proble-
mas seja significativa para o aluno e mobilize seus recursos cognitivos.
5.2.	 A Matriz de Referência de Matemática: Temas e seus Descritores –
3ª série do Ensino Médio
	 As matrizes de matemática estão estruturadas por anos e séries avaliadas.
Para cada um deles, são definidos os descritores que indicam uma determinada
Unidade5Matemática
78
habilidade que deve ter sido desenvolvida nessa fase de ensino. Esses descritores
são agrupados por temas que relacionam um conjunto de objetivos educacionais.
Tema I. Espaço e Forma
Identificar a relação entre o número de vértices, faces e/ou
arestas de poliedros expressa em um problema
Reconhecer aplicações das relações métricas do triângulo retângulo
em um problema que envolva figuras planas ou espaciais
Identificar figuras semelhantes mediante o reconhecimento
de relações de proporcionalidade
Relacionar diferentes poliedros ou corpos redondos com suas
planificações ou vistas
D1
D2
D3
Resolver problema que envolva razões trigonométricas no
triângulo retângulo (seno, cosseno, tangente)
Identificar a localização de pontos no plano cartesiano
Interpretar geometricamente os coeficientes da equação de
uma reta
Identificar a equação de uma reta apresentada a partir de
dois pontos dados ou de um ponto e sua inclinação
Relacionar a determinação do ponto de interseção de duas
ou mais retas com a resolução de um sistema de equações
com duas incógnitas
Reconhecer, dentre as equações do 2.º grau com duas
incógnitas, as que representam circunferências
D4
D5
D6
D7
D8
D9
D10
Descritores 3ª EM
D11
D12
D13
Tema II. Grandezas e Medidas
Resolver problema envolvendo o cálculo de área de figuras
planas
Resolver problema envolvendo o cálculo de perímetro de
figuras planas
Resolver problema envolvendo a área total e/ou volume de
um sólido (prisma, pirâmide, cilindro, cone, esfera).
Descritores 3ª EM
Unidade5Matemática
79
Tema III. Números e Operações/Álgebra e Funções
Resolver problema que envolva variação proporcional,
direta ou inversa, entre grandezas
Identificar a localização de números reais na reta numérica
Reconhecer expressão algébrica que representa uma função
a partir de uma tabela
Descritores 3ª EM
Resolver problema que envolva porcentagem
Resolver problema envolvendo equação do 2.º grau
Resolver problema envolvendo uma função do 1.º grau
Analisar crescimento/decrescimento, zeros de funções reais
apresentadas em gráficos
Identificar o gráfico que representa uma situação descrita em
um texto
Resolver problema envolvendo P.A./P.G. dada a fórmula do
termo geral
Reconhecer o gráfico de uma função polinomial de 1.º grau
por meio de seus coeficientes
Reconhecer a representação algébrica de uma função do 1.º
grau dado o seu gráfico
Resolver problemas que envolvam os pontos de máximo ou
de mínimo no gráfico de uma função polinomial do 2.º grau
Relacionar as raízes de um polinômio com sua decomposição
em fatores do 1.º grau
Identificar a representação algébrica e/ou gráfica de uma
função exponencial
Identificar a representação algébrica e/ou gráfica de uma
função logarítmica, reconhecendo-a como inversa da função
exponencial
Resolver problema que envolva função exponencial
Identificar gráficos de funções trigonométricas (seno, cos-
seno, tangente), reconhecendo suas propriedades
Determinar a solução de um sistema linear, associando-o a
uma matriz
Resolver problema de contagem utilizando o princípio multi-
plicativo ou noções de permutação simples, arranjo simples
e/ou combinação simples
Calcular a probabilidade de um evento
D14
D15
D16
D17
D18
D19
D20
D21
D22
D23
D24
D25
D26
D27
D28
D29
D30
D31
D32
D33
Unidade5Matemática
80
5.3.	 Exemplos de itens de 3ª série do Ensino Médio – Matemática
	 A seguir, são apresentados itens que foram utilizados no Saeb e na Prova Brasil.
Inicialmente, discorre-se sobre cada tema; depois, há a apresentação de cada descri-
tor e da habilidade por ele indicada. Para cada descritor, há dois exemplos de itens: o
primeiro, com percentuais de respostas para cada alternativa assinalada, com base
nos quais é feita uma análise pedagógica; o segundo, com a indicação do gabarito e
sem percentuais de respostas. Por fim, algumas sugestões para o professor trabalhar
com seus alunos no sentido de desenvolver as habilidades apontadas pelos descri-
tores.
Tema I – Espaço e Forma
	 Esse campo do conhecimento é uma parte importante do currículo do ensino
médio, permitindo que o aluno compreenda, descreva e represente o mundo em que
vive, exercitando a passagem do abstrato para o concreto. Nesse tema, trabalha-se
com cálculo de áreas, volumes e distâncias, conectados ou não a suas possíveis apli-
cações. O trabalho com geometria incentiva o aluno a observar, perceber semelhan-
ças e diferenças, identificar padrões em figuras e objetos e definir estratégias para
resolver problemas. Alem disso, permite o desenvolvimento de percepção espacial,
possibilitando aos alunos relacionar a Matemática a outras áreas do conhecimento.
Por fim, permite também estimular a capacidade de generalizar, independentemente
da aplicação de tal capacidade ao mundo material.
Descritor 1 – Identificar figuras semelhantes mediante o reconhecimento de
relações de proporcionalidade
Tema IV. Tratamento da Informação
Associar informações apresentadas em listas e/ou tabelas
simples aos gráficos que as representam e vice-versa
Resolver problema envolvendo informações apresentadas em
tabelas e/ou gráficos
Descritores 3ª EM
D34
D35
Descritores D1 D2 D3 D4 D5 D6 D7 D8 D9 D10
Unidade5Matemática
81
Que habilidade pretendemos avaliar?
	 Pretende-se avaliar a habilidade de o aluno reconhecer relações de proporcio-
nalidade com o objetivo de identificar figuras que sejam semelhantes.
Exemplo de item:
A figura abaixo mostra os trapézios ABEF e ACDF formados pelas retas r, s e t, parale-
las entre si, e cortadas por duas transversais.
Com base nas informações da figura,
qual é o valor do comprimento x?
(A) 1,5	
(B) 4		
(C) 5		
(D) 8		
(E) 15
Observações:
1.	 O quadro explicativo com os percentuais de respostas às alternativas refere-se
ao desempenho de alunos em testes do Saeb e da Prova Brasil, com abrangência
em todo o País.
2.	 A soma dos percentuais não perfaz, necessariamente, 100%, pois não estão
apresentados os correspondentes às respostas em branco ou nulas. Isso vale para
todos os itens comentados.
Percentual de respostas às alternativas
A B C D E
15% 11% 18% 33% 20%
Unidade5Matemática
82
O que o resultado do item indica?
	 A resolução envolve reconhecer que os feixes de retas formam diferentes triân-
gulos. O triângulo GCD tem dois de seus lados conhecidos e com valores GC = 10 e
CD = 10. O triângulo GBE tem o lado GB = 8 e o lado BE com o valor que se quer de-
terminar. Como esses dois triângulos são semelhantes, existe uma relação de propor-
cionalidade entre seus lados.
Assim:           =        e então x=8, alternativa “D”, assinalada por 33% dos alunos.
Que sugestões podem ser dadas para melhor desenvolver essa habilidade?
	 Trabalhar com os alunos a existência de figuras que são semelhantes entre si e,
a partir daí, as relações de proporcionalidade que reforcem as suas semelhanças.
Descritor 2 – Reconhecer aplicações das relações métricas do triângulo retân-
gulo em um problema que envolva figuras planas ou espaciais
Que habilidade pretendemos avaliar?
	 Com itens referentes a esse descritor, pretende-se medir a habilidade de o aluno
trabalhar com as relações métricas do triângulo retângulo, principalmente o teorema
de Pitágoras.
Exemplo de item:
Um bloco de formato retangular ABCDEFGH, representado pela figura abaixo, tem as
arestas que medem 3 cm, 4 cm e 6 cm.
10
10
8
X
Unidade5Matemática
83
A medida da diagonal FC do bloco retangular, em centímetros, é
(A) 3.		 (B) 5.		 (C) 4 6 . (D) 2 13. 	 (E) 61.
O que o resultado do item indica?
	 O início da solução do problema envolve reconhecer que, na figura apresentada,
existe um triângulo formado pelos vértices A, C e F. A partir desse reconhecimento,
para calcular a diagonal FC, que é a hipotenusa do triângulo ACF, é necessário con-
hecer os valores dos catetos AC e AF. O valor do cateto AF é igual ao valor de DE, já
que ambos são paralelos. O cateto AC é a hipotenusa do triângulo ABC, com lados
AB = 6 e BC = 3.
Assim, aplicando Pitágoras AB2
+ BC2
= AC2
.
Logo AB2
+ BC2
= 62
+ 32
= 45
Então:  FC =      AF2
+ AC2
= 42
+ 45 = 16 + 45 = 61 , logo a alternativa
correta é a alternativa “E”, assinalada por apenas 13% dos alunos, portanto um item
que pode ser considerado difícil.
Que sugestões podem ser dadas para melhor desenvolver essa habilidade?
	 É necessário trabalhar com os alunos atividades em que seja possível desen-
volver sua visão espacial. Uma forma de fazer isso é utilizar os exemplos do dia-a-dia
para que os alunos verifiquem as diversas situações em que as relações métricas do
triângulo retângulo são utilizadas na resolução de problemas.
Descritor 3 – Relacionar diferentes poliedros ou corpos redondos com suas
planificações ou vistas
Que habilidade pretendemos avaliar?
Percentual de respostas às alternativas
A B C D E
11% 19% 33% 23% 13%
( )
2
Unidade5Matemática
84
	 Pretende-se, com esse descritor, avaliar a habilidade dos alunos em conseguir
decompor diversos sólidos, identificando diferentes vistas e suas respectivas planifi-
cações.
Exemplo de item:
A figura abaixo representa a planificação de um sólido geométrico.
O sólido planificado é
(A)	 uma pirâmide de base hexagonal.
(B)	 um prisma de base hexagonal.
(C)	 um paralelepípedo.
(D)	 um hexaedro.
(E)	 um prisma de base pentagonal
O que o resultado do item indica?
	 Para resolver esse problema, o aluno precisará ter desenvolvido habilidades
que permitam a ele reconstruir, a partir da planificação de um sólido, a sua forma.
Para isso, ele terá de identificar, em cada parte da figura, a existência das diversas
faces do sólido que estão colocadas sobre o plano e, a partir daí, reconstruir passo
a passo esse sólido. Os que dominam essa habilidade conseguiram acertar o item
assinalando a alternativa “B”, escolhida por 39% do total de alunos.
Que sugestões podem ser dadas para melhor desenvolver essa habilidade?
	 Trazer para a sala de aula uma série de objetos tridimensionais e solicitar aos
alunos que os examinem em diferentes perspectivas e desenhem as faces desses
objetos a partir do ponto de observação utilizado.
Percentual de respostas às alternativas
A B C D E
8% 39% 11% 20% 18%
Unidade5Matemática
85
Descritor 4 – Identificar a relação entre o número de vértices, faces e/ou ar-
estas de poliedros expressa em um problema
Que habilidade pretendemos avaliar?
	 Pretende-se que o aluno demonstre a habilidade de utilizar, em situações práti-
cas, a relação entre faces, arestas e vértices de um sólido geométrico expressas na
relação de Euler: V + F - A = 2  
Exemplo de item:
Uma caixa no formato de um poliedro precisa ser reforçada com 3 parafusos em
cada vértice, um revestimento de metal nas suas 7 faces e uma aplicação de uma
cola especial em todas as 15 arestas.
A quantidade necessária de parafusos será igual a
(A) 72.	 (B) 66.		 (C) 24.		 (D) 30.		 (E) 10.
O que o resultado do item indica?
	 A resolução desse problema envolve a habilidade de relacionar as faces, ares-
tas e vértices de um sólido entre si, que são expressas na relação de Euler. Assim,
onde F = 7 e A = 12. Portanto, o número de vértices é igual a 10. Como serão utiliza-
dos três parafusos por vértice, serão necessários 30 parafusos. Os alunos que desen-
volveram esse caminho para a solução do problema conseguiram chegar à resposta
correta indicada pela alternativa “D”, que correspondeu a 24% do total de respostas.
Aqueles que assinalaram a alternativa “E” provavelmente não se aperceberam de
que o problema não pedia o número de vértices, mas sim o número de parafusos por
vértice e assim não realizaram a operação de multiplicação por três.
Que sugestões podem ser dadas para melhor desenvolver essa habilidade?
	 Estimular os alunos a manipular diversos sólidos geométricos, identificando
seus elementos para que consigam, a partir daí, chegar até a relação de Euler.
Percentual de respostas às alternativas
A B C D E
13% 26% 29% 24% 6%
Unidade5Matemática
86
Descritor 5 – Resolver problema que envolva razões trigonométricas no triân-
gulo retângulo (seno, cosseno, tangente)
Que habilidade pretendemos avaliar?
	 Com itens desse descritor, pretende-se testar a habilidade de os alunos utiliza-
rem as razões trigonométricas para a solução de problemas do dia-a-dia.
Exemplo de item:
Um caminhão sobe uma rampa inclinada 15o
em relação ao plano horizontal. Saben-
do-se que a distância HORIZONTAL que separa o início da rampa até o ponto vertical
mede 24 m, a que altura, em metros, aproximadamente, estará o caminhão depois
de percorrer toda a rampa?
(A) 6	 (B) 23	 (C) 25	 (D) 92	 (E) 100
O que o resultado do item indica?
Para a solução desse problema, o aluno primeiramente terá de identificar entre
as três razões trigonométricas sugeridas pelos dados (seno, cosseno e tangente),
qual delas será usada para resolver o problema. No caso, o aluno deverá utilizar a
tangente de 15º.
Assim:  tg (15º) =               = 0,26.
Logox =6,24,queaproximado,comopedeoenunciado,dariacomoresultadoovalorx
= 6, conforme indica a alternativa “A”, assinalada por 30% dos alunos. Provavelmente
10% dos alunos que assinalaram como certa a alternativa “B” e os que assinalaram
a alternativa “C” confundiram os conceitos, identificando que utilizando o cosseno do
ângulo resolveriam o problema.
Percentual de respostas às alternativas
A B C D E
30% 10% 24% 23% 9%
x
24
Unidade5Matemática
87
Que sugestões podem ser dadas para melhor desenvolver essa habilidade?
	 Esse descritor aborda um dos assuntos de maior aplicação no cotidiano dos alu-
nos. Existe uma infinidade de problemas que devem ser trazidos para resolução em
sala de aula. O professor pode construir com seus alunos um instrumento para medir
ângulos, usando um transferidor e um canudinho e, com a ajuda destes, resolver
questões bem práticas como: calcular a altura de um prédio, conhecido o ângulo de
visão e a distância do observador até a base do prédio, a largura de uma rua etc.
Descritor 6 – Identificar a localização de pontos no plano cartesiano
Que habilidade pretendemos avaliar?
Este descritor pretende medir a habilidade de os alunos identificarem adequada-
mente um ponto no plano a partir de seu par ordenado, ou vice-versa.
Exemplo de item:
A figura abaixo mostra um ponto em um plano cartesiano.
As coordenadas do ponto A são
(A) (6, 6).	 (B) (-3, 4).	 (C) (3, 4).	 (D) (3, 7).	 (E) (4,5).
Percentual de respostas às alternativas
A B C D E
5% 10% 62% 6% 10%
Unidade5Matemática
88
O que o resultado do item indica?
Os 62% dos alunos que marcaram a alternativa correta “C” indicam que o item é
bastante fácil. Para chegar ao gabarito, o aluno teve de contar a distância entre o
ponto “A” e os eixos x e y. Além disso, como a localização é dada por um par ordena-
do, foi preciso que o aluno identificasse que o primeiro número refere-se à abscissa
e o segundo à ordenada.
Que sugestões podem ser dadas para melhor desenvolver essa habilidade?
	 Enfatizar a ordem e o significado dos valores negativos e positivos das
coordenadas cartesianas de um ponto. Sugere-se a montagem de um grande plano
cartesiano no quadro ou na parede, no qual os alunos localizariam ou marcariam
pontos. Mostrar, por meio de exemplos a analogia entre coordenadas cartesianas e
coordenadas no campo da geografia (latitude e longitude). Se possível, usar um GPS
e determinar posições de pontos na própria escola.
Descritor 7 – Interpretar geometricamente os coeficientes da equação de
uma reta
Que habilidade pretendemos avaliar?
	 Esse descritor pretende avaliar a habilidade de os alunos identificarem os coefi-
cientes de uma equação de 1º grau.
Exemplo de item:
A reta de equação 2y + x = 0
(A)	 é paralela ao eixo 0X.
(B)	 é paralela ao eixo 0Y.
(C)	 tem coeficiente angular - .
(D)	 tem coeficiente angular .
(E)	 tem coeficiente angular 2.
1
2
1
2
Unidade5Matemática
89
O que o resultado do item indica?
	 Para resolver acertadamente o problema, o aluno deveria reconhecer as pro-
priedades da reta, que é dada na sua forma genérica como y = ax + b . No caso do
problema em questão, manipulando-se a equação dada, a expressão da reta seria:
y = -           x .  Assim, o coeficiente angular “a” seria igual a  -           , o coeficiente
linear “b” seria igual a zero. Se a reta fosse paralela ao eixo OX, sua expressão seria
do tipo y = c, e no caso de a reta ser paralela ao eixo OY, sua expressão seria do tipo
x = c, onde “c” é um número real qualquer. Dessa forma, a alternativa correta é aque-
la assinalada na alternativa “C”, marcada por apenas 18% dos alunos. Isso demon-
stra a necessidade de trabalhar mais fortemente esses conceitos com os alunos, já
que mais de 78% deles erraram o item.
Que sugestões podem ser dadas para melhor desenvolver essa habilidade?
	 Uma boa sugestão é procurar levar para a sala de aula uma série de aplica-
ções práticas. Utilizando-se da física, por exemplo, pode-se discutir o significado da
inclinação da reta em um gráfico v x t de um movimento uniformemente variado. Na
economia, podem-se utilizar a relação de demanda x preço.
Descritor 8 – Identificar a equação de uma reta apresentada a partir de dois
pontos dados ou de um ponto e sua inclinação
Que habilidade pretendemos avaliar?
	 Itens referentes a esse descritor pretendem avaliar a habilidade de o aluno cons-
truir a equação de uma reta a partir de dois de seus pontos ou então a partir de um
ponto e de sua inclinação.
Percentual de respostas às alternativas
A B C D E
19% 15% 18% 16% 28%
1
2
1
2
Unidade5Matemática
90
Exemplo de item:
Qual é a equação da reta que contém os pontos (3, 5) e (4, -2)?
(A) y = - 7x + 26	
(B) - x -
(C) x - 	
(D) y = x + 2
(E) y = 7 x - 16
O que o resultado do item indica?
	 Ao calcular a equação da reta determinada pelos pontos dados, os alunos po-
dem ter utilizado, por exemplo, qualquer um dos seguintes procedimentos:
I.	 cálculo da declividade da reta, a = = = -7 e substituição
desse valor e das coordenadas de um dos pontos na forma reduzida da equação da
reta, y = ax + b, a fim de determinar o valor do coeficiente linear.
Assim, 5 = (- 7) x 3 + b, e b = 5 + 21 = 26  ;
II.	 resolução de um sistema de duas equações de primeiro grau, a fim de determi-
nar os valores dos coeficientes envolvidos nas equações:
5 = 3a + b
- 2 = 4a + b
1
7
10
7
1
7
18
7
Percentual de respostas às alternativas
A B C D E
23% 18% 18% 16% 21%
5 - ( -2)
3 - 4
7
-1
{
Unidade5Matemática
91
	 A resposta correta a esse item é a alternativa “A”, escolhida por 23% dos avali-
ados, indicando tratar-se de um item de média dificuldade. Esse resultado indica
que 73% dos alunos, soma das porcentagens das alternativas de “B” a “E”, não
dominam essa habilidade.
	 Analisando-se cada uma das alternativas erradas é possível perceber pos-
síveis caminhos que os alunos poderiam ter percorrido na tentativa de resolver
o problema proposto. Provavelmente, o procedimento “I” é o mais ensinado nas
escolas e é a partir dele que serão feitos os comentários a seguir.
	 A alternativa “B” poderia indicar que, para calcular o coeficiente angular, os
alunos inverteram o numerador pelo denominador obtendo como resultado o va-
lor de -           e a partir dele, o coeficiente linear de -            . A alternativa “C”
indicaria que os alunos, além de terem realizado a inversão, erraram no momento
de estabe-lecer os sinais, obtendo assim como coeficientes angular e linear valo-
res iguais a e , respectivamente. Para as alternativas de “B” a “C”,
parece que, muito mais que o entendimento do significado da representação geo-
métrica do coeficiente angular, os alunos estariam utilizando o procedimento como
indicado em “I” para a resolução do problema e memorizando fórmulas, caindo
assim na armadilha de inverter seus termos e obtendo valores errados.
	 A alternativa “D” foi marcada pelos alunos que muito provavelmente não
dominam a habilidade medida, pois utilizaram um caminho, impossível de ser
descrito, que nada tem a ver com o problema proposto.
	 Por fim, a alternativa “E” foi provavelmente marcada por aqueles que, ao rea-
lizarem a conta , obtiveram como resultado +7, e utilizando-o na equação,
obtiveram como coeficiente linear o valor -16.
Que sugestões podem ser dadas para melhor desenvolver essa habili-
dade?
	 A principal sugestão é trabalhar fortemente com os alunos a representação
geométrica do coeficiente angular da reta. De forma complementar, podem-se tra-
balhar problemas que envolvam o descritor D8 utilizado na resolução de sistemas
de duas equações. Assim, não é necessária a memorização de fórmulas.
1
7
10
7
1
7
18
7
7
-1
Unidade5Matemática
92
Descritor 9 – Relacionar a determinação do ponto de interseção de
duas ou mais retas com a resolução de um sistema de equações com
duas incógnitas
Que habilidade pretendemos avaliar?
	 Esse descritor pretende avaliar a habilidade de o aluno relacionar dois impor-
tantes conceitos matemáticos: a resolução de problemas que envolvam um sistema
de equações com duas incógnitas e a determinação do ponto de interseção de duas
retas.
Exemplo de item:
O ponto de interseção das retas de equações x + 3y – 1 = 0 e x – y + 3 = 0 é
(A)	 (1, -2).
(B)	 (-2, 1).
(C)	 (-1, -2).
(D)	 (-2, -1).
(E)	 (1, 2).
O que o resultado do item indica?
	 Para a solução do problema, o aluno deverá primeiramente ter em mente que
o ponto de interseção de duas retas concorrentes pode ser determinado algebrica-
mente a partir da montagem de um sistema de duas equações. Assim, a resolução
do problema passa pela solução do seguinte sistema:
	 x + 3y - 1 = 0
	 x - y + 3 = 0
Resolvendo o sistema, obtém-se o par (-2, 1)
	 Por esse resultado, a alternativa correta é a “B”, assinalada por 32% dos alu-
nos, o que demonstra ser um item de média complexidade. O restante dos alunos
demonstram não dominar a habilidade.
Percentual de respostas às alternativas
A B C D E
14% 32% 18% 17% 16%
{
Unidade5Matemática
93
Que sugestões podem ser dadas para melhor desenvolver essa habilidade?
	 Inicialmente, é necessário fixar o conceito de que a solução de um sistema
de equações de primeiro grau pode ser expressa por um par ordenado, sendo que
esse par representa um ponto no sistema cartesiano. A interseção de duas retas
corresponde a um par ordenado que indica a solução do sistema de equações. Com
noções simples da geometria analítica, o aluno determina o ponto de interseção de
duas retas.
Descritor 10 – Reconhecer, dentre as equações do 2.º grau com duas incóg-
nitas, as que representam circunferências
Que habilidade pretendemos avaliar?
	 Com relação a essa habilidade, pretende-se avaliar a capacidade de o aluno
reconhecer, dentre um conjunto de equações de 2º grau, aquela que representa a
equação de uma circunferência.
Exemplo de item:
Dentre as equações abaixo, pode-se afirmar que a de uma circunferência é
(A)	 (x - 1)2
+ y2
= 25 .
(B)	 x2
- y - 4x = -3.
(C)	 x2
+ y2
= -16.
(D)	 x2
- y - 9 = 0.
(E)	 x2
- y2
- 4x = 9.
O que o resultado do item indica?
	 A solução do problema passa pela habilidade de reconhecer as propriedades
de uma circunferência. Genericamente, essa figura geométrica possui centro (xc
, yc
)
e raio R. Como qualquer de seus pontos é eqüidistante do centro, a distância deles
ao centro é o raio. A partir dessas propriedade, chega-se facilmente à equação re-
duzida da circunferência utilizando-se o teorema de Pitágoras, obtendo-se (x - xc
)2
+
(y - yc
)2
= R2.
. Desenvolvendo essa equação obtém-se a equação geral da circunferên-
cia, que é dada por x2
+ y2
- 2xc
x - 2yc
y + xc
2
+ yc
2
- R2
= 0.
Percentual de respostas às alternativas
A B C D E
24% 14% 19% 27% 12%
Unidade5Matemática
94
	 Portanto, o aluno teria de verificar cada uma das alternativas e compará-las
com as duas formas que expressam a equação da circunferência. Agindo assim,
chegaria à solução do problema marcando a alternativa “A”, que foi assinalada por
24% dos alunos.
Que sugestões podem ser dadas para melhor desenvolver essa habili-
dade?
	 Uma das alternativas para desenvolver essa habilidade é apresentar aos
alunos o desenvolvimento da equação da circunferência a partir do teorema de                          
Pitágoras. Dessa forma, a equação ficará mais compreensível ao aluno.
Tema II: Grandezas e Medidas
	 Medir é uma atividade que está presente no cotidiano das pessoas. O estudo
desse campo tem forte motivação empírica envolvendo cálculo de volumes e ca-
pacidades de recipientes.
Descritor 11 – Resolver problema envolvendo o cálculo de perímetro de figu-
ras planas
Que habilidade pretendemos avaliar?
	 Esse descritor pretende avaliar a habilidade de o aluno resolver problemas do
cotidiano utilizando cálculo de perímetro.
Exemplo de item:
	 Uma praça quadrada,
que possui o perímetro de
24 metros, tem uma árvore
próxima de cada vértice e
fora dela. Deseja-se aumen-
tar a área da praça, alteran-
do-se sua forma e mantendo
as árvores externas a ela,
conforme ilustra a figura.
Descritores D11 D12 D13
2m
2m
2m2m
Unidade5Matemática
95
O novo perímetro da praça, é
(A)	 24 metros.
(B)	 32 metros.
(C)	 36 metros.
(D)	 40 metros.
(E)	 64 metros.
O que o resultado do item indica?
	 Para solucionar esse problema, o aluno primeiramente deverá identificar que
o perímetro da praça é dado pela soma dos seus lados. Assim, se ela é quadrada,
seus lados têm o valor de 6 metros. Para aumentar o perímetro da praça, cada lado
é acrescido em 2 metros. Com isso, o perímetro total da nova praça será 4x (2 + 6
+ 2) = 40. Aqueles que assinalaram a alternativa “B”, 44% do total, provavelmente
acharam o perímetro da praça anterior à reforma, ou seja, 4 x 6 = 24, e adicionaram
a esse valor 4 x 2 = 8 , referentes às larguras das áreas adicionadas, perfazendo um
total de 24 + 8 = 32 .
Que sugestões podem ser dadas para melhor desenvolver essa habilidade?
	 O desenvolvimento dessa habilidade é fundamental na construção da com-
petência de medir, que já deve ter sido desenvolvida na etapa anterior da educação
básica, mas precisa ser aprimorada na etapa atual. Para tanto, o professor deve uti-
lizar vivências do cotidiano do aluno, como o cálculo do perímetro do círculo central
da quadra ou de polígonos com outras formas.
Descritor 12 – Resolver problema envolvendo o cálculo de área de figuras
planas
Que habilidade pretendemos avaliar?
	 Pretende-se avaliar com esse descritor a habilidade de o aluno trabalhar com
cálculo de áreas envolvendo figuras planas.
Percentual de respostas às alternativas
A B C D E
10% 44% 13% 21% 8%
Unidade5Matemática
96
Exemplo de item:
Paulo resolve modificar o revestimento do piso de sua sala de estar e escolhe uma
cerâmica cujo formato está representado na figura a seguir. A cerâmica escolhida
tem a forma de um quadrado cujo lado mede 40cm e possui 4 arcos de circunferên-
cia, de raio igual a 10cm, cujos centros estão localizados nos vértices do quadrado.
Com base nessas informações, qual é a área do desenho formado na cerâmica, em
centímetros quadrados? (Considere  = 3,14)
(A) 314	 (B) 400	 (C) 486	 (D) 1114	 (E) 1286
O que o resultado do item indica?
	 Um dos caminhos possíveis para calcular a área da figura inscrita no quadrado
é visualizar as figuras geométricas que são formadas no ladrilho. Assim, existem
quatro triângulos com base igual a 20cm e altura também de 20cm e quatro círcu-
los, cada um dividido por quatro, de raio igual a 10cm. A área da figura desenhada
na cerâmica será igual à área do ladrilho quadrado de lado 40 cm subtraída da
soma das áreas das figuras geométricas, ou seja:   
(I) Afigra
= Aladrilho
- 4x( Atriângulo
+ x Acirculo
)
(II) Aladrilho
= 40 x 40 = 1600
(III) Atriângulo
= = 200
Percentual de respostas às alternativas
A B C D E
22% 26% 21% 12% 14%
1
4
20 x 20
2
Unidade5Matemática
97
(IV) Acírculo
=  x 102
= 314
Fazendo as substituições de (II), (III) e (IV) em (I) tem-se que:
Afigra
= 1600 - 4x (200 + x 314) = 486
O valor encontrado é o que está marcado na alternativa “C”, que foi assinalada por
21% dos alunos, o que indica que esse item é de média complexidade.
Que sugestões podem ser dadas para melhor desenvolver essa habilidade?
	 Valer-se de exemplos concretos, como o piso e as paredes da sala de aula,
para fixar o cálculo de área de retângulos e induzir à conclusão de que a área de um
triângulo é obtida como metade da área de um retângulo (dividindo este por uma de
suas diagonais). Outros polígonos podem ser desmembrados em retângulos e triân-
gulos para o cálculo de sua área. Para o cálculo de áreas de setores circulares, estes
devem ser apresentados como frações do círculo.
Descritor 13 – Resolver problema envolvendo a área total e/ou volume de um
sólido (prisma, pirâmide, cilindro, cone, esfera)
Que habilidade pretendemos avaliar?
	 O descritor pretende avaliar, entre os alunos, a habilidade de resolver proble-
mas que envolvam cálculo de área de sólidos geométricos.
Exemplo de item:
Um corpo cilíndrico, com 4 cm de raio e 12 cm de altura, está com água até a altura
de 8 cm. Foram então colocadas em seu interior n bolas de gude, e o nível da água
atingiu a boca do vidro, sem derramamento.
Qual é o volume, em cm3
, de todas as n bolas de gude juntas?
(A)	 32 π
(B)	 48 π
(C)	 64 π
(D)	 80 π
(E)	 96 π
1
4
Unidade5Matemática
98
O que o resultado do item indica?
	 Apesar de as situações que envolvem o cálculo de volume estarem presentes
no cotidiano, o resultado da avaliação indica que muitos alunos ainda não desen-
volveram adequadamente as habilidades necessárias para resolver problemas dessa
natureza, pois 78% deles responderam o item erradamente.
	 Apenas 22% dos alunos acertaram o item, marcando a alternativa “C”, indican-
do que esse item é difícil. A solução desse item envolvia o cálculo do volume total do
cilindro, seguido do cálculo do volume ocupado pela água e, finalmente, a subtração
desses dois volumes, o que forneceria o volume ocupado pelas bolas de gude adicio-
nadas.
	 Que sugestões podem ser dadas para melhor desenvolver essa habili-
dade?
	 É importante partir do cálculo do volume de sólidos, tais como paralelepípedos
reto-retângulos e cilindros, mostrando que ele sempre é obtido pelo produto da área
da base pela altura. A partir dessa constatação, pode-se deduzir as fórmulas dos
volumes. A habilidade deve ser aprimorada com a utilização de prismas de bases
triangulares ou hexagonais. Para visualizar o cálculo da área total de um sólido, é
possível valer-se de objetos concretos: caixas de sapato, dados de RPG (pirâmides
e outros poliedros), caixa de chocolate com a forma de prisma de base triangular
etc. Se possível, deve ser mostrado com o uso de material sólido (massa de modelar
ou argila), que o volume da pirâmide é 1/3 do volume de um prisma do qual ela foi
obtida.
Tema III: Números e Operações / Álgebras e Funções
	
Percentual de respostas às alternativas
A B C D E
27% 36% 22% 6% 8%
D14 D15 D16 D17 D18 D19 D20 D21 D22 D23
Descritores
D24 D25 D26 D27 D28 D29 D30 D31 D32 D33
Unidade5Matemática
99
	 Nesse campo, encontram-se várias competências do último ciclo do ensino
fundamental, desenvolvidas com um maior grau de complexidade. Espera-se que
o aluno transponha informações de uma representação matemática para outra,
como, por exemplo, da linguagem algébrica para a geométrica e vice-versa. Ao fim
do ensino médio, supõe-se que os alunos tenham desenvolvido uma compreensão
adequada do conceito de número e suas operações, o que os capacita a fazer julga-
mentos matemáticos e a decidir quanto a estratégias de manipulação dos números
e das operações, visando à solução de situações-problema.
Descritor 14 – Identificar a localização de números reais na reta numérica
Que habilidade pretendemos avaliar?
	 Itens referentes a esse descritor têm por objetivo avaliar a habilidade de os
alunos representarem a posição de números reais na reta numérica
Exemplo de item:
Na figura abaixo, estão representados os números reais 0, x, 1, y.
A posição do produto xy é
(A)	 à esquerda do zero.
(B)	 entre 0 e x.
(C)	 entre x e y.
(D)	 entre y e 1.
(E)	 à direita de 1.
O que o resultado do item indica?
	 A solução do problema passa primeiro pela verificação de que os valores           
Percentual de respostas às alternativas
A B C D E
10% 11% 52% 8% 17%
Unidade5Matemática
100
associados aos números x e y são menores que 1, já que x e y estão posicionados na
reta entre 0 e 1. Para descobrir o lugar da reta em que estará localizado o produto de
x por y, o aluno deverá reconhecer que o produto de dois números menores que um é
igual a um número menor que o menor deles. No caso, o menor dos números envol-
vendo x e y é o número x. Portanto, o produto de x por y é um número menor que x, e
na reta ficará posicionado entre 0 e x, conforme indica a alternativa “B”, assinalada
por 11% dos alunos. É importante destacar que 52% dos alunos assinalaram a alter-
nativa “C”, indicando que não desenvolveram a habilidade de calcular mentalmente
que o produto de dois números menores que 1 é menor do que o menor deles.
Que sugestões podem ser dadas para melhor desenvolver essa habilidade?
	 Essa é uma habilidade que já deve ter sido desenvolvida na outra etapa da
educação básica, mas precisa ser aprimorada no ensino médio. Pode-se partir da
construção de uma reta numerada, solicitando-se que os alunos localizem, sucessi-
vamente, números racionais entre dois racionais dados. O objetivo dessa atividade é
que os alunos concluam que, entre dois números racionais quaisquer, existem outros
infinitos números racionais. A seguir, devem ser localizados alguns números irracio-
nais como √2, √3, √5 e  √7 . As atividades práticas de localização de pontos nas retas
construídas ajudarão muito no desenvolvimento da habilidade.
Descritor 15 – Resolver problema que envolva variação proporcional, direta
ou inversa, entre grandezas
Que habilidade pretendemos avaliar?
	 Esse descritor pretende avaliar a habilidade de os alunos resolverem problemas
que envolvam variação proporcional entre grandezas.
Exemplo de item:
Um pai vai repartir 180 reais entre seus dois filhos, diretamente proporcional à idade
de cada um. O mais novo dos filhos tem 7 anos e o outro, 11 anos.
Qual a quantia, em reais, que o mais velho receberá?
(A) 110	 (B) 100	 (C) 90		 (D) 80		 (E) 60
Unidade5Matemática
101
O que o resultado do item indica?
	 Os conceitos necessários à resolução do item são: noções de razão e de propor-
ção de números diretamente proporcionais e a sua resolução por meio da soma ou
de simples equação de 1º grau. A resposta correta assinalada na alternativa “A” foi
dada por 56% dos alunos, o que mostra que o item é de dificuldade média. Provavel-
mente, o caminho percorrido por aqueles que acertaram o item foi calcular primeiro
a soma das idades dos irmãos 7 + 11 = 18 para, a seguir, saber quanto cada um
receberia em função de cada ano de vida:                                =              = 10
Assim, para saber o valor que o irmão mais velho receberia, bastaria realizar a opera-
ção: 10 x 11 = 110.
Que sugestões podem ser dadas para melhor desenvolver essa habilidade?
	 Montar uma regra de três simples é uma habilidade rapidamente desenvolvida
pelos alunos. A partir daí, deve ser dada uma ênfase no reconhecimento de gran-
dezas diretamente ou inversamente proporcionais. Diversos exemplos do cotidiano
dos alunos podem ser explorados para verificar se as duas grandezas são direta ou in-
versamente proporcionais: escala em mapas, velocidade x tempo, espaço x tempo.
Descritor 16 – Resolver problema que envolva porcentagem
Que habilidade pretendemos avaliar?
	 Com itens referentes a esse descritor, pretende-se avaliar a habilidade de o alu-
no usar os conceitos de percentagens para solucionar problemas.
Exemplo de item:
Uma pesquisa sobre o perfil dos que bebem café mostrou que, num grupo de 1 000
pessoas, 70% bebem café e, dentre os que bebem café , 44% são mulheres.
Percentual de respostas às alternativas
A B C D E
56% 19% 15% 4% 4%
Real
anos de vida
180
18
Unidade5Matemática
102
Qual a quantidade de homens que bebem café no grupo de 1 000 pessoas?
(A) 700	 (B) 660	 (C) 392	 (D) 308	 (E) 260
O que o resultado do item indica?
	 Para solucionar o problema proposto, um dos caminhos possíveis é o aluno
primeiro identificar que no grupo existem 70% de pessoas que bebem café, por-
tanto: Bebem café = 1 000 x 0,7 = 700 pessoas.
	 Entre os que bebem café, existem tanto homens como mulheres, e o problema
quer saber a quantidade de homens que bebem café. Como é dado que, entre os
que bebem café, 44% deles são mulheres, o total de mulheres que bebem café é:  
700 x 0,44 = 308. Assim, para achar o número de homens que bebem café, basta
fazer a diferença entre o total de pessoas que bebem café e o número de mulheres
que bebem café, ou seja: 700 - 308 = 392. Esse valor é o que está indicado na alter-
nativa “C”, que foi assinalada por 26% dos alunos.
Que sugestões podem ser dadas para melhor desenvolver essa habilidade?
	 A habilidade tratada é necessária para que o aluno resolva problemas com os
quais se deparará cotidianamente e, portanto, deve ser exaustivamente trabalhada
em sala de aula. Alguns exemplos de problemas que podem ser trabalhados: por-
centagem de alunos, porcentagem de questões de prova, índice de aprovação, por-
centual de variação da bolsa de valores e do dólar, porcentagem de reajuste salarial,
porcentagem de aprovação de determinado candidato etc.
Descritor 17 – Resolver problema envolvendo equação do 2.º grau
Que habilidade pretendemos avaliar?
	 Com esse descritor, pretende-se medir a habilidade de o aluno resolver proble-
mas em que seja necessário utilizar uma equação de 2º grau.
Percentual de respostas às alternativas
A B C D E
13% 23% 26% 11% 26%
Unidade5Matemática
103
Exemplo de item:
Em um terreno retangular de 10 m x 12 m, deseja-se construir um jardim com 80
m2
de área, deixando uma faixa para o caminho (sempre de mesma largura), como
mostra a figura.
A largura do caminho deve ser de
(A) 1 m.	 (B) 1,5 m.	 (C) 2 m.		 (D) 2,5 m.		 (E) 3 m.
O que o resultado do item indica?
	 Uma forma de solucionar esse problema é identificar a largura da faixa para
o caminho como tendo um valor arbitrário “x”. Assim, a área do jardim é dada pela
multiplicação dos lados do terreno, que tem formato de um retângulo, em que cada
lado deve ser subtraído do valor “x”, ou seja:  Ajardim
= (12 - x) x (10- x) = 80.
	 Desenvolvendo a relação, tem-se: x2
- 22x + 120 = 80 . Resolvendo a equação
de 2º grau, obtém-se que x = 2 , conforme indicado na alternativa “C”, que foi assi-
nalada por 45% dos participantes, o que indica que o item é de média dificuldade.
Que sugestões podem ser dadas para melhor desenvolver essa habilidade?
	 As atividades em sala de aula, para facilitar o desenvolvimento dessa habili-
dade, devem iniciar-se com representações simples de sentenças matemáticas que
expressem situações do contexto e, gradativamente, evoluir para a construção de
equações do 2º grau. Podem ser utilizados com muito sucesso exemplos da física:
a função quadrática do movimento uniformemente variado, a equação da força em
função do deslocamento de uma mola etc.
Percentual de respostas às alternativas
A B C D E
7% 16% 45% 17% 11%
Unidade5Matemática
104
Descritor 18 – Reconhecer expressão algébrica que representa uma função
a partir de uma tabela
Que habilidade pretendemos avaliar?
	 Com base nesse descritor, pretende-se avaliar a habilidade de o aluno identifi-
car a expressão algébrica que representa a função que rege os dados indicados em
uma tabela dada.
Exemplo de item:
Uma empresa, em processo de reestruturação, propôs a seus funcionários, admitidos
hápelomenosdoisanos,umaindenizaçãofinanceiraparaosquepedissemdemissão,
que variava em função do número de anos trabalhados. A tabela abaixo era utilizada
para calcular o valor (i) da indenização, em função do tempo trabalhado (t).
A expressão que permite determinar o valor da indenização i para t anos trabalhados
é
(A)	 i = 450 t.
(B)	 i = 450 + 500 t.
(C)	 i = 450 (t - 1).
(D)	 i = 450 + 500 (t - 1).
(E)	 i = 500 t.
O que o resultado do item indica?
	 Com relação a esse item, vale a pena comentar o caminho que percorreram
Tempo trabalho (em anos) Valor de Indenização (em reais)
1 450
2 950
3 1450
4 1950
Percentual de respostas às alternativas
A B C D E
33% 16% 18% 21% 10%
Unidade5Matemática
105
os alunos que assinalaram a alternativa incorreta “A”. Esses alunos provavelmente
leram a primeira linha da tabela e perceberam que existia uma relação direta entre
o tempo trabalhado e o valor da indenização e, sem acompanhar as demais linhas,
foram em busca de uma resposta entre as alternativas e a encontraram na letra
“A”.
	 O caminho correto seria observar pela tabela que, a cada ano trabalhado, eram
acrescentados R$ 500,00 de indenização, partindo de R$ 450,00 do primeiro ano.
Assim, a relação expressa pelos dados na tabela é: i = 450 + 500(t -1), que pode ser
encontrada na alternativa “D”.
Que sugestões podem ser dadas para melhor desenvolver essa habilidade?
	 Uso de situações-problema contextualizadas, nas quais o aluno examina va-
lores em uma tabela de dados e procura identificar a função que pode exprimi-los. É
importante insistir que nem sempre um pequeno número de dados é bastante para
identificar uma função.
Descritor 19 – Resolver problema envolvendo uma função do primeiro grau
Que habilidade pretendemos avaliar?
	 O estudo das funções inicia-se no ensino fundamental, com o reconhecimento
de regularidades numéricas ou geométricas, e amplia-se no ensino médio. A im-
portância do estudo da função de primeiro grau está relacionada à necessidade de
resolução de problemas simples do cotidiano.
Exemplo de item:
O custo de produção de uma pequena empresa é composto por um valor fixo de       
R$ 1.500,00 mais R$ 10,00 por peça fabricada.
O número x de peças fabricadas quando o custo é de R$ 3.200,00 é
(A) 470.	 (B) 150.	 (C) 160.	 (D) 170.	 (E) 320.
Percentual de respostas às alternativas
A B C D E
9% 11% 13% 28% 37%
Unidade5Matemática
106
O que o resultado do item indica?
	 O item é bastante simples e está relacionado a uma situação comum do dia-a-
dia e surpreende que ele tenha sido considerado difícil, tendo em vista que 70% dos
alunos assinalaram respostas incorretas.
	 Os 28% que acertaram a questão e, portanto, assinalaram a alternativa “D”,
podem ter utilizado algum dos seguintes procedimentos:
1.	 Transpor os dados numéricos apresentados para uma situação geral, adaptada
a uma equação do tipo y = ax + b, com a = 10 e b = 1500. Nessa situação, y repre-
senta a variável custo, enquanto x representa a variável quantidade de peças fabri-
cadas.
2.	 Raciocinar aritmeticamente sobre os dados numéricos, realizando operações
inversas: 3200 - 1500 = 1700; 1700 ÷ 10 = 170  .
Que sugestões podem ser dadas para melhor desenvolver essa habilidade?
	 A compreensão da proporcionalidade direta entre um par de grandezas pre-
cede o estudo da função de primeiro grau. Assim, o aluno precisa reconhecer as
características importantes da função de equação y = ax, como, por exemplo:
• a proporcionalidade direta entre x e y;
• a linearidade do gráfico da função; e
• o fato de esse gráfico passar pela origem do sistema.
	 Reconhecidas essas características, o próximo passo é compará-las com aque-
las que são próprias de uma função afim, do tipo y = ax +b, com b diferente de zero.
Espera-se, dessa forma, que os alunos utilizem a condição de proporcionalidade para
diferenciar uma função da outra.
Descritor 20 – Analisar crescimento/decrescimento, zeros de funções reais
apresentadas em gráficos
Que habilidade pretendemos avaliar?
	 Tendo por base esse descritor, pretende-se avaliar a habilidade de o aluno
Unidade5Matemática
107
identificar os zeros de qualquer função e/ou o crescimento e/ou decrescimento tam-
bém de qualquer função.
Exemplo de item:
O gráfico abaixo mostra a temperatura numa cidade da Região Sul, em um dia do
mês de julho.
De acordo com o gráfico, a temperatura aumenta no período de
(A) 8 às 16h	. (B) 16 às 24h. (C) 4 às 12h. (D) 12 às 16h. (E) 4 às 16h.
O que o resultado do item indica?
	 Esse item avalia a habilidade de o aluno analisar os trechos de crescimento,
onde os valores das ordenadas crescem com o crescimento dos valores das abscis-
sas, e de decrescimento da função, onde os valores das ordenadas diminuem com
o aumento do valor das abscissas. Dessa forma, a temperatura aumenta, ou dito de
outra forma, a função é crescente entre 4 e 12 horas, conforme mostra a alternativa
“C”, assinalada por 39% dos alunos.
Que sugestões podem ser dadas para melhor desenvolver essa habilidade?
	 Devem-se mostrar situações do dia-a-dia em que gráficos de funções retratam
diversos fenômenos como:  variação da cotação de moedas (dólar, euro), bolsas de
valores, salário mínimo, expectativa de vida etc. Podem-se utilizar também as diver-
sas funções já estudadas (quadrática, exponencial, trigonométricas) e discutir com
os alunos seus intervalos de crescimento, decrescimento e seus zeros.
Percentual de respostas às alternativas
A B C D E
15% 8% 39% 20% 16%
Unidade5Matemática
108
Descritor 21 – Identificar o gráfico que representa uma situação descrita em
um texto
Que habilidade pretendemos avaliar?
	 Esse descritor tem por objetivo avaliar a habilidade de o aluno associar um grá-
fico à descrição de uma situação-problema.
Exemplo de item:
Luizinho desafia seu irmão mais velho, Pedrão, para uma corrida. Pedrão aceita e
permite que o desafiante saia 20 metros a sua frente. Pedrão ultrapassa Luizinho e
ganha a corrida.
O gráfico que melhor ilustra essa disputa é
(A)						 (B)
(C)						 (D)
(E)
Unidade5Matemática
109
O que o resultado do item indica?
	 Para a solução do item apresentado, os alunos primeiramente devem identifi-
car que existe um ponto de origem de onde partirá Luizinho, dado pelo par ordenado
(0,0). Como Pedrão sairá 20 metros na frente de Luizinho, ele estará no ponto (20,0).
A corrida terminará quando os dois atingirem o mesmo ponto. Além disso, Pedrão,
em determinado ponto da corrida, ultrapassa Luizinho e vence, chegando à linha de
chegada em menos tempo. Pelo que foi descrito, os dois gráficos possíveis, nos quais
os dois se cruzariam, são os representados nas alternativas “B” e “C”. No primeiro
gráfico, Pedrão vence, pois gasta menos tempo. No segundo gráfico, Luizinho vence.
Assim, a alternativa correta é a “B”. Aqueles que assinalaram a alternativa “D” não
conseguiram interpretar que, nessa alternativa, os dois irmãos não se cruzam ao
longo da corrida.
Que sugestões podem ser dadas para melhor desenvolver essa habilidade?
	 Diversos exemplos vindos dos estudos da Física podem ser utilizados com
bastante sucesso: movimento de um corpo a partir de uma origem, paradas e mu-
danças de sentido. Outras situações também podem ser úteis: curva de crescimento
de uma criança, tabela de engorda e estabilização do peso de um animal, enchi-
mento de uma vasilha com água etc.
Descritor 22 – Resolver problema envolvendo P.A./P.G. dada a fórmula do
termo geral
Que habilidade pretendemos avaliar?
	 Com base nesse descritor, pretende-se avaliar a habilidade de os alunos com-
preenderem as propriedades de progressão aritmética e progressão geométrica para
resolver problemas. Como o objetivo não é a memorização, é indicado que a fórmula
do termo geral seja dada.
Percentual de respostas às alternativas
A B C D E
6% 39% 15% 32% 5%
Unidade5Matemática
110
Exemplo de item:
Luciano resolveu fazer economia guardando dinheiro num cofre. Iniciou com R$
30,00 e, de mês em mês, ele coloca R$ 5,00 no cofre. Considere que an
= a1
+ (n - 1)
x r , em que an
é a quantia poupada; a1
, a quantia inicial; n, o número de meses; e r,
a quantia depositada a cada mês.
Após 12 meses o cofre conterá
(A) R$ 41,00 (B)	R$ 42,00 (C) R$ 55,00 (D) R$ 65,00 (E)	R$ 85,00
O que o resultado do item indica?
	 O item é de baixa complexidade, sendo exigido que o aluno apenas siga co-
mandos simples e substitua valores numéricos na fórmula do termo geral da PA.
Seguindo esse caminho, 70% dos alunos marcaram a alternativa correta, indicando
que esse item é fácil.
Que sugestões podem ser dadas para melhor desenvolver essa habilidade?
	 Como a PA e a PG são casos particulares de seqüências, deve-se iniciar seu
estudo a partir da utilização de seqüências variadas, inclusive aquelas que não têm
uma lei de formação. É fácil mostrar que o conjunto dos números naturais forma
uma PA infinita, a partir da sua definição. A demonstração da fórmula do termo
geral é bastante simples e deve ser exercitada como alternativa à sua memorização.
Vários exemplos de aplicação podem ser usados, como o do treinamento de um
corredor, adicionando a cada dia uma distância maior.
Descritor 23 – Reconhecer o gráfico de uma função polinomial de 1.º grau por
meio de seus coeficientes
Que habilidade pretendemos avaliar?
	 Com esse descritor, pretende-se avaliar a habilidade de os alunos manusearem
os coeficientes linear e angular da reta de forma a identificar o gráfico de uma fun-
ção polinomial do 1º grau.
Percentual de respostas às alternativas
A B C D E
6% 3% 7% 13% 70%
Unidade5Matemática
111
Exemplo de item:
Em uma promoção de venda de camisas, o valor (P) a ser pago pelo consumidor é
calculado pela expressão P(x) = - x + 35 , onde x é a quantidade de camisas
compradas (0 ≤ x ≤ 20).
O gráfico que representa o preço P em função da quantidade x é
O que o resultado do item indica?
	 A alternativa correta “D” foi assinalada por 18% dos alunos, o que caracteriza
o item como difícil. Para chegar à alternativa correta, bastaria aos alunos utilizarem
o ponto x = 0 para determinar P = 35, o valor do coeficiente angular (- 1/2) para iden-
tificar que a função é decrescente e utilizar o enunciado que indica que a função é
válida dentro do intervalo (0 ≤ x ≤ 20). Chama a atenção o fato de 24% dos alunos
1
2
Percentual de respostas às alternativas
A B C D E
18% 14% 19% 18% 24%
Unidade5Matemática
112
terem assinalado a alternativa “E”, em que dois poderiam ter sido os caminhos es-
colhidos pelos alunos: o primeiro, identificando o valor do coeficiente angular como
sendo linear; o segundo, fazendo a livre associação
entre  a  existência do valor        na expressão algébrica e o ponto 0,5 no gráfico.
Que sugestões podem ser dadas para melhor desenvolver essa habilidade?
	 Dada uma função do 1º grau, deve ser ensinado aos alunos como identificar
seus coeficientes angular e linear. Conhecidos esses coeficientes, deve ser de-                  
monstrado que bastam dois pontos para desenhar o gráfico da função. Podem-se
utilizar exemplos do cotidiano como: o valor de uma corrida de táxi, envolvendo
a bandeirada acrescida do valor por km rodado; dilatação de um sólido; juros
simples.
Descritor 24 – Reconhecer a representação algébrica de uma função do 1.º
grau dado o seu gráfico
Que habilidade pretendemos avaliar?
	 Com esse descritor, pretende-se avaliar a capacidade de os alunos associarem
o gráfico de uma função polinomial de 1º grau ao seu gráfico.
Exemplo de item:
O gráfico abaixo mostra uma reta em
um plano cartesiano
Qual é a equação da reta representada
no gráfico?
(A)	 x – y – 5 = 0
(B)	 x + y – 5 = 0
(C)	 x + y + 5 = 0
(D)	 x + y – 4 = 0
(E)	 x + y = 6
1
2
Percentual de respostas às alternativas
A B C D E
10% 22% 26% 21% 16%
Unidade5Matemática
113
O que o resultado do item indica?
	 Pelo resultado, 22% dos alunos demonstraram dominar a habilidade medida.
Os 26% dos alunos que assinalaram a alternativa “C” parecem ter trocado o sinal do
termo independente. Os que assinalaram a alternativa “D” e “E” provavelmente as
escolheram aleatoriamente.
Que sugestões podem ser dadas para melhor desenvolver essa habilidade?
	 O professor poderá partir dos modelos apresentados no descritor 23 e trabalhar
a construção da expressão algébrica, determinando, por análise, os coeficientes an-
gular e linear. É importante ressaltar a idéia da formação de diferentes representa-
ções algébricas, na medida em que se alteram os coeficientes e, também, observar
que mudanças nos coeficientes implicam em alterações no comportamento. Nesse
caso, é sugestivo apresentar expressões para retas paralelas, concorrentes.
Descritor 25 – Resolver problemas que envolvam os pontos de máximo ou de
mínimo no gráfico de uma função polinomial do 2.º grau.
Que habilidade pretendemos avaliar?
	 Pretende-se com esse descritor avaliar a habilidade de os alunos resolverem
problemas relacionados com os pontos de máximo ou de mínimo de uma função
polinomial de 2º grau.
Exemplo de item:
Observe o gráfico ao lado.
A função apresenta ponto de
(A)	 mínimo em (1,2).
(B)	 mínimo em (2,1).
(C)	 máximo em (-1,-8).
(D)	 máximo em (2,1).	
(E)	 máximo em (1,2).
Unidade5Matemática
114
O que o resultado do item indica?
	 Apesar de o item ser de baixa complexidade, pois exige que o aluno identifique
no gráfico pontos de mínimo ou de máximo, sem que seja necessário nenhum cál-
culo, apenas 24% dos alunos assinalaram a alternativa correta, indicando que essa
habilidade ainda não está desenvolvida entre eles. Chama a atenção o fato de 37%
deles terem indicado como correta a alternativa “C”, um ponto qualquer da parábola,
escolhido ao acaso.
Que sugestões podem ser dadas para melhor desenvolver essa habilidade?
	 No estudo da função do 2º grau, deve ser enfatizada a importância da deter-
minação do ponto de máximo ou de mínimo. A ordenada do vértice corresponde ao
maior (ou menor) valor possível para a variável y e a ele corresponde o respectivo
valor x. É fácil mostrar que a abscissa do vértice é a média aritmética das raízes da
função. Determinada a abscissa do vértice, deduz-se a ordenada. É importante desta-
car que o vértice é o ponto no qual os valores da função mudam de crescentes para
decrescentes e vice-versa. Entre os diversos exemplos do contexto do aluno, o mais
simples e fácil de ser experimentado em sala de aula é o da observação da trajetória
de um objeto (por exemplo, uma bola) lançado obliquamente.
Descritor 26 – Relacionar as raízes de um polinômio com sua decomposição
em fatores do 1.º grau
Que habilidade pretendemos avaliar?
	 Com esse descritor, pretende-se avaliar a habilidade de os alunos decomporem
um polinômio em fatores do 1º grau.
Percentual de respostas às alternativas
A B C D E
10% 13% 37% 24% 12%
Unidade5Matemática
115
Exemplo de item:
As raízes do polinômio P(x) = (x – 3) . (x + 1) são
(A) –2 e 1.
(B) 3 e –1.	
(C) –3 e 1.	
(D) 3 e 1.	
(E) –3 e –1.
O que o resultado do item indica?
	 Mesmo o item tendo apresentado como distrator a alternativa “A”, que apre-
senta um resultado com um formato diferente dos demais, ela foi assinalada por
12% dos estudantes, sugerindo com isso que esses alunos claramente não dominam
a habilidade medida. A alternativa correta foi assinalada por 35% dos alunos. Com
relação às outras alternativas, percebe-se que, no geral, a habilidade ainda não está
totalmente desenvolvida entre os alunos, pois elas são variações da correta e con-
seguiram atrair 48% dos alunos.
Que sugestões podem ser dadas para melhor desenvolver essa habilidade?
	 Facilmente se demonstra que uma função de primeiro e segundo graus pode
ser fatorada a partir de suas raízes. Esse deve ser o foco do trabalho do professor em
sala de aula.
Descritor 27 – Identificar a representação algébrica e/ou gráfica de uma fun-
ção exponencial
Que habilidade pretendemos avaliar?
	 Esse descritor pretende avaliar a habilidade de o aluno identificar a representa-
ção algébrica ou gráfica de uma função exponencial.
Exemplo de item:
Percentual de respostas às alternativas
A B C D E
12% 35% 33% 12% 6%
Unidade5Matemática
116
Abaixo estão relacionadas algumas funções.
Entre elas, a função exponencial crescente é
(A)	 f(x) = 5–x
.
(B)	 f(x) =
(C)	 f(x) = (0,1)x
.
(D)	 f(x) = 10x
.
(E)	 f(x) = 0,5x
.
O que o resultado do item indica?
	 Pelos resultados apresentados pelos alunos ao responderem ao teste, chama a
atenção o fato de 26% deles terem identificado que a função constante
f(x) = seria uma função exponencial, talvez associando a resposta ao fato
de a alternativa possuir expoente. Os que assinalaram as alternativas “C” e “E”, 22%
do total, não demonstraram ter a habilidade de identificar que essas duas funções,
apesar de serem exponenciais, são decrescentes. Do total, 36% dos alunos demons-
traram ter desenvolvido a habilidade medida, o que classifica esse item como de
média complexidade.
Que sugestões podem ser dadas para melhor desenvolver essa habilidade?
	 Uma função exponencial simples é dada genericamente por y = ax
, sendo a > 0.
A partir dessa definição, o professor deve construir vários gráficos usando diferentes
valores para “a”: valores maiores que 1 e valores compreendidos entre 0 e 1. Obser-
va-se que desses gráficos resultam curvas crescentes e decrescentes. É importante
levar o aluno a perceber que a curva corta o eixo das ordenadas no ponto (0, 1) e
que tem como assíntota o eixo das abscissas. Exemplos do cotidiano que podem ser
utilizados: decaimento radioativo de uma substância; crescimento da população de
uma colônia de bactérias; valores da escala Richter para a medição da intensidade
de um terremoto.
Percentual de respostas às alternativas
A B C D E
8% 26% 14% 36% 8%
3
2
3
2
Unidade5Matemática
117
Descritor 28 – Identificar a representação algébrica e/ou gráfica de uma fun-
ção logarítmica, reconhecendo-a como inversa da função exponencial
Que habilidade pretendemos avaliar?
Com esse descritor, pretende-se avaliar a habilidade de o aluno reconhecer a repre-
sentação algébrica ou gráfica de uma função logaritmica e associá-la a uma função
exponencial.
Exemplo de item:
Abaixo estão representados dois gráficos.
De acordo com os gráficos,
(A)	 y = 2x está representada no gráfico 1.
(B)	 y = x2
+1 está representada no gráfico 2.
(C)	 y = log2
x está representada no gráfico 2.
(D)	 y = 2x
está representada no gráfico 2.
(E)	 y = log x está representada no gráfico 2.
O que o resultado do item indica?
	 Pelo resultado, pode-se depreender que a grande maioria dos alunos não pos-
sui a habilidade de identificar uma função logaritmica e que ela deve ser melhor
trabalhada na sala de aula. Chama a atenção o fato de 29% dos alunos identificarem
a função linear y = 2x como sendo uma função logarítimica.
Percentual de respostas às alternativas
A B C D E
29% 20% 17% 19% 11%
Unidade5Matemática
118
Que sugestões podem ser dadas para melhor desenvolver essa habilidade?
	 Para desenvolvimento dessa habilidade é importante reconhecer função loga-
rítmica no plano cartesiano e na forma algébrica. O trabalho com papel logarítmico
mono log e di log, é significativo nesse momento da aprendizagem. A construção
das funções exponencial e logarítmica no mesmo plano cartesiano permite ao aluno
identificar que são funções inversas. O professor pode utilizar os modelos apresenta-
dos no descritor D27 para o trabalho e criar situações na própria sala de aula tendo
a realidade como fonte de criação.
Descritor 29 – Resolver problema que envolva função exponencial
Que habilidade pretendemos avaliar?
	 Esse descritor é utilizado para avaliar a habilidade de o aluno resolver um pro-
blema envolvendo a função exponencial, muito comum no contexto de fenômenos
químicos, biológicos, entre outros.
Exemplo de item:
Em uma pesquisa realizada, constatou-se que a população A de determinada bacté-
ria cresce segundo a expressão A(t) = 25 . 2t
, onde t representa o tempo em horas.
Para atingir uma população de 400 bactérias, será necessário um tempo de
(A) 2 horas. 		 (B) 6 horas.	 (C) 4 horas. 	 (D) 8 horas. 	 (E) 16 horas.
O que o resultado do item indica?
	 Para resolver corretamente a situação proposta, o aluno deveria estabelecer
corretamente a relação entre um valor da imagem de uma função com seu valor
correspondente no domínio dessa função (400 = 25 x 2t
) e, por último, utilizar as
propriedades de potenciação necessárias para a resolução da equação formada
(16 = 2t
).
Percentual de respostas às alternativas
A B C D E
10% 12% 35% 26% 13%
Unidade5Matemática
119
	 A alternativa correta, “C”, foi escolhida por 35% dos alunos que souberam
transpor os dados do problema para a equação da função e também resolver corre-
tamente a equação 400 = 25 x 2t,
, indicando que o item pode ser considerado como
relativamente difícil.
	 A alternativa “D” foi assinalada por 26% dos alunos. Um provável caminho que
pode ter sido seguido está exemplificado a seguir, demonstrando a falta de habili-
dade dos alunos para operar com funções exponenciais.
400 = 25 ∙ 2t										
16 = 2t											
t= 16 ÷ 2 = 8
	 As alternativas “A” e “B” apresentam valores que não expressam nenhuma
correspondência entre os valores dados e as variáveis da função. Apesar disso foram
escolhidas por 22% dos alunos.
	 A alternativa “E” foi escolhida por 13% dos avaliados. Podemos supor, nesse
caso, que tenham tratado a função exponencial como se fosse uma função linear
realizando a operação 400 ÷ 25 = 16.
Que sugestões podem ser dadas para melhor desenvolver essa habilidade?
	 Uma sugestão útil é utilizar problemas contextualizados nas ciências da natu-
reza, onde a função exponencial aparece com muita freqüência. Por exemplo, poderi-
am ser utilizados problemas relacionados ao crescimento das bactérias em determi-
nado meio, aos fenômenos radioativos, à escala de Richter, que mede a intensidade
dos terremotos.
Descritor 30 – Identificar gráficos de funções trigonométricas (seno, cosse-
no, tangente), reconhecendo suas propriedades
Que habilidade pretendemos avaliar?
	 Esse descritor tem por objetivo avaliar a capacidade de o aluno, dada uma fun-
ção trigonométrica, identificar o gráfico que a representa e vice-versa.
Exemplo de item:
Unidade5Matemática
120
O gráfico de função y = cos x é
(A) (B)
(C) (D)
(E)
O que o resultado do Item indica?
	 Pelo resultado das respostas ao item, chama a atenção o número de alunos,
34%, que marcou como certa a alternativa “D”, já que ela não apresenta nenhuma
função trigonométrica. Os 17% dos alunos que assinalaram a alternativa “A” con-
fundiram, o que infelizmente é muito comum, a função seno com a cosseno. Os 26%
dos alunos que assinalaram a alternativa “B” demonstraram possuir a habilidade
medida.
Percentual de respostas às alternativas
A B C D E
17% 26% 9% 34% 9%
Unidade5Matemática
121
Que sugestões podem ser dadas para melhor desenvolver essa habilidade?
	 Esse assunto é de grande importância para o ensino de Matemática no ensino
médio e deve ser tratado com muito cuidado e dedicado a ele bastante tempo.	
O foco deve ser nos gráficos de seno, cosseno (principalmente) e tangente. A partir
do círculo trigonométrico, monta-se uma tabela, verificando-se, para os pontos
principais (0,     , ,      e 2 ), os valores da função, seu crescimento ou decres-
cimento,sinale,aseguir,constrói-seseugráfico.Éimportantedestacaraperidicidade
das funções, sua amplitude, seu domínio e sua imagem. Exemplos: determinados
tipos de movimentos, eletricidade, oscilação das marés.
Descritor 31 – Determinar a solução de um sistema linear, associando-o à
uma matriz
Que habilidade pretendemos avaliar?
	 Pretende-se avaliar a habilidade de o aluno determinar a solução de um sistema
linear de equações utilizando, para isso, as propriedades de uma matriz.
Exemplo de item:
												
		 1 4 0 5 		 						
A matriz 2 3 5 10 está associada ao sistema 					
	 3 0 1 4
												
(A)	 x + y + z = 5 				 (D) 4x + 5z = 1				
	 2x + 3y + 5z = 10 			 3x + 5y + 10z = 2				
3x + y + z = 4				 y + 4z = 3
(B)	 x + y = 5 				 (E) x + 4y = 0					
2x + 3y + 5z = 10 			 2x + 3y = 5					
3x + z = 4				 3x = 1
(C) 	 x + 4y = 5 											
2x + 3y + 5z = 10 										
3x + z = 4
	
{
{ {
{
{

2
3
2
Unidade5Matemática
122
O que o resultado do item indica?
	 Pelo resultado, percebe-se que apenas 31% dos alunos demonstraram domi-
nar a habilidade medida. O restante parece ter marcado aleatoriamente uma alter-
nativa.
Que sugestões podem ser dadas para melhor desenvolver essa habilidade?
	 Deve ser mostrada a correspondência entre um sistema de equações do
primeiro grau e a matriz completa associada a ele, na qual as linhas são os coefi-
cientes das variáveis. Para sistemas de grau maior ou igual a 3, deve-se incentivar a
resolução por escalonamento.
Descritor 32 – Resolver problema de contagem utilizando o princípio multipli-
cativo ou noções de permutação simples, arranjo simples e/ou combinação
simples
Que habilidade pretendemos avaliar?
	 Com itens associados a esse descritor, pode-se avaliar a habilidade de o alu-
no resolver um problema de contagem usando ou o princípio multiplicativo ou a
aplicação de fórmulas na resolução de uma situação-problema contextualizada. O
raciocínio combinatório é uma das idéias da multiplicação, trabalhada desde as
séries/anos iniciais, e que se revela importante na continuidade dos estudos e nos
cálculos probabilísticos.
Exemplo de item:
Flamengo, Palmeiras, Internacional, Cruzeiro, Bahia, Náutico e Goiás disputam um
torneio em cuja classificação final não pode haver empates.
Qual é o número de possibilidades de classificação para os três primeiros lugares
desse torneio?
(A) 21	 (B) 24		 (C) 42		 (D) 210	 (E) 343
Percentual de respostas às alternativas
A B C D E
21% 16% 31% 12% 7%
Unidade5Matemática
123
O que o resultado do item indica?
	 Para a solução do item em questão, utiliza-se a habilidade de realizar uma
operação básica de multiplicação entre números naturais. Apesar dessa aparente
facilidade, ao ser aplicada à solução de problemas que envolvem uma análise com-
binatória, essa operação traz enormes dificuldades para os alunos. Dificuldade essa
que se reflete no fato de apenas 17% dos alunos terem assinalado a alternativa cor-
reta. A solução do problema envolve a operação: 7 × 6 × 5 = 210.
Que sugestões podem ser dadas para melhor desenvolver essa habilidade?
	 Os resultados mostrados na avaliação deste item servem para reforçar a ne-
cessidade de se trabalhar os conceitos de análise combinatória com base no princí-
pio multiplicativo, apresentando exaustivamente a árvore de possibilidades associa-
da ao problema. A partir da compreensão desses conceitos, devem ser introduzidos
os casos de agrupamentos, permutações, arranjos ou combinações.
Descritor 33 – Calcular a probabilidade de um evento
Que habilidade pretendemos avaliar?
	 Pretende-se que esse descritor avalie a habilidade de o aluno calcular a proba-
bilidade de ocorrência de um determinado evento.
Exemplo de item:
No lançamento de um dado, qual é a probabilidade de se obter um número par
maior ou igual a 4?
(A)	 (B)	 (C) (D)	 (E) 1
Percentual de respostas às alternativas
A B C D E
41% 16% 20% 17% 4%
1
6
1
3
1
2
2
3
Unidade5Matemática
124
O que o resultado do item indica?
	 Pelo resultado, percebe-se que ainda é muito baixo o percentual de alunos que
conseguem dominar a habilidade medida, apenas 24% deles. Isso indica a necessi-
dade de os professores trabalharem mais fortemente essa habilidade com seus alu-
nos.
Que sugestões podem ser dadas para melhor desenvolver essa habilidade?
	 Para a construção dessa habilidade, podem ser utilizados exemplos simples,
como o lançamento de dados e a escolha de um número ao acaso em um conjunto,
e exemplos de genética.
Tema IV: Tratamento da Informação
												
	 Nos tempos atuais, estamos inseridos no mundo da informação e nosso cotidi-
ano está repleto de informações que circulam rapidamente em diferentes formatos.
Esse campo é essencial para o desenvolvimento do cidadão contemporâneo e está
conectado a outros campos do conhecimento. O trabalho com esse tema possibilita
ao aluno a oportunidade de organizar e apresentar dados em forma de gráficos ou
tabelas e fazer interpretações sobre as informações neles contidas.
Descritor 34 – Resolver problema envolvendo informações apresentadas em
tabelas e/ou gráficos
Que habilidade pretendemos avaliar?
	 Itens referentes a esse descritor têm por objetivo avaliar a habilidade de o aluno
resolver problemas simples com base na leitura e na interpretação de informações
apresentadas em uma tabela ou em um gráfico.
Percentual de respostas às alternativas
A B C D E
22% 24% 23% 16% 12%
Descritores D34 D35
Unidade5Matemática
125
Exemplo de iten:
A tabela mostra a distribuição dos domicílios, por Grandes Regiões, segundo a
condição de ocupação, no Brasil, em 1995.
Fonte: IBGE – Diretoria de Pesquisas – Departamento de Emprego e Rendimento – PNAD.
Em 1995, nos domicílios particulares do Nordeste, qual a porcentagem de domicílios
alugados e cedidos?
(A)	 9,8%
(B)	 12,7%
(C)	 22,5%
(D)	 22,9%
(E)	 27,6%
O que o resultado do item indica?
	 Os resultados mostram que 57% dos alunos marcaram a alternativa correta
“C”, o que indica que fizeram a leitura correta do problema: localizaram na tabela
as informações solicitadas e efetuaram a soma (9,8% + 12,7% = 22,5%) necessária
para se chegar à resposta. Esse percentual classificaria esse item como relativa-
mente fácil.
Condição
de
ocupação
Total
Grandes Regiões
Norte urbano Nordeste Sudeste Sul Centro-Oeste
Próprio 71,9 78,3 77,1 68,3 74,9 65,1
Alugado 14,5 13,1 9,8 17,9 12,4 16,2
Cedido 13,1 8,0 12,7 13,2 12,4 18,2
Outra 0,5 0,6 0,4 0,6 0,3 0,5
Total 100,0 100,0 100,0 100,0 100,0 100,0
Domicílios par ticulares (% )
Percentual de respostas às alternativas
A B C D E
8% 11% 57% 10% 4%
Total
Norte urbano Nordeste Sudeste Sul Centro-Oeste
Grandes Regiões
Unidade5Matemática
126
Que sugestões podem ser dadas para melhor desenvolver essa habilidade?
	 É importante que os professores trabalhem com materiais diversos, principal-
mente, notícias de jornais e revistas em que gráficos e tabelas normalmente ilustram
as matérias.
Descritor 35 – Associar informações apresentadas em listas e/ou tabelas
simples aos gráficos que as representam e vice-versa
Que habilidade pretendemos avaliar?
	 A partir desse descritor, pretende-se avaliar a habilidade de o aluno associar
informações a partir de dados fornecidos em listas ou tabelas à sua representação
na forma de um gráfico ou o inverso, de gráfico para tabela ou lista.
Exemplo de item:
A tabela abaixo representa as profundidades alcançadas na exploração de produção
de petróleo, em águas profundas, no litoral do Rio de Janeiro e do Espírito Santo.
Ano Profundidade
1977 124 m
1979 189 m
1983 	 293 m
1988 492 m
1992 781 m
1994 1227 m
1997 1709 m
1999 1853 m
2000 1877 m
Unidade5Matemática
127
O gráfico que melhor representa esta situação é
(A)						 (B)
(C)						 (D)
(E)
O que o resultado do item indica?
	 A solução do problema passa pela habilidade de os alunos encontrarem a varia-
ção dos dados ponto a ponto e, a partir disso, avaliarem como essa variação acon-
tece. É a forma como essa variação se comporta que determinará qual o gráfico
representa a tabela. Reproduzindo a tabela e indicando a variação ponto a ponto,
teremos:
	
Percentual de respostas às alternativas
A B C D E
28% 13% 18% 33% 5%
Unidade5Matemática
128
	 Ao se observar a tabela, percebe-se que a curva que indica a profundidade em
função do ano inicia-se em um ponto diferente de zero no primeiro ano. Dessa forma,
elimina-se a alternativa “D”, que foi assinalada por 33% dos alunos, o maior percen-
tual entre todas as alternativas. Continuando a análise, percebe-se que, a cada ano
até 1997, a profundidade vem aumentando continuamente e passa a partir daí a
aumentar menos. Pelos gráficos, eliminam-se: a alternativa “E”, que indica que não
existe variação da profundidade ao longo dos anos e as alternativas “B” e “C”, que
indicam um decrescimento da profundidade ao longo do tempo. Resta, portanto, a
alternativa “A”, que reflete exatamente a variação retratada na tabela.
Que sugestões podem ser dadas para melhor desenvolver essa habilidade?
	 Esse é um assunto de grande relevância para o entendimento dos fatos nos
dias de hoje. É fundamental que o professor trabalhe com gráficos e tabelas em
sala de aula. Há exemplos em profusão na mídia e os alunos devem ser fortemente
incentivados a pesquisar e discutir em sala de aula gráficos e tabelas obtidos em
jornais, revistas, televisão, Internet etc. Esse tipo de atividade é riquíssimo para de-
senvolver a habilidade pretendida e para bem situar os alunos nos acontecimentos
e problemas da atualidade.
5.4.	 Considerações finais - Matemática
	 Os itens apresentados foram aplicados nas provas do Saeb da 3ª série do ensi-
no médio. Eles revelam a condição em que os estudantes se situam em relação à
construção das competências matemáticas reunidas no foco da resolução de pro-
blemas.
Ano Profundidade Variação
1977	 124 m		 -
1979	 189 m 65m
1983	 293 m		 104m
1988	 492 199 m
1992	 781 m 289 m
1994	 1127 m 346 m
1997	 1709 m 482 m
1999	 1853 m 144 m
2000	 1877 m 24 m
Unidade5Matemática
129
	 A análise dos resultados obtidos com a aplicação dos itens mostra que de-
terminadas competências foram construídas, que outras não foram construídas
e que algumas estão em processo de construção. Naturalmente, com base nessa
análise, o professor pode refletir sobre o que está ensinando e como está ensi-
nando e reavaliar sua prática de sala de aula.
	 A reflexão sobre as estratégias de ensino deve considerar a resolução
de problemas como eixo norteador da atividade matemática. A resolução de
problemas possibilita o desenvolvimento de capacidades tais como: observação,
estabelecimento de relações, comunicação (diferentes linguagens), argumentação
e validação de processos, além de estimular formas de raciocínio como intuição,
dedução e estimativa. Essa opção traz implícita a convicção de que o conhecimen-
to matemático ganha significado quando os alunos têm situações desafiadoras
para resolver e trabalham para desenvolver estratégias de resolução.
	 A opção pela resolução de problemas significativos que norteia as matrizes
de referência de matemática não exclui a possibilidade de proposição de alguns
itens com o objetivo de avaliar se o aluno domina determinadas técnicas.
	 Importa lembrar que os conhecimentos e competências indicados nos                
descritores das matrizes de referência de matemática estão presentes nos currícu-
los das unidades da Federação e nos Parâmetros Curriculares Nacionais. Desta-
camos, ainda, que os descritores da 4ª série/5º ano do Ensino Fundamental estão
contemplados, de forma mais abrangente, nos descritores da 8ª série/9º ano, da
mesma forma que estes estão incluídos nos descritores da 3ª série do Ensino
Médio, apresentando, evidentemente, graus de complexidade diferenciados.
ReferencialBibliográfico
130
6.	 REFERENCIAL BIBLIOGRÁFICO
ANDRADE, D. F., TAVARES, H. R., VALLE, R. C. Teoria de Resposta ao Item: conceitos
e aplicações. São Paulo: Associação Brasileira de Estatística, 2000.
ANTUNES, I. Guia de Estudos 3: Avaliação e Aprendizagem de Língua Portuguesa.
ed. mimeo. Belo Horizonte: 2007.
BAGNO, M. Gramática da Língua Portuguesa – Tradição gramatical, exclusão so-
cial, mídia e exclusão social. São Paulo: Edições Loyola, 2000.
BAKHTIN, M. Estética da criação verbal. São Paulo: Martins Fontes, 1992.
BONINI, A. Reflexões em torno de um conceito psicolingüístico de tipo de texto.
DELTA, V. 15, Nº 2, 1999. p. 301-318. ISSN 0162-4450
BORTONI-RICARDO, S. M. Educação em língua materna – A sociolingüística na sala
de aula. São Paulo: Parábola, 2004.
BRASIL. Ministério da Educação; Instituto Nacional de Estudos e Pesquisas Educa-
cionais Anísio Teixeira. Qualidade da educação: uma nova leitura do desempenho
dos estudantes da 4ª série do ensino fundamental, Brasília: Inep, 2003.
BRASIL. Ministério da Educação; Secretaria de Educação Fundamental. Parâme-
tros Curriculares Nacionais: terceiro e quarto ciclos do ensino fundamental: língua
portuguesa. Brasília: MEC/SEF, 1998.
BRASIL. Instituto Nacional de Estudos e Pesquisas Educacionais. Item 2001: novas
perspectivas. Brasília: Inep, 2002.
BRASIL. Ministério da Educação; Instituto Nacional de Estudos e Pesquisas Educa-
cionais; Diretoria de Avaliação da Educação Básica. Guia para elaboração de itens
de Língua Portuguesa. Brasília: MEC/Inep/Daeb, 2004.
BRASIL. Ministério da Educação; Instituto Nacional de Estudos e Pesquisas Edu-
cacionais Anísio Teixeira; Diretoria de Avaliação para Certificação de Competên-
cias. Relatório Pedagógico – Exame Nacional do Ensino Médio. Brasília: MEC/Inep/
DAAC, 2002.
ReferencialBibliográfico
131
BRASIL. Ministério da Educação; Instituto Nacional de Estudos e Pesquisas Edu-
cacionais Anísio Teixeira; Diretoria de Avaliação para Certificação de Competên-
cias. Livro Introdutório – Documento Básico – Exame Nacional para Certificação de
Competências de Jovens e Adultos.  Brasília: MEC/inep/dacc, 2003.
BRASIL. Ministério da Educação; Instituto Nacional de Estudos e Pesquisas Anísio
Teixeira; Diretoria de Avaliação para Certificação de Competências. Matrizes Cur-
riculares de Referência para o SAEB. (1997). Brasília: MEC/Inep/Daeb, 2000.
CEREJA, W. R.; MAGALHÃES, T. C. Gramática reflexiva: texto, semântica e interação.
São Paulo: Atual, 1999.
FIORIN, J. L.; PLATÃO, F. Lições de texto: leitura e redação. São Paulo: Ática, 1998.
KOCK, I. G. V. Desvendando os segredos do texto. São Paulo: Cortez, 2005.
MAINGUENEAU, D. Análise de textos de comunicação. Tradução de Cecília P. de
Sousa e Silva, Décio Rocha. 4. ed. São Paulo: Cortez, 2005, p.57.
NERY, A. Parecer sobre a Matriz Curricular de Língua Portuguesa. 3. ed. mimeo
Brasília: 2000.
RIBEIRO, R. J. O sentido democrático da avaliação. In: Revista Ciência e Universi-
dade. São Paulo: 2004.
Anotações Importantes

Mais conteúdo relacionado

DOCX
pauta reunião de pais 3º bimestre.docx
POT
Plano de Ação Matemática
PPTX
Gincana final- descritores do 5 ano
PDF
Formularios avaliacao-diretor
DOC
143313395 plano-de-intervencao-pedagogica-2012
PDF
Parecer de uma aluno com dificuldade em matemática
PDF
Texto para avaliar leitura 3º ano
DOC
Matriz referencia saeb ensino médio
pauta reunião de pais 3º bimestre.docx
Plano de Ação Matemática
Gincana final- descritores do 5 ano
Formularios avaliacao-diretor
143313395 plano-de-intervencao-pedagogica-2012
Parecer de uma aluno com dificuldade em matemática
Texto para avaliar leitura 3º ano
Matriz referencia saeb ensino médio

Mais procurados (20)

DOCX
Plano aula matematica
PDF
1º ano atividade com quadrinhos
DOCX
Avaliaçao 2 bimestre 5 ano - sobre Menino Maluquinho e Ziraldo -
PDF
Apostila Tutoria Coletiva ok (1).pdf
DOC
Plano de ação 2011
DOCX
Guia para estudo dos pronomes pessoais 4º ano
DOCX
Sequência didática -_gênero_convite
PDF
Descritores spaece - língua portuguesa
PPT
DENGUE x MATEMATICA - Interdisciplinarizando as atividades
PDF
Poluição - Texto e atividade de Ciências
PDF
Sequência didática a casa e seu dono (1)
DOCX
Sequência Didática - O Pulo do gato para 5° ano
DOCX
Ficha de Análise de Aprendizagem do Aluno
DOCX
Situações-Problema - Matemática
PDF
Plano de ensino matematica
PPTX
Plano de Aula
DOC
Planejamento 4º ano
PDF
Cienc- O Meio Ambiente
DOCX
D14 (5º ano l.p.)
Plano aula matematica
1º ano atividade com quadrinhos
Avaliaçao 2 bimestre 5 ano - sobre Menino Maluquinho e Ziraldo -
Apostila Tutoria Coletiva ok (1).pdf
Plano de ação 2011
Guia para estudo dos pronomes pessoais 4º ano
Sequência didática -_gênero_convite
Descritores spaece - língua portuguesa
DENGUE x MATEMATICA - Interdisciplinarizando as atividades
Poluição - Texto e atividade de Ciências
Sequência didática a casa e seu dono (1)
Sequência Didática - O Pulo do gato para 5° ano
Ficha de Análise de Aprendizagem do Aluno
Situações-Problema - Matemática
Plano de ensino matematica
Plano de Aula
Planejamento 4º ano
Cienc- O Meio Ambiente
D14 (5º ano l.p.)
Anúncio

Semelhante a Saeb matriz2 (20)

PDF
Prova brasil matriz
PDF
Prova brasil matriz2
PDF
Prova brasil matriz2
PDF
Prova brasil matriz2
PDF
Material Prova Brasil
PDF
Provabrasil matriz
PDF
Guia de correção e interpretação de resultados
PPTX
É possível colocar a Provinha Brasil a serviço das aprendizagens do aluno com...
PDF
Prova brasil matriz2
PDF
Passoa passo[1]
DOC
PROVINHA BRASIL: UM OLHAR SOBRE A SUA APLICAÇÃO EM ESCOLAS PÚBLICAS DE CUIABÁ
PPTX
Encontro de Líderes.pptx REUNIÃO DE LIDERES
PPTX
Encontro de Líderes REUNIÃO PEDAGÓGICA.pptx
PDF
Prova brasil caderno2013_v2016
PPTX
Encontro de Lideres - IDEB MAIS - 28_07_2023.pptx
PPTX
L 2º tema do 2º dia
DOCX
RE(VCSS)78752248291EXXII_21_07_2021.docx
PDF
Prova saerj matemática sexto ano
PDF
Prova saerj matemática nono ano
PDF
Prova saerj matemática terceiro ano
Prova brasil matriz
Prova brasil matriz2
Prova brasil matriz2
Prova brasil matriz2
Material Prova Brasil
Provabrasil matriz
Guia de correção e interpretação de resultados
É possível colocar a Provinha Brasil a serviço das aprendizagens do aluno com...
Prova brasil matriz2
Passoa passo[1]
PROVINHA BRASIL: UM OLHAR SOBRE A SUA APLICAÇÃO EM ESCOLAS PÚBLICAS DE CUIABÁ
Encontro de Líderes.pptx REUNIÃO DE LIDERES
Encontro de Líderes REUNIÃO PEDAGÓGICA.pptx
Prova brasil caderno2013_v2016
Encontro de Lideres - IDEB MAIS - 28_07_2023.pptx
L 2º tema do 2º dia
RE(VCSS)78752248291EXXII_21_07_2021.docx
Prova saerj matemática sexto ano
Prova saerj matemática nono ano
Prova saerj matemática terceiro ano
Anúncio

Saeb matriz2

  • 1. SAEB Plano de Desenvolvimento da Educação 2011
  • 2. Presidência da República Ministério da Educação/Secretaria de Educação Básica Diretoria de Concepções e Orientações Curriculares para a Educação Básica Coordenação Geral de Ensino Fundamental Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira (Inep)/Diretoria de Avaliação da Educação Básica Coordenação-Geral de Instrumentos e Medidas Coordenação-Geral do Sistema Nacional de Avaliação da Educação Básica Projeto Gráfico Leonardo Monte-Mór Produção de conteúdos/Revisão Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira (Inep) Equipe de Linguagens e Códigos Equipe de Matemática Dados Internacionais de Catalogação na Publicação (CIP) Centro de Informação e Biblioteca em Educação (CIBEC) Brasil. Ministério da Educação. PDE : Plano de Desenvolvimento da Educação : SAEB : ensino médio : matrizes de referência, tópicos e descritores. Brasília : MEC, SEB; Inep, 2008. 127 p. : il. 1. Avaliação da educação básica. 2. Ensino médio. 3. Língua portuguesa. 4. Matemática. I. Brasil. Ministério da Educação. Secretaria de Educação Básica. II. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. III. Título. CDU 37.014.12
  • 3. Plano de Desenvolvimento da Educação 2009 Índice APRESENTAÇÃO 1 AS AVALIAÇÕES DA EDUCAÇÃO BÁSICA 1.1 Programa Internacional de Avaliação de Alunos - PISA 1.2 Exame Nacional do Ensino Médio - ENEM 1.3 Exame Nacional para Certificação de Competências de Jovens e Adultos - ENCCEJA 1.4 Provinha Brasil 1.5 O Saeb – Aneb e a Anresc (Prova Brasil) 2 O SISTEMA NACIONAL DE AVALIAÇÃO DA EDUCAÇÃO BÁSICA – SAEB 2.1 PROVA BRASIL E O DIREITO AO APRENDIZADO 3 AS MATRIZES DE REFERÊNCIA DO SISTEMA NACIONAL DA AVALIAÇÃO DA EDUCAÇÃO BÁSICA – SAEB 3.1 As Matrizes de Referência do SAEB 3.2 Competências 3.3 Habilidades 4 LÍNGUA PORTUGUESA 4.1 Aprendizagem em Língua Portuguesa 4.2 Texto 4.3 Gêneros de discurso 4.4 Tipos textuais 4.5 Os diferentes usos da língua 4.6 A Matriz de Referência de Língua Portuguesa: Tópicos e seus Descritores 3ª série do Ensino Médio 4.7 Exemplos de Itens de 3ª Série do Ensino Médio - Língua Portuguesa 4.8 Considerações finais – Língua Portuguesa 5 MATEMÁTICA 5.1 O que se avalia em Matemática e por que se avalia 5.2 A Matriz de Referência de Matemática: Temas e seus Descritores 3ª série do Ensino Médio 5.3 Exemplos de itens de 3ª série do Ensino Médio - Matemática 5.4 Considerações finais - Matemática 6 REFERENCIAL BIBLIOGRÁFICO 4 6 6 6 7 7 7 9 11 17 17 17 18 19 19 19 20 20 20 21 24 75 77 77 77 80 128 130
  • 4. APRESENTAÇÃO Prezado(a) diretor (a), prezado(a) professor(a), O Governo Federal, por meio do Ministério da Educação (MEC), lançou em 2007 o Plano de Desenvolvimento da Educação (PDE) com o objetivo de melhorar substancialmente a edu- cação oferecida às nossas crianças, jovens e adultos. O PDE sistematiza várias ações na busca de uma educação eqüitativa e de boa quali- dade e se organiza em torno de quatro eixos: educação básica; educação superior; educação profissional e alfabetização. A fim de mobilizar e impulsionar a sociedade para efetivar o PDE, foi criado o Plano de Metas que estabelece um conjunto de diretrizes para que a União, os estados, o Distrito Federal e os municípios, em regime de colaboração, conjuguem esforços para superar a ex- trema desigualdade de oportunidades existente em nosso país. O Plano tem por objetivo criar condições para que cada brasileiro tenha acesso a uma educação de qualidade e seja capaz de atuar crítica e reflexivamente no contexto em que se insere, como cidadão cônscio de seu papel num mundo cada vez mais globalizado. No que tange à educação básica, as metas do PDE contribuem para que as escolas e se- cretarias de educação possam viabilizar o atendimento de qualidade aos alunos. Isso, porque para conseguirmos atingir as metas traçadas para a educação brasileira é necessário, em primeiro lugar, que as iniciativas do MEC possam beneficiar as crianças na sala de aula. Para identificar quais são as redes de ensino municipais e as escolas que apresentam maiores fragilidades no desempenho escolar e que, por isso mesmo, necessitam de maior atenção e apoio financeiro e de gestão, o PDE dispõe de um instrumento denominado Índice de Desenvolvimento da Educação Básica (Ideb). O Ideb pretende ser o termômetro da quali- dade da educação básica em todos os estados, municípios e escolas no Brasil, combinando dois indicadores: fluxo escolar (passagem dos alunos pelas séries sem repetir, avaliado pelo Programa Educacenso) e desempenho dos estudantes (avaliado pela Prova Brasil nas áreas de Língua Portuguesa e Matemática). O Ideb é um dos eixos do PDE que permite realizar uma transparente prestação de con- tas para a sociedade de como está a educação em nossas escolas. Assim, a avaliação passa a ser a primeira ação concreta para se aderir às metas do Compromisso e receber o apoio técnico / financeiro do MEC, para que a educação brasileira dê um salto de qualidade. Em relação à avaliação da educação básica brasileira, evidenciou-se a necessidade de se apreender e analisar toda a diversidade e especificidades das escolas brasileiras. Em razão disso foi criada a avaliação denominada Prova Brasil que possibilita retratar a realidade de
  • 5. cada escola, em cada município. Tal como acontece com os testes do Sistema Nacional de Avaliação da Educação Básica (Saeb), os da Prova Brasil avaliam competências construídas e habilidades desenvolvidas e detectam dificuldades de aprendizagem. No caso da Prova Brasil, o resultado, quase censitário, amplia a gama de informações que subsidiarão a adoção de medidas que superem as deficiências detectadas em cada escola avaliada. Os resultados do Saeb e da Prova Brasil (2005/2007) mostraram, com mais clareza e objetividade, o desempenho dos alunos da educação básica, o que permite uma análise com vistas a possíveis mudanças das políticas públicas sobre educação e de paradigmas utilizados nas escolas brasileiras de ensino fundamental e médio. O objetivo maior desta publicação é envolver docentes, gestores e demais profissionais da educação nessa campanha de valorização e conhecimento do que são Saeb e Prova Brasil, de constituição desse instrumento cognitivo de avaliação, de sua aplicação em 2009 e de sua importância para o alcance das metas propostas pelo Ideb. Esperamos, assim, contribuir para que o professor, os demais profissionais da área de educação e a sociedade, como um todo, possam conhecer os pressupostos teóricos que em- basam essas avaliações, exemplos de itens que constituem seus testes, associados a uma análise pedagógica de itens baseada no resultado do desempenho dos alunos. Particularizando o objetivo do caderno, a análise dos itens possibilita ao professor fazer uma reflexão sobre a prática do ensino da leitura (Língua Portuguesa) e da resolução de pro- blemas significativos (Matemática) em sala de aula, cujos resultados refletem a aprendiza- gem de todas as áreas do conhecimento trabalhadas na escola. Os resultados do Saeb e da Prova Brasil são importantes, pois contribuem para dimen- sionar os problemas da educação básica brasileira e orientar a formulação, a implementação e a avaliação de políticas públicas educacionais que conduzam à formação de uma escola de qualidade. Acreditamos, pois, que você, professor, possa fazer uso desse instrumental para uma reflexão sobre sua prática escolar e sobre o processo de construção do conhecimento dos alunos, considerando-se a aquisição de conhecimentos e o desenvolvimento das habilidades necessárias para o alcance das competências exigidas na educação básica. MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO BÁSICA INSTITUTO NACIONAL DE ESTUDOS E PESQUISAS EDUCACIONAIS ANÍSIO TEIXEIRA
  • 6. 6 Unidade1ASAVALIAÇÕESDAEDUCAÇÃOBÁSICA 1. AS AVALIAÇÕES DA EDUCAÇÃO BÁSICA O Instituto Nacional de Estudos e Pesquisas Educacionais “Anísio Teixeira” (Inep) é uma autarquia federal vinculada ao Ministério da Educação (MEC), cuja missão é promover estudos, pesquisas e avaliações sobre o Sistema Educacional Brasileiro com o objetivo de subsidiar a formulação e implementação de políticas públicas para a área educacional a partir de parâmetros de qualidade e eqüidade, bem como produzir informações claras e confiáveis aos gestores, pesquisadores, educadores e público em geral. Para gerar seus dados e estudos educacionais, o Inep realiza levantamentos estatísticos e avaliativos em algumas etapas da educa- ção básica, assim como na modalidade de educação de jovens e adultos. Como parte integrante da estrutura organizacional do Inep, a Diretoria de Avaliação da Educação Básica (Daeb) tem sob sua responsabilidade as seguintes avaliações: 1.1. Programa Internacional de Avaliação de Alunos (Pisa) O Pisa é um programa de avaliação internacional padronizada, desenvolvido conjuntamente pelos países participantes da Organização para a Cooperação e Desenvolvimento Econômico (OCDE), aplicada a alunos de 15 anos. Além dos paí- ses da OCDE, alguns outros são convidados a participar da avaliação, como é o caso do Brasil. O Pisa, cujas avaliações são realizadas a cada três anos, abrange as áreas de Linguagem, Matemática e Ciências, não somente quanto ao domínio curricular, mas também quanto aos conhecimentos relevantes e às habilidades necessárias à vida adulta. 1.2. Exame Nacional do Ensino Médio (Enem) O Enem é um exame individual, de caráter voluntário, oferecido anualmente aos  estudantes  que  estão  concluindo  ou  que  já  concluíram  o  ensino  médio  em anos anteriores. Seu objetivo principal é possibilitar uma referência para auto- avaliação do(a) participante, a partir das competências e habilidades que o estruturam, com vistas à continuidade de sua formação e à sua inserção no mundo do trabalho.
  • 7. Unidade1ASAVALIAÇÕESDAEDUCAÇÃOBÁSICA 7 1.3. Exame Nacional para Certificação de Competências de Jovens e Adultos (Encceja) O Exame Nacional para Certificação de Competências de Jovens e Adultos é aplicado a brasileiros residentes no Brasil e no Exterior. Constitui-se em uma avaliação para aferição de competências, habilidades e saberes adquiridos em processo escolar ou extra-escolar de jovens e adultos que não tiveram acesso aos estudos ou não puderam continuá-los na idade própria. Essesbrasileiros são certificados por instituições credenciadas para tal fim. Visa, ainda, sinalizar, para educadores, estudantes e interessados, a natureza e a função de uma avaliação de competências fundamentais ao exercício pleno da cidadania. 1.4. Provinha Brasil A Provinha Brasil é uma avaliação diagnóstica do nível de alfabetização das crianças matriculadas no 2º ano de escolarização das escolas públicas brasileiras. Essa avaliação acontece em duas etapas, uma no início e a outra ao término do ano letivo. A aplicação em períodos distintos possibilita aos professores e gestores educacionais a realização de um diagnóstico que, por sua vez, permite conhecer o que foi agregado na aprendizagem das crianças dentro do período avaliado. A Provinha Brasil tem como objetivos: avaliar o nível de alfabetização dos educandos; oferecer às redes de ensino um diagnóstico da qualidade da alfabetização e colaborar para a melhoria da qualidade de ensino e redução das desigualdadeseducacionaisemconsonânciacomasmetasepolíticasestabelecidas pelas diretrizes da educação nacional. Em 2011 haverá a primeira aplicação da Provinha Brasil de Matemática, que avaliará o nível de alfabetização das crianças quanto às habilidades matemáticas. 1.5. O Saeb – Aneb e Anresc (Prova Brasil) O Sistema de Avaliação da Educação Básica – Saeb – é composto por duas avaliações complementares, a Aneb e a Anresc (Prova Brasil). A avaliação denominada Avaliação Nacional da Educação Básica – Aneb - permite produzir resultados médios de desempenho conforme os estratos amostrais, promover estudos que investiguem a eqüidade e a eficiência dos sistemas e redes de ensino por meio da aplicação de questionários, conforme vem sendo implementado na avaliação desde o ano de 1995.
  • 8. 8 Unidade1ASAVALIAÇÕESDAEDUCAÇÃOBÁSICAUnidade1ASAVALIAÇÕESDAEDUCAÇÃOBÁSICA Por ser amostral, oferece resultados de desempenho apenas para o Brasil, regiões e unidade da Federação. A avaliação denominada Avaliação Nacional do Rendimento Escolar – Anresc (Prova Brasil), realizada a cada dois anos, avalia as habilidades em Língua Portuguesa (foco na leitura) e em Matemática (foco na resolução de problemas). É aplicada somente a estudantes de 4ª série/5º ano e 8ª série/9º ano de escolas rede pública de ensino com mais de 20 estudantes matriculados por série alvo da avaliação.Tem como prioridade evidenciar os resultados de cada unidade escolar da rede pública de ensino, com os objetivos de: a. contribuir para a melhoria da qualidade do ensino, redução de desigualdades e democratização da gestão do ensino público; b. buscar o desenvolvimento de uma cultura avaliativa que estimule o controle social sobre os processos e resultados do ensino. Por ser universal, a Prova Brasil expande o alcance dos resultados oferecidos pela Aneb. Fornece médias de desempenho para o Brasil, regiões e unidades da Federação, para cada um dos municípios e para as escolas participantes. A seguir apresentamos o detalhamento das avaliações que compõem o Saeb, foco desta publicação. 8
  • 9. Unidade2OSISTEMANACIONALDEAVALIAÇÃODAEDUCAÇÃOBÁSICA–SAEB 9 2. O SISTEMA NACIONAL DE AVALIAÇÃO DA EDUCAÇÃO BÁSICA (SAEB) 1 As discussões iniciais sobre a importância de se implantar um sistema de avaliação em larga escala, no Brasil, aconteceram no período entre 1985 e 1986. Na época, estava em curso o Projeto Edurural, um programa financiado com recur- sos do Banco Mundial e voltado para as escolas da área rural do nordeste brasi- leiro. Com o objetivo de se ter um instrumento que pudesse medir a eficácia das medidas adotadas durante a sua execução, estudou-se a elaboração de uma pes- quisa que avaliasse o desempenho dos alunos que estavam freqüentando as es- colas beneficiadas pelo Projeto e compará-lo com o dos alunos não beneficiados. A partir dessa experiência, em 1988, o MEC instituiu o Saep, Sistema de Avaliação da Educação Primária que, com as alterações da Constituição de 1988, passa a chamar-se Saeb, Sistema de Avaliação da Educação Básica. O objetivo do MEC era oferecer subsídios para a formulação, reformulação e monitoramento de políticas públicas, contribuindo, dessa maneira, para a melhoria da qualidade do ensino brasileiro. A primeira avaliação ocorreu em 1990. A partir de 1992, decidiu-se que a aplicação da avaliação ficaria por conta do Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira, Inep. O segundo ciclo da avaliação ocorreu em 1993 e, desde então, ininterrupta- mente, a cada dois anos, um novo ciclo acontece. Ao longo dos anos, a avaliação vem sendo aprimorada, sendo que impor- tantes inovações aconteceram no período entre 1995 e 2001. Em 1995, foi incorporada uma nova metodologia estatística conhecida como Teoria de Resposta ao Item, TRI, que tem permitido, entre outras coisas, a compa- rabilidade dos diversos ciclos de avaliação. Nesse ano e nos subseqüentes, foi ava- liada uma amostra representativa dos alunos matriculados nas 4ª e 8ª séries do ensino fundamental e na 3ª série do ensino médio. Como os resultados referiam-se a uma amostra do total de alunos, estes, desde então, estão sendo divulgados por rede de ensino com agregação nacional, regional e estadual, não permitindo levantar resultados nem por escolas nem por municípios. Em 1997, foram desenvolvidas as Matrizes de Referência com a descrição das competências e habilidades que os alunos deveriam dominar em cada série avaliada, permitindo uma maior precisão técnica tanto na construção dos itens 1 O texto, elaborado pelo MEC baseou-se em ��������������������������������������������������������HORTA NETO, J. L. . Um olhar retrospectivo sobre a aval- iação externa no Brasil: das primeiras medições em educação até o SAEB de 2005. �����������Madrid: ���Re- vista Iberoamericana de Educación (Online), v. 42, p. 1-14, 2007. Disponível em www.rieoei.org/ deloslectores/1533Horta.pdf .
  • 10. Unidade2OSISTEMANACIONALDEAVALIAÇÃODAEDUCAÇÃOBÁSICA–SAEB 10 Unidade2OSISTEMANACIONALDEAVALIAÇÃODAEDUCAÇÃOBÁSICA–SAEB 10 do teste, como na análise dos resultados da avaliação. A construção dessas ma- trizes, como não poderia deixar de ser, não foi feita de maneira arbitrária. Foi rea- lizada uma consulta nacional sobre os conteúdos praticados nas escolas de ensino fundamental e médio, incorporando a análise de professores, pesquisadores e especialistas sobre a produção científica em cada área que seria objeto de avalia- ção escolar e utilizando como referência as secretarias de educação estaduais e das capitais que apresentaram ao Inep os currículos que estavam sendo praticados em suas escolas. Em 2001, em seu sexto ciclo, as Matrizes de Referência foram atualiza- das em razão da ampla disseminação, pelo MEC, dos Parâmetros Curriculares Nacionais – PCN. Para essa atualização, foi feita uma ampla consulta, repetindo- se o procedimento usado em 1997. Foram consultados cerca de 500 professores de 12 estados da Federação, com representação de todas as regiões do país, com o objetivo de comparar as Matrizes de Referência existentes e o currículo utilizado pelos sistemas estaduais com os PCN´s. Em 2005, paralelamente à avaliação do Saeb, foi realizada uma outra ava- liação, essa de natureza quase censitária, o que permitiria a divulgação dos resul- tados por municípios e por escolas, ampliando as possibilidades de análise dos resultados da avaliação. Nasce assim, a Prova Brasil, que utiliza os mesmos pro- cedimentos utilizados pelo Saeb.
  • 11. 11 Unidade2OSISTEMANACIONALDEAVALIAÇÃODAEDUCAÇÃOBÁSICA–SAEB 2.1 Prova Brasil e o direito ao aprendizado1 Direito ao aprendizado O direito à educação, que durante longos anos no Brasil significou o direito de matrícula em alguma escola, depois dos avanços recentes e da reflexão sobre direitos individuais consa- grados na Constituição Federal de 1988, significa hoje o direito ao aprendizado. Em relação ao aprendizado, ficamos com o equilíbrio e a beleza da proposta de Antônio Nóvoa, sociólogo português: “vale a pena ser ensinado tudo o que une e tudo o que liberta. Tudo o que une, isto é, tudo o que integra cada indivíduo num espaço de cultura e de sentidos. Tudo o que liberta, isto é, tudo o que promove a aquisição de conhecimentos, o despertar do espírito científico. [...] e tudo o que torna a vida mais decente” Como são muitas as competências necessárias à cidadania, as diferentes estruturas edu- cativas têm ênfases diferentes. Por exemplo, a família e a religião são forças tão poderosas quanto a escola na formação da visão de mundo e dos valores de cada criança ou jovem. As- sim sendo, a escola não pode ser responsabilizada sozinha por insucessos nessas áreas, mas deve responder majoritariamente pelo eventual fracasso de seus alunos no aprendizado de competências cognitivas. Embora o letramento em matemática e em ciências seja hoje con- siderado básico em muitos países, usaremos neste texto apenas a competência leitora para conduzir o nosso raciocínio, que estará focado na educação básica. Medida O Brasil conta hoje com mais de 50 milhões de alunos matriculados em escolas de educa- ção básica, todos, como argumentamos acima, com direito ao aprendizado de competências cognitivas básicas e gerais. Diante disso, compete ao Estado definir uma maneira de verificar se esse direito está garantido para cada um dos alunos. Parte dessa necessidade foi atendida com a introdução da Prova Brasil, um instrumento de medida das competências leitora e matemática aplicado aos estudantes matriculados no quinto e no nono ano do ensino fundamental (quarta e oitava séries). Tal Prova, aplicada pela primeira vez em 2005, ocorre de dois em dois anos e terá em 2011 a sua quarta edição. 1 Este texto foi produzido pelo MEC com a colaboração do professor José Francisco Soares, membro do Grupo de Av- aliação e Medidas Educacionais (GAME), da Faculdade de Educação(FAE) da Universidade Federal de Minas Gerais (UFMG)
  • 12. Unidade2OSISTEMANACIONALDEAVALIAÇÃODAEDUCAÇÃOBÁSICA–SAEB 12 A pertinência de dois elementos definidores da Prova Brasil - a padronização e o uso da me- dida - precisa ser entendida. O direito ao aprendizado de competências cognitivas vale para todos os alunos, e a todos deve ser garantido de forma equitativa. No entanto, considerando a variação natural presente nos seres humanos, se aceita que, garantido um nível de domínio de cada competência, compatível com o exercício da cidadania, alunos diferentes apresentem domínio diferenciado em uma dada competência. Em outras palavras, alguns alunos terão a competência leitora em nível mais avançado do que outros, ainda que todos devam ler acima de um nível considerado adequado. Mas para que essas comparações possam ocorrer é necessário que o instrumento verificador do direito seja o mesmo, no caso brasileiro a Prova Brasil. Importante observar que em outras áreas onde a ação do Estado é necessária para a garan- tia de direitos, a idéia do uso de ações padronizadas já está consagrada. As campanhas de vacinação são um exemplo. Parte-se do pressuposto de que todos têm direito a este serviço e assim faz-se um enorme esforço para oferecê-lo de forma idêntica a todos os cidadãos. Escala Se o aprendizado da leitura é um direito, é necessário definir operacionalmente o que é saber ler para uma criança de 11 anos ou um jovem de 14. A sociedade, diante dessa questão, apresentaria um grande repertório de textos de gêneros, tamanhos, complexidade e temas diferentes que, se lidos e entendidos, atestariam o domínio da competência leitora. Isto é es- sencialmente o que é feito pela Prova Brasil para definir a escala de medida da competência leitora, embora este grande repertório de textos não exista fisicamente. O importante é entender que os textos que são lidos pelos estudantes que realizam na Prova Brasil foram analisados previamente e, quando o aluno acerta ou erra cada item, sabemos em que nível de leitura se encontra. Para cada unidade escolar participante da Prova Brasil é calculada uma média da proficiência dos seus estudantes que participaram da avaliação. Essa média é expressa em uma escala de 0 a 500. Assim como nas provas realizadas em sala de aula, o número sozinho traz poucas informações. Por isso, é necessário fazer uma interpretação pedagógica do significado desses números. Isso é feito para grupos de números, conhecidos como níveis. O que é um bom resultado na Prova Brasil A proficiência média em leitura de uma escola participante da Prova Brasil é expressa em 10 níveis. Como a escala usada para registrar a nota dos alunos de quarta série/quinto ano é a mesma utilizada para alunos de oitava série/nono ano, espera-se, naturalmente, que a proficiência dos alunos da quarta série/quinto ano esteja situada em níveis mais baixos que a proficiência dos da oitava série/ nono ano.
  • 13. Unidade2OSISTEMANACIONALDEAVALIAÇÃODAEDUCAÇÃOBÁSICA–SAEB 13 Isso parece lógico na medida em que os alunos da quarta série/ quinto ano devem ter desenvolvido menos competências leitoras que os alunos da oitava série/ nono ano. No entanto, é preciso estabelecer claramente acima de qual desses níveis um aluno deve es- tar quando domina a competência leitora de forma adequada. Embora muito relevante, esta pergunta ainda não recebeu uma resposta clara e definitiva. Interpretação pedagógica Somentecoma interpretação pedagógica dos níveis da escala, a Prova Brasil poderá influenciar mais decisivamente o ensino. Esse é exatamente o objetivo desta publicação que, por isso, merece uma leitura atenta de todos os gestores e professores das escolas públicas do Brasil. Há, no entanto, outras iniciativas no mesmo sentido que o leitor interessado pode também consultar. O sítio do Instituto Nacional de Pesquisas Educacionais Anísio Teixeira (INEP), na parte referente à Prova Brasil (http://provabrasil.inep.gov.br/), fornece muitas informações úteis, assim como o sítio das secretarias estaduais que usam a mesma escala da Prova Brasil2 . Há também um texto desenvolvido pelo Centro de Estudos e Pesquisas em Educação, Cultura e Ação Comunitária (CENPEC) que é distribuído gratuitamente no sítio http://www.cenpec. org. br/modules/biblioteca_digital/index.php?autor=21 A proficiência dos alunos reflete o acerto de muitos itens da Prova Brasil. É a partir da identificação dos itens que os alunos de determinada proficiência acertaram na Prova Brasil que é possível compreender quais seriam as fragilidades que deveriam ser superadas. O quadro a seguir apresenta um item tipicamente acertado pelos alunos de quarta série/quinto ano que demonstraram possuir proficiência acima de 250 em leitura. Nas outras seções desta publicação, apresentam-se itens, com comentários substantivos, que ilustram diferentes pontos da escala tanto de leitura como de matemática. 2 Foram identificadas informações úteis nos sítios das Secretarias Estaduais de Educação dos estados do Ceará, Minas Gerais, São Paulo, Rio Grande do Sul e Espírito Santo.
  • 14. Unidade2OSISTEMANACIONALDEAVALIAÇÃODAEDUCAÇÃOBÁSICA–SAEB 14 O bicho vi ontem um bicho Na imundice do pátio Catando comida entre os detritos. Quando achava alguma coisa, Não examinava nem cheirava: Engolia com voracidade. O bicho não era um cão, Não era um gato. Não era um rato. O bicho, meu Deus, era um homem. BANDEIRA, Manuel. Poesias reunidas. Rio de Janeiro: Ática, 1985. O que motivou o bicho a catar restos foi A) a própria fome. B) a imundice do pátio. C) o cheiro da comida. D) a amizade pelo cão. A escola pode fazer a diferença Os resultados da Prova Brasil podem ser usados de muitas maneiras. A mais simples é com- parar a média da escola com um nível que se considera adequado para o ano/série. A escola deve considerar também a porcentagem de seus alunos em cada um dos níveis, já que a ação pedagógica necessária é diferente para alunos em níveis diversos. O cartaz que sintetiza os resultados da Prova Brasil é enviado para cada escola, fornecendo estes dados, e pode ser obtido no site do Inep no endereço eletrônico http://sistemasprovabrasil2.inep.gov.br/ ProvaBrasilResultados/home.seam . Já sabemos que a maioria dos alunos das escolas públicas têm hoje desempenho baixo. A explicação mais fácil para este fato é atribuí-lo às características socioeconômicas dos estu dantes. Para entender melhor a influência dessas características dos estudantes, foi montada a Tabela 1 construída a partir dos resultados de todas as escolas da rede municipal de uma grande cidade brasileira. Primeiramente, cada uma das escolas foi classificada, tendo em vista o alunado a que atende, em uma das cinco categorias do Nível Socioeconômico – NSE. O grupo 1 agrega as escolas
  • 15. Unidade2OSISTEMANACIONALDEAVALIAÇÃODAEDUCAÇÃOBÁSICA–SAEB 15 que atendem aos alunos de NSE mais baixo e as escolas do grupo 5 atendem àqueles de NSE mais alto, ressaltando-se que apenas escolas públicas estão incluídas. Para analisar esta tabela, observe primeiramente a terceira coluna, correspondente à média das notas das escolas em cada um dos cinco grupos de NSE. Veja que, à medida que o NSE cresce, também aumenta a nota da escola. Este é um fato já amplamente conhecido mos- trando que o desempenho do aluno reflete, ainda que de forma não determinística, o capital cultural de sua família, que, no Brasil, está muito associado ao NSE. A informação de fato importante e interessante está nas linhas da tabela, que contém notas médias na 4ª série/5º ano. Examine a linha 3 e constate que a escola com a pior nota tem média de apenas 133, enquanto a nota da melhor escola é 208. A diferença entre estes dois valores – 75 pontos – é tão relevante que corresponde a mais de três anos de escolarização. Ou seja, há nesta cidade uma enorme diferença entre escolas que atendem a estudantes com o mesmo NSE. Como tais escolas pertencem à mesma rede, têm os mesmos recursos finan- ceiros e os professores recebem os mesmos salários, fica claro que as políticas e práticas de cada escola podem fazer muita diferença no aprendizado de seus alunos. Tabela 1 Notas da escola de menor e de maior desempenho e média das notas das escolas, em cada grupo, definidos pelo nível socioeconômico dos alunos das escolas Grupo de NSE Escola com menor desempenho Média das escolas Escola com maior desempenho 1 144 173 206 2 136 180 205 3 133 182 208 4 172 190 222 5 174 207 224 Em outras palavras, como a diferença entre as escolas de um mesmo grupo de NSE não está nos alunos, esta deve ser procurada na gestão pedagógica, na forma de ensinar, na cultura, nos valores da escola ou no projeto pedagógico. Todos esses pontos passíveis de serem mudados com a ação da escola3 . 3 Para conhecer escolas que têm ações que garantem o direito de aprender a todos os seus alunos, consulte o estudo do MEC com o Unicef, “Aprova Brasil” no sítio do Ministério da Educação: www.mec.gov.br
  • 16. Unidade2OSISTEMANACIONALDEAVALIAÇÃODAEDUCAÇÃOBÁSICA–SAEB 16 Unidade2OSISTEMANACIONALDEAVALIAÇÃODAEDUCAÇÃOBÁSICA–SAEB No entanto, o grande efeito da ação da escola não deve obscurecer a diferença entre as notas das escolas das diferentes linhas. Essa diferença é imposta à escola pela sociedade. Junto com outras estruturas sociais, as escolas devem procurar também mudá-la. Mas a sua priori- dade deve ser a diferença dentro de cada linha. Críticas Como qualquer política pública, a Prova Brasil tem recebido críticas. Constitui o instrumento que o Governo Federal está utilizando para verificar o cumprimento da primeira diretriz do PDE – Plano de Desenvolvimento da Educação, criado pelo Decreto no 6.094 de 24 de abril de 2007, que decidiu “estabelecer como foco a aprendizagem, apontando resultados concre-tos a atingir”. Em um primeiro momento, o uso do conceito de resultados, até então pouco usado em políticas educacionais brasileiras, foi entendido por muitos como se as dimensões de apoio financeiro e institucional às escolas tivessem sido relegadas. Como isto não ocorreu, essas críticas com o passar do tempo têm se reduzido. Outra crítica, cuja força vai se reduzindo à proporção que os itens usados se tornam mais conhecidos, é que a medida das competências leitora e matemática obtida com a Prova Brasil capta apenas os aspectos superficiais dessas competências. Esses mesmos itens mostram que a Prova Brasil concentra-se em medir competências básicas e essenciais e que, portanto, qualquer estratégia que dote os alunos de capacidade de responder corretamente aos itens da Prova Brasil estará lhes permitindo consolidar competências fundamentais para o exercício de sua cidadania. Os resultados da Prova Brasil não devem ser usados para comparar escolas que recebem alunos muito diferentes. Esse tipo de comparação não é um uso adequado dos resultados. Deve-se reconhecer ainda que a mera existência do diagnóstico produzido pela Prova Brasilnãogaranteporsisóasoluçãodosproblemas encontrados. A Prova Brasil convive com outras políticas públicas educacionais e ajuda a direcioná-las para as escolas e redes municipais e estaduais com maior fragilidade educacional. A partir da introdução da Prova Brasil, o debate educacional deve considerar os resultados de aprendizagem dos alunos como critério de análise das escolas públicas brasileiras. Um diálogo aberto entre os que aceitam esse novo paradigma e os que ainda têm restrições deve se estabelecer para que essa e outras políticas públicas sejam mais eficazes para os alunos das escolas públicas brasileiras. 16
  • 17. Unidade3ASMATRIZESDEREFERÊNCIADOSISTEMANACIONALDAAVALIAÇÃODAEDUCAÇÃOBÁSICA–SAEB 17 3. AS MATRIZES DE REFERÊNCIA DO SISTEMA NACIONAL DA AVALIAÇÃO DA EDUCAÇÃO BÁSICA – SAEB 3.1. As Matrizes de Referência do Saeb A realização de uma avaliação de sistema com amplitude nacional, para ser efetiva, exige a construção de uma matriz de referência que dê transparência e legitimidade ao processo de avaliação, informando aos interessados o que será avaliado. De acordo com os pressupostos teóricos que norteiam os instrumentos de avaliação, a Matriz de Referência é o referencial curricular do que será avaliado em cada disciplina e série, informando as competências e habilidades esperadas dos alunos. Segundo Nery (2000), “toda Matriz Curricular representa uma operacionaliza- ção das propostas ou guias curriculares, que não pode deixar de ser considerada, mesmo que não a confundamos com procedimentos, estratégias de ensino ou ori- entações metodológicas e nem com conteúdo para o desenvolvimento do trabalho do professor em sala de aula”. Torna-se necessário ressaltar que as matrizes de referência não englobam todo o currículo escolar. É feito um recorte com base no que é possível aferir por meio do tipo de instrumento de medida utilizado na Prova Brasil e que, ao mes- mo tempo, é representativo do que está contemplado nos currículos vigentes no Brasil. Essas matrizes têm por referência os Parâmetros Curriculares Nacionais e foram construídas a partir de uma consulta nacional aos currículos propostos pelas Secretarias Estaduais de Educação e por algumas redes municipais. O Inep consul- tou também professores regentes das redes municipal, estadual e privada e ainda, examinou os livros didáticos mais utilizados para essas séries nas citadas redes. As matrizes são, portanto, a referência para a elaboração dos itens da Prova Brasil. Item é a denominação adotada para as questões que compõem a prova. 3.2. Competências Para a elaboração dos itens do Saeb e da Prova Brasil, buscou-se uma as- sociação entre os conteúdos da aprendizagem e as competências utilizadas no processo de construção do conhecimento. Unidade3ASMATRIZESDEREFERÊNCIADOSISTEMANACIONALDAAVALIAÇÃODAEDUCAÇÃOBÁSICA–SAEB 17
  • 18. Unidade3ASMATRIZESDEREFERÊNCIADOSISTEMANACIONALDAAVALIAÇÃODAEDUCAÇÃOBÁSICA–SAEB 18 Unidade3ASMATRIZESDEREFERÊNCIADOSISTEMANACIONALDAAVALIAÇÃODAEDUCAÇÃOBÁSICA–SAEB 18 No documento “Saeb 2001: Novas Perspectivas” (2002), define-se competên- cia, na perspectiva de Perrenoud, como sendo a “capacidade de agir eficazmente em um determinado tipo de situação, apoiando-se em conhecimentos, mas sem se limitar a eles”. Para enfrentar uma situação, geralmente, colocam-se em ação vários recur- sos cognitivos. Para Perrenoud, “quase toda ação mobiliza alguns conhecimentos, algumas vezes elementares e esparsos, outras vezes complexos e organizados em rede”. Assim, as competências cognitivas podem ser entendidas como as diferentes modalidades estruturais da inteligência que compreendem determinadas opera- ções que o sujeito utiliza para estabelecer relações com e entre os objetos físicos, conceitos, situações, fenômenos e pessoas. 3.3. Habilidades Ainda no mesmo documento, é mencionado que habilidades referem-se, es- pecificamente, ao plano objetivo e prático do saber fazer e decorrem, diretamente, das competências já adquiridas e que se transformam em habilidades. Cada matriz de referência apresenta tópicos ou temas com descritores que indicam as habilidades de Língua Portuguesa e Matemática a serem avaliadas. O descritor é uma associação entre conteúdos curriculares e operações men- tais desenvolvidas pelo aluno, que traduzem certas competências e habilidades. Os descritores: • indicam habilidades gerais que se esperam dos alunos; • constituem a referência para seleção dos itens que devem compor uma prova de avaliação.
  • 19. Unidade4LínguaPortuguesa 19 4. LÍNGUA PORTUGUESA 4.1. Aprendizagem em Língua Portuguesa O ensino da Língua Portuguesa, de acordo com os Parâmetros Curriculares Nacionais (PCNs), deve estar voltado para a função social da língua. Esta é requisito básico para que a pessoa ingresse no mundo letrado, para que possa construir seu processo de cidadania e, ainda, para que consiga se integrar à sociedade de forma ativa e mais autônoma possível. Nesse aspecto, para ser considerado competente em Língua Portuguesa, o aluno precisa dominar habilidades que o capacitem a viver em sociedade, atuando, de maneira adequada e relevante, nas mais diversas situações sociais de comuni- cação. Para tanto, o aluno precisa saber interagir verbalmente, isto é, precisa ser capaz de compreender e participar de um diálogo ou de uma conversa, de produzir textos escritos, dos diversos gêneros que circulam socialmente. Ler e escrever, por suas particularidades formais e funcionais, são também competências mais especificamente desenvolvidas no ambiente escolar. Tanto os textos escritos de uso mais familiar (como o bilhete, a carta) quanto os textos de domínio público (como o artigo, a notícia, a reportagem, o aviso, o anúncio, o conto, a crônica etc.) são objeto do estudo sistemático na escola. Daí a importância de promover-se o desenvolvimento da capacidade do aluno para produzir e compreender textos dos mais diversos gêneros e em diferentes situações comunicativas, tanto na modalidade escrita quanto na modalidade oral. 4.2. Texto De acordo com os PCNs, o eixo central do ensino da língua deve se instalar no texto, como realização discursiva do gênero e, assim, explicar o uso efetivo da língua. Alguns lingüistas referem-se assim ao texto: ’texto’ emprega-se igualmente com um valor mais preciso, quando se trata de apreender o enunciado como um todo, como constituindo uma totalidade coerente. O ramo da lingüística que estuda essa coerência chama-se precisamente ‘lingüística textual’. Com efeito, tende-se a falar de ‘texto’ quando se trata de produções verbais orais ou escritas, estruturadas de forma a perdurarem, a se repetirem, a circularem longe de seu contexto original. É por isso que, no uso corrente, fala-se, de preferência, de ‘textos literários’, ‘textos jurídicos’ [...]”
  • 20. Unidade4LínguaPortuguesa 20 4.3. Gêneros de discurso “Os gêneros do discurso pertencem a diversos tipos de discursos associados a vastos setores de atividade social. [...]” Koch (2005) afirma que os falantes/ouvintes sabem distinguir o que é adequado ou inadequado em cada uma de suas práticas sociais. Eles sabem dife- renciar determinados gêneros textuais como, por exemplo, anedota, poema, con- versa telefônica etc. Para a autora, 4.4. Tipos textuais Classificação que toma como critério a organização lingüística, o conjunto de estruturas lingüísticas utilizadas no plano composicional do texto. O plano composicional é constituído por palavras, frases, orações etc. A partir de Longrace (apud Bonini, 1999), tipos textuais passaram a ser abor- dados como modalidades retóricas ou modalidades discursivas que constituem as estruturas e as funções textuais tradicionalmente reconhecidas como narrativas, descritivas, argumentativas, procedimentais e exortativas. 4.5. Os diferentes usos da língua O contraste entre a concepção tradicional e a chamada concepção discursi- vo-interacionista da língua pode nos ajudar a compreender melhor o processo de aprendizagem da Língua Portuguesa. As abordagens tradicionais de ensino da Língua Portuguesa lidavam com a “Há o conhecimento, pelo menos intuitivo, de estratégias de construção e interpretação de um texto. A competência textual de um falante permite-lhe, ainda, averiguar se em um texto predomi- nam seqüências de caráter narrativo, descritivo, expositivo e/ou argumentativo. Não se torna difícil, na maior parte dos casos, dis- tinguir um horóscopo de uma anedota ou carta familiar, bem como, por outro lado, um texto real de um texto fabricado, um texto de opinião de um texto predominantemente informativo e assim por diante...”
  • 21. Unidade4LínguaPortuguesa 21 concepção instrumental de que a linguagem seria uma expressão fiel do nosso pensamento, apenas por meio de um conjunto de regras que deveriam ser rigoro- samente seguidas. Isso fez com que o ensino do idioma materno se tornasse uma prática mecânica, calcada na memorização (listas de coletivos, adjetivos, conjuga- ção de verbos, regras de concordância, pontuação, entre outras) ou na exploração da metalinguagem (classificação de termos e de funções). Para a perspectiva discursivo-interacionista, a língua é uma atividade intera- tiva, inserida no universo das práticas sociais e discursivas. Envolve interlocutores e propósitos comunicativos determinados e realiza-se sob a forma de textos – con- cretamente sob a forma de diferentes gêneros de textos. Os testes de Língua Portuguesa da Prova Brasil estão estruturados com o Foco leitura, que requer a competência de apreender um texto como construção de conhecimento em diferentes níveis de compreensão, análise e interpretação. O fato de se avaliar apenas a leitura não reduz a importância dessas avaliações, ten- do em vista que a leitura é fundamental para o desenvolvimento de outras áreas do conhecimento e para o conseqüente exercício da cidadania. Em relação ao teste de Língua Portuguesa, a Matriz de Referência traz descri- tores que têm como base algumas habilidades discursivas tidas como essenciais na situação de leitura. 4.6. A Matriz de Referência de Língua Portuguesa: Tópicos e seus Descri- tores – 3ª série do Ensino Médio A Matriz de Referência de Língua Portuguesa apresenta a relação entre os te- mas, os descritores e as habilidades estabelecidos para a avaliação dos alunos dos 4ª série/5º ano e 8ª série/9º ano do ensino fundamental e da 3ª série do ensino médio. No total, a Matriz de Referência de Língua Portuguesa da Prova Brasil e do Saeb é composta por seis tópicos: Procedimentos de Leitura; Implicações do Suporte, do Gênero e/ou do Enunciador na Compreensão do Texto; Relação entre Textos, Coerência e Coesão no Processamento do Texto; Relações entre Recursos Expressivos e Efeitos de Sentido e Variação Lingüística. Estruturalmente, a Matriz de Língua Portuguesa divide-se em duas dimensões: uma denominada Objeto do Conhecimento, em que são listados os seis tópicos; e outra denominada Competência, com descritores que indicam habilidades a serem avaliadas em cada tópico. Para a 4ª série/5º ano do Ensino Fundamental(EF), são contemplados 15 descritores; para a 8ª série/ 9º ano do EF e 3ª série do Ensino Médio(EM) são acrescentados mais 6, totalizando 21 descritores. Os descritores aparecem, dentro de cada tópico, em ordem crescente de aprofundamento e/ou ampliação de conteúdos ou das habilidades exigidas.
  • 22. Unidade4LínguaPortuguesa 22 Localizar informações explícitas em um texto D1 Inferir o sentido de uma palavra ou expressão D3 Inferir uma informação implícita em um texto D4 Identificar o tema de um texto D6 Distinguir um fato da opinião relativa a esse fato D14 Tópico I. Procedimentos de Leitura Identificar a finalidade de textos de diferentes gêneros D12 Tópico II. Implicações do Suporte, Gênero e/ou Enunciador na Compreensão do Texto Tópico III. Relação entre Textos Interpretar texto com auxílio de material gráfico diverso (propagandas, quadrinhos, foto etc.) Descritores 3ª EM D5 Descritores 3ª EM Reconhecer diferentes formas de tratar uma informação na comparação de textos que tratam do mesmo tema, em fun- ção das condições em que ele foi produzido e daquelas em que será recebido Descritores 3ª EM D20 Reconhecer posições distintas entre duas ou mais opiniões relativas ao mesmo fato ou ao mesmo tema D21 Tópico IV. Coerência e Coesão no Processamento do Texto Estabelecer relações entre partes de um texto, identificando repetições ou substituições que contribuem para a continui- dade de um texto Identificar o conflito gerador do enredo e os elementos que constroem a narrativa Estabelecer relação causa/conseqüência entre partes e elementos do texto Estabelecer relações lógico-discursivas presentes no texto, marcadas por conjunções, advérbios etc. Identificar a tese de um texto. Estabelecer relação entre a tese e os argumentos oferecidos para sustentá-la Diferenciar as partes principais das secundárias em um texto. D2 D10 D11 D15 D7 D8 D9 Descritores 3ª EM
  • 23. Unidade4LínguaPortuguesa 23 Tópico V. Relações entre Recursos Expressivos e Efeitos de Sentido Descritores 3ª EM Identificar efeitos de ironia ou humor em textos variados Identificar o efeito de sentido decorrente do uso da pontua- ção e de outras notações Reconhecer o efeito de sentido decorrente da escolha de uma determinada palavra ou expressão Reconhecer o efeito de sentido decorrente da exploração de recursos ortográficos e/ou morfossintáticos. D16 D17 D18 D19 Tópico VI. Variação Lingüística Descritores 3ª EM Identificar as marcas lingüísticas que evidenciam o locutor e o interlocutor de um texto D13 Em relação aos textos de Língua Portuguesa, há que se considerar a escolha de gêneros mais complexos, que exigem estratégias interpretativas diversificadas, de acordo com o nível de escolaridade. O grau de complexidade do texto resulta, entre outras razões, da temática desenvolvida, das estratégias textuais usadas em sua composição, da escolha de um vocabulário mais ou menos incomum, dos re- cursos sintático-semânticos utilizados, bem como das determinações específicas do gênero e da época em que foi produzido. Ou seja, apesar de 15 descritores serem os mesmos da matriz de 4ª série/5º ano, os itens construídos para o teste de 8ª série/9º ano do EF e da 3ª série do EM requerem processos cognitivos mais complexos para sua resolução, levando-se em conta que os alunos avaliados en- contram-se em faixas etárias e escolaridade mais avançadas. Isso quer dizer que, de um mesmo descritor, podem ser derivados itens de graus de complexidade distintos, tanto do ponto de vista do objeto analisado, o texto, quanto do ponto de vista da tarefa, como as determinações específicas do gênero e da época em que foi produzido. Assim, os conteúdos, competências e habilidades são diferenciados, para que se possa detectar o que o aluno sabe, resolvendo os itens do teste, em razão das etapas próprias do processo de seu de- senvolvimento.
  • 24. Unidade4LínguaPortuguesa 24 4.7. Exemplos de itens de 3ª série do Ensino Médio – Língua Portuguesa Foram selecionados itens que avaliaram as habilidades indicadas pelos descritores que compõem a matriz de referência. Com base nos resultados, são formuladas hipóteses sobre o desempenho dos alunos e apresentadas sugestões de atividades que poderão ser desenvolvidas em sala de aula e de gêneros textuais mais apropriados ao desenvolvimento de determinadas habilidades. A análise do item está centrada em alguns pontos como: o texto utilizado como suporte para a composição do item; a habilidade indicada pelo descritor; o quadro com percentuais de respostas dadas a cada alternativa. A seguir, são apresentados itens que foram utilizados no Saeb e na Prova Brasil. Inicialmente, discorre-se sobre cada Tópico; depois, há a apresentação de cada descritor e da habilidade por ele indicada. Para cada descritor, há dois exem- plos de itens: o primeiro, com percentuais de respostas para cada alternativa assi- nalada, com base nos quais é feita uma análise pedagógica e oferecidas algumas sugestões para o professor trabalhar com seus alunos no sentido de desenvolver as habilidades apontadas pelos descritores; o segundo, com a indicação do gabarito e sem percentuais de respostas. Tópico I – Procedimentos de Leitura Este tópico agrega um conjunto de descritores que indicam as habilidades lingüísticas necessárias à leitura de textos de gêneros variados. O leitor compe- tente deve saber localizar informações explícitas e fazer inferências sobre informa- ções que extrapolam o texto. Deve identificar a idéia central de um texto, ou seja, apreender o sentido global e fazer abstrações a respeito dele. Deve também per- ceber a intenção do autor, saber ler as entrelinhas e fazer a distinção entre opinião e fato. Deve, ainda, saber o sentido de uma palavra ou expressão pela inferência contextual. Apresentamos, a seguir, itens referentes aos descritores 1, 3, 4, 6 e 14 que compõem o Tópico I. D1 D3 D4 D6 D14Descritores
  • 25. Unidade4LínguaPortuguesa 25 Descritor 1 – Localizar informações explícitas em um texto Que habilidade pretendemos avaliar? Um texto, em geral, traz informações que se situam na sua superfície – e são, assim, explícitas – ou traz informações apenas implícitas ou subentendidas. A ha- bilidade prevista nesse descritor concerne à capacidade do aluno para localizar, no percurso do texto, uma informação que, explicitamente, consta na sua superfície. Como se vê, corresponde a uma habilidade bastante elementar. Assim, espera-se que o item relativo a esse descritor solicite do aluno a identifi- cação de uma determinada informação, entre várias outras expressas no texto. Com este item, pretendemos avaliar a habilidade do aluno em localizar a infor- mação solicitada. Exemplo de item: Namoro O melhor do namoro, claro, é o ridículo. Vocês dois no telefone: — Desliga você. — Não, desliga você. — Você. — Você. — Então vamos desligar juntos. — Tá. Conta até três. — Um... Dois... Dois e meio... Ridículo agora, porque na hora não era não. Na hora nem os apelidos secretos que vocês tinham um para o outro, lembra? Eram ridículos. Ronron. Suzuca. Alcizanzão. Surusuzuca. Gongonha (Gongonhal) Mamosa. Purupupu- ca... Não havia coisa melhor do que passar tardes inteiras num sofá, olho no olho, dizendo: — As dondozeira ama os dondozeiro? — Ama. — Mas os dondozeiro ama as dondozeira mais do que as dondozeira ama os dondozeiro. Na-na-não. As dondozeira ama os dondozeiro mais do que, etc. E, entremeando o diálogo, longos beijos, profundos beijos, beijos mais do que de línguas, beijos de amígdalas, beijos catetéricos. Tardes inteiras. Confesse: ridículo 5 10 15 20
  • 26. Unidade4LínguaPortuguesa 26 só porque nunca mais. Depois de ridículo, o melhor do namoro são as brigas. Quem diz que nunca, como quem não quer nada, arquitetou um encontro casual com a ex ou o ex só para ver se ela ou ele está com alguém, ou para fingir que não vê, ou para ver e ignorar, ou para dar um abano amistoso querendo dizer que ela ou ele agora significa tão pouco que podem até ser amigos, está mentindo. Ah, está mentindo. E melhor do que as brigas são as reconciliações. Beijos ainda mais profundos, apelidos ainda mais lamentáveis, vistos de longe. A gente brigava mesmo era para se reconciliar depois, lembra? Oito entre dez namorados transam pela primeira vez fazendo as pazes. Não estou inventando. O IBGE tem as estatísticas. VERÍSSIMO, Luís Fernando. Correio Braziliense. 13/06/1999. No texto, considera-se que o melhor do namoro é o ridículo associado (A) às brigas por amor. (B) às mentiras inocentes. (C) às reconciliações felizes. (D) aos apelidos carinhosos. (E) aos telefonemas intermináveis. Observações: 1. O quadro explicativo com os percentuais de respostas às alternativas refere-se ao desempenho de alunos em testes do Saeb e da Prova Brasil, com abrangência em todo o País. 2. A soma dos percentuais não perfaz, necessariamente, 100%, pois não estão apresentados os correspondentes às respostas em branco ou nulas. Isso vale para todos os itens comentados. O que o resultado do item indica? Um texto apresenta informações explícitas e implícitas. As explícitas estão na base textual. Para encontrá-las, é necessário que o aluno, após uma leitura geral do texto e da questão proposta, saiba retornar ao ponto do texto em que se encontra a resposta. No caso deste item, a tarefa é mais complexa, tendo em vista que o leitor terá de associar a noção de “ridículo” do namoro, abordado no início do texto, às bri- gas e às reconciliações. Percentual de respostas às alternativas A B C D E 23% 4% 27% 24% 20% 25 30
  • 27. Unidade4LínguaPortuguesa 27 Observando-se os percentuais de respostas, verifica-se que, à exceção da al- ternativa “B”, houve uma dispersão quase homogênea para as demais alternativas “A”, “D” e “E”, somando 67% dos respondentes, numa demonstração de que, mesmo após 11 anos de escolaridade, os alunos não dominam, ainda, o processo de leitura de textos simples. Percebe-se que, além da relevância da informação que, mesmo objetiva, requeria uma associação, os alunos podem não estar familiarizados com o gênero “crônica”, mesmo com uma temática, não só conhecida, mas vivenciada já na idade deles. Os que escolheram a alternativa correta “C” (27%) demonstraram competência de leitura de textos simples e souberam seguir as pistas lingüísticas necessárias para localizar a informação pedida. Que sugestões podem ser dadas para melhor desenvolver essa habilidade? Os professores podem ajudar os alunos, por exemplo, levando para a sala de aula textos de diferentes gêneros e de temáticas variadas para que as atividades de leitura sejam diversificadas. Dessa forma, é possível estimular o aluno a articular o sentido literal do que lê com outros fatores de significação. Isso o levará a desen- volver a habilidade de localizar informações e, ao mesmo tempo, compreender que aquilo que consta em um texto adquire vários sentidos dependendo das circunstân- cias de sua produção. Descritor 3 – Inferir o sentido de uma palavra ou expressão Que habilidade pretendemos avaliar? As palavras são providas de sentido e, na maioria das vezes, são polissêmicas; ou seja, podem assumir, em contextos diferentes, significados também diferentes. Assim, para a compreensão de um texto, é fundamental que se identifique, entre os vários sentidos possíveis de uma determinada palavra, aquele que foi particular- mente utilizado no texto. O aluno precisa decidir, então, entre várias opções, qual aquela que apresenta o sentido com que a palavra foi usada no texto. Ou seja, o que se sobressai aqui não é apenas que o aluno conheça o vocabulário dicionarizado, pois todas as alternativas trazem significados que podem ser atribuídos à palavra analisada.
  • 28. Unidade4LínguaPortuguesa 28 O que se pretende é que, com base no contexto, o aluno seja capaz de reco- nhecer o sentido com que a palavra está sendo usada no texto em apreço. Vejamos o item a seguir. Exemplo de item: Todo ponto de vista é a vista de um ponto Ler significa reler e compreender, interpretar. Cada um lê com os olhos que tem. E interpreta a partir de onde os pés pisam. Todo ponto de vista é um ponto. Para entender como alguém lê, é necessário saber como são seus olhos e qual é sua visão de mundo. Isso faz da leitura sempre uma releitura. A cabeça pensa a partir de onde os pés pisam. Para compreender, é essencial conhecer o lugar social de quem olha. Vale dizer: como alguém vive, com quem convive, que experiências tem, em que trabalha, que desejos alimenta, como as- sume os dramas da vida e da morte e que esperanças o animam. Isso faz da com- preensão sempre uma interpretação. Boff, Leonardo. A águia e a galinha. 4ª ed. RJ: Sextante, 1999. A expressão “com os olhos que tem” (ℓ.1), no texto, tem o sentido de (A) enfatizar a leitura. (B) incentivar a leitura. (C) individualizar a leitura. (D) priorizar a leitura. (E) valorizar a leitura. O que o resultado do item indica? Uma operação inferencial exige dos leitores um raciocínio que toma por base informações já conhecidas para que ele chegue a informações novas que não estão objetivamente marcadas no texto. Aqui os alunos foram solicitados a fazer uma inferência para dar novo sentido à expressão “com os olhos que tem”, expressão esta que não pertence usualmente a seu repertório. Para que isso ocorresse, esses Percentual de respostas às alternativas A B C D E 10% 30% 20% 10% 20% 5 10
  • 29. Unidade4LínguaPortuguesa 29 alunos teriam de se valer não só de informações novas como também de seu co- nhecimento de mundo sobre o tema. O desempenho deles ilustra bem a dificuldade da tarefa. A maioria foi atraída pela alternativa “B” (30%), possivelmente, porque a expressão “incentivar a leitura” é muito falada, constituindo-se senso comum. É interessante observar a dispersão homogênea para as alternativas “A” e “D” (10%) e para as alternativas “C” – gabarito – e “E”. À exceção do gabarito, essas opções de resposta contêm expressões que também são senso comum. Isso pode ter-se constituído numa pista lingüística falsa, porquanto não bastava escolher aleatoriamente uma delas; era necessário identificar a opção que fosse coerente com o novo sentido que a expressão do gabarito adquiriu no contexto. Um contingente de apenas 20% acertou o item, o que comprova a dificuldade de leitura de textos mais complexos, ainda que abordem uma temática conhecida. Que sugestões podem ser dadas para melhor desenvolver essa habilidade? O professor pode utilizar algumas estratégias para desenvolver nos alunos a compreensão do sentido que algumas palavras ou expressões ganham de acordo com as circunstâncias em que o texto foi produzido e com a visão de mundo que cada um tem. Uma boa estratégia é a técnica de, após leitura silenciosa pelos alunos, o professor pedir que eles compartilhem as inferências feitas no texto. Dessa forma, o professor pode aproveitar a relação que os alunos estabelecem entre a estrutura e o conteúdo do texto e as experiências que cada um traz, para explorar os diferentes significados que palavras ou expressões podem assumir. Como sugestão, o professor pode trabalhar essa habilidade utilizando uma mesma palavra em textos diferentes, de diferentes gêneros textuais. É necessário ressaltar que essa habilidade deve levar em consideração a experiência de mundo do aluno. É importante que o professor mostre para seus alunos que o sentido das pala- vras não está no dicionário, mas nos diferentes contextos nos quais elas são enun- ciadas. Isso não significa que o professor não deva incentivar o aluno a localizar o significado das palavras no dicionário. Os textos poéticos, literários e publicitários são especialmente úteis para o trabalho com os diferentes sentidos das palavras.
  • 30. Unidade4LínguaPortuguesa 30 Descritor 4 – Inferir uma informação implícita no texto Que habilidade pretendemos avaliar? Numa perspectiva discursivo-interacionista, assumimos que a compreensão de um texto se dá não apenas pelo processamento de informações explícitas mas, também, por meio de informações implícitas. Ou seja, a compreensão se dá pela mobilização de um modelo cognitivo, que integra as informações expressas com os conhecimentos prévios do leitor ou com elementos pressupostos no texto. Para que tal integração ocorra, é fundamental que as proposições explícitas sejam articuladas entre si e com o conhecimento de mundo do leitor, o que exige uma identificação dos sentidos que estão nas entrelinhas do texto (sentidos não explicitados pelo autor). Tais articulações só são possíveis, no entanto, a partir da identificação de pressupostos ou de processos inferenciais, ou seja, de processos de busca dos “vazios do texto”, isto é, do que não está “dado” explicitamente no texto. Os itens relativos a esse descritor devem envolver elementos que não con- stam na superfície do texto, mas que podem ser reconhecidos por meio da identifi- cação de dados pressupostos ou de processos inferenciais. Exemplo de item: Motoristas de batom conquistam a Urca Moradores aprovam adoção de mulheres na linha 107 Batom, lápis nos olhos, brincos. Foi a essa mistura que a empresa Amigos Unidos apelou para contornar as constantes reclamações dos moradores da Urca contra os motoristas da linha 107 (Central-Urca). Há um mês, a empresa removeu sete mulheres de outros trajetos para formar um time de primeira linha. “O público da Urca é muito exigente.” Os passageiros reclamavam que os motoristas homens não paravam no ponto e dirigiam de forma perigosa. “Agora só recebemos elogios”, contou o gerente de Recursos Humanos da empresa, Mario Mattos. Elogios que, às vezes, não se limitam ao desempenho profissional. “Hoje (on- tem), um homem falou que queria ser o meu volante”, contou a motorista Ana Paula da Silva, 24 anos. Na empresa há três meses, Ana Paula da Silva faz da profissão uma forma de dar carinho a idosos e deficientes – os que mais têm difi- culdades para entrar nos ônibus. “Às vezes, levanto para ajudar alguém a descer. Já parei o carro para atravessar a rua com um deficiente visual”, contou. Casada com um motorista de ônibus, Márcia Cristina Pereira, 38 anos, diz que 5 10
  • 31. Unidade4LínguaPortuguesa 31 não enfrenta dificuldades com os colegas de profissão, ainda que reconheça que, no começo, a desconfiança não foi pequena. “Eles me dão força. Recebo muitos elogios”, disse. Ao contrário de Márcia, a motorista Janaína de Lima, 32 anos, diz que se relaciona bem com todos os colegas, mas acha que já há competição. “Falta muito para os homens se relacionarem bem com os idosos e deficientes”, comparou. Morador da Urca há 25 anos, Ednei Bernardes aprovou a adoção de mo- toristas mulheres no bairro. “Elas respeitam mais as pessoas e as leis de trânsito”, resumiu. JB, 23/07/02 – Cidade. C1. Um dos usuários do ônibus concluiu: “Elas respeitam muito mais as pessoas e as leis do trânsito.”Tal afirmativa, no con- texto, permite concluir que (A) as empresas de ônibus preferem os serviços da mulher. (B) os homens são grosseiros e desrespeitam as lei de trânsito. (C) os idosos e deficientes passam a receber um tratamento melhor. (D) os homens criam mais problemas com colegas de profissão. (E) a população da Urca tornou-se exigente no transporte urbano. O que o resultado do item indica? Um texto apresenta informações explícitas e implícitas. As implícitas não es- tão presentes de forma clara e exigem, portanto, que o leitor construa seu sentido por meio de inferências. Para realizar essas inferências, o leitor deverá observar marcas do texto que permitam chegar a alguma informação implícita. Dessa forma, ao leitor competente, não basta apenas a habilidade de lo- calizar informações explícitas no texto, mas também é preciso conseguir ler nas entrelinhas, ou seja, é preciso inferir o que o texto quer dizer a partir do que está explícito, pois só assim será possível descobrir aquilo que está subentendido. Com este item, pretende-se que o aluno leia nas entrelinhas. O item represen- tativo deste descritor tem um texto informativo retirado de um jornal de grande cir- culação como base. Esse texto trata de um tema atual por meio de uma linguagem acessível aos alunos com esse nível de escolaridade. Percentual de respostas às alternativas A B C D E 9% 43% 33% 5% 10% 15 20
  • 32. Unidade4LínguaPortuguesa 32 Para obter êxito neste item, seria necessário, primeiramente, compreender bem o enunciado; já que, para responder à questão, dever-se-ia relacionar a afirma- tiva do texto transcrita no enunciado com o contexto (que é o próprio texto). A afir- mativa transcrita no enunciado deixa implícito, por meio do termo mais, que há uma oposição em relação ao comportamento de dois grupos diferentes. Dessa forma, se “elas” respeitam mais, há um outro grupo que respeita menos (que, por oposição, seriam “eles”). O aluno deveria, portanto, fazer a associação do enunciado com o contexto e com as opções; fazer oposição entre o pronome “elas” e o pronome “eles” e ser ca- paz de sintetizar a idéia mais relevante do texto como um todo. Ressalta-se que o aluno deveria restringir, da compreensão global do texto, o que era pertinente ao item para chegar ao gabarito (alterantiva “B”). Por isso, a lei- tura atenta do enunciado mostra-se tão relevante. Considerando a variação nas respostas, conclui-se que o grau de dificuldade do item foi alto. Marcaram o gabarito esperado apenas 43% dos alunos. Esses alunos demonstraram habilidade na inferência de informações implícitas. Muitos dos que obtiveram maior resultado na prova, como um todo, marcaram a resposta esperada. É relevante ressaltar também que 33% consideraram a alternativa “C” como gabari- to. Essa opção trazia realmente uma idéia bastante coerente com o texto, entretanto não bastava somente avaliar isso, era necessário também identificar a opção mais pertinente ao item, a mais precisa. Considera-se, portanto, que a compreensão global de um texto só será efeti- vada se o aluno for capaz de identificar aquilo que não está textualmente escrito, mas fica subentendido. Além disso, para a resolução do item, a leitura e a compreen- são do enunciado mostraram-se decisivas para a obtenção de êxito nas respostas. Que sugestões podem ser dadas para melhor desenvolver essa habilidade? Atividades com textos sobre temas atuais, com espaço para as várias possibili- dades de leitura possíveis, permitem desenvolver a interpretação tanto por meio do explícito como do implícito. Trabalhar com textos que evidenciam situações do cotidi- ano. As informações implícitas exigem que o leitor construa seu sentido por meio de inferências, pois elas não estão claramente presentes no texto. Dessa forma, o leitor necessita observar marcas do texto que o permitam chegar a essa informação.
  • 33. Unidade4LínguaPortuguesa 33 Descritor 6 – Identificar o tema de um texto Que habilidade pretendemos avaliar? Um texto é tematicamente orientado; quer dizer, desenvolve-se a partir de um determinado tema, o que lhe dá unidade e coerência. A identificação desse tema é fundamental, pois só assim é possível apreender o sentido global do texto, discernir entre suas partes, principais e outras secundárias, parafraseá-lo, dar-lhe um título coerente ou resumí-lo. Em um texto dissertativo, as idéias principais, sem dúvida, são aquelas que mais diretamente convergem para o tema central do texto. Um item vinculado a esse descritor deve centrar-se na dimensão global do texto, no núcleo temático que lhe confere unidade semântica. Por meio deste descritor, pode-se avaliar a habilidade de o aluno identificar do que trata o texto, com base na compreensão do seu sentido global, estabelecido pe- las múltiplas relações entre as partes que o compõem. Isso é feito ao relacionarem- se diferentes informações para construir o sentido completo do texto. Para ilustrar o desempenho dos alunos em relação à habilidade indicada por este descritor, apresentamos o exemplo a seguir: Exemplo de item: Um arriscado esporte nacional Os leigos sempre se medicaram por conta própria, já que de médicos e de loucos todos temos um pouco, mas esse problema jamais adquiriu contornos tão preocupantes no Brasil como atualmente. Qualquer farmácia conta hoje com um ar- senal de armas de guerra para combater doenças de fazer inveja à própria indústria de material bélico nacional. Cerca de 40% das vendas realizadas pelas farmácias nas metrópoles brasileiras destinam-se a pessoas que se automedicam. A indústria farmacêutica de menor porte e importância retira 80% de seu faturamento da venda “livre” de seus produtos – isto é, das vendas realizadas sem receita médica. Diante desse quadro, o médico tem o dever de alertar a população para os perigos ocultos em cada remédio, sem que, necessariamente, faça junto com essas advertências uma sugestão para que os entusiastas da automedicação passem a gastar mais em consultas médicas. Acredito que a maioria das pessoas se auto- medicam por sugestão de amigos, leitura, fascinação pelo mundo maravilhoso das drogas “novas” ou simplesmente para tentar manter a juventude. Qualquer que seja a causa, os resultados podem ser danosos. MEDEIROS, Geraldo. – Revista Veja, 18 de dezembro, 1985. 5 10 15
  • 34. Unidade4LínguaPortuguesa 34 O tema abordado no texto é (A) os riscos constantes da automedicação. (B) o crescimento da indústria farmacêutica. (C) a venda ilegal de medicamentos. (D) a luta pela manutenção da juventude. (E) o faturamento das consultas médicas. O que o resultado do item indica? Os alunos identificaram o tema deste texto com relativa facilidade. Tanto que o desempenho dos que responderam acertadamente ao item ficou acima da média (53%). Estes demonstraram ter capacidade de identificar a idéia central de gêneros textuais que tratam de assuntos relativos à automedicação. Os alunos que escolheram a alternativa errada “B” (12%) provavelmente seguiram alguma informação explícita, como o alto percentual de faturamento livre com vendas sem receita médica. Os que escolheram a alternativa errada “C” (17%) ativeram-se à idéia de “venda ilegal de medicamentos”. Os alunos que não conseguiram acertar o item deveriam demonstrar a habili- dade de reconhecer, entre as opções dadas pelas alternativas, as informações im- plícitas do texto e, a partir de inferências textuais, abstrair aquela que identifica a idéia central, ou seja, “os riscos constantes da automedicação”. Que sugestões podem ser dadas para melhor desenvolver essa habilidade? Cabe aos professores trabalhar em um nível de atividade que ultrapasse a su- perfície do texto, conduzindo o aluno a estabelecer relações entre as informações ex- plícitas e implícitas, a fim de que ele faça inferências textuais e elabore uma síntese do texto. Ou seja, o aluno considera o texto como um todo, mas prende-se ao eixo no qual o texto é estruturado. Os textos informativos são excelentes para se desenvolver essa habilidade. Descritor 14 – Distinguir um fato da opinião relativa a esse fato Que habilidade pretendemos avaliar? Percentual de respostas às alternativas A B C D E 53% 12% 17% 7% 4%
  • 35. Unidade4LínguaPortuguesa 35 É comum, sobretudo em textos dissertativos, que, a respeito de determinados fatos, algumas opiniões sejam emitidas. Ser capaz de localizar a referência aos fa- tos, distinguindo-a das opiniões relacionadas a eles, representa uma condição de leitura eficaz. Um item que avalie essa habilidade deve apoiar-se em um material que conte- nha um fato e uma opinião sobre ele, a fim de poder estimar a capacidade do aluno para fazer tal distinção. Há, neste item, a intenção de que o aluno identifique uma opinião sobre um fato apresentado. É importante que ele tenha uma visão global do texto e do que está sendo solicitado no enunciado do item. Neste texto, a diferença entre o fato e a opinião relativa a ele está bem marcada, o que facilita a tarefa do aluno. Exemplo de item: Não se perca na rede A Internet é o maior arquivo público do mundo. De futebol a física nuclear, de cinema a biologia, de religião a sexo, sempre há centenas de sites sobre qualquer assunto. Mas essa avalanche de informações pode atrapalhar. Como chegar ao que se quer sem perder tempo? É para isso que foram criados os sistemas de busca. Porta de entrada na rede para boa parte dos usuários, eles são um filão tão bom que já existem às centenas também. Qual deles escolher? Depende do seu objetivo de busca. Há vários tipos. Alguns são genéricos, feitos para uso no mundo todo (Google, por exemplo). Use esse site para pesquisar temas universais. Outros são nacionais ou estrangeiros com versões específicas para o Brasil (Cadê, Yahoo e Altavista). São ideais para achar páginas “com.br”. (Paulo D’Amaro) Disponível em: <http://galileu.globo.com/edic/116/rep_internet.htm>. Acesso em Julho /2008. O artigo foi escrito por Paulo D’Amaro. Ele misturou informações e análises do fato. O período que apresenta uma opinião do autor é (A) “foram criados sistemas de busca.” (B) “essa avalanche de informações pode atrapalhar.” (C) “sempre há centenas de sites sobre qualquer assunto.” (D) “A internet é o maior arquivo público do mundo.” (E) “Há vários tipos.” 5 10
  • 36. Unidade4LínguaPortuguesa 36 O que o resultado do item indica? Nos textos argumentativos – e também em alguns informativos –, apresen- tam-se evidências e análises dessas evidências. As evidências são os fatos e a análise é a opinião relativa a esses fatos. Nos itens deste descritor, espera-se que o leitor competente reconheça os fatos em um texto argumentativo ou informativo; bem como distinga um fato da opinião relativa a ele. O texto “Não se perca na rede”, que serviu como base para o item represen- tativo deste descritor, requer a habilidade fundamental de saber distinguir um fato da opinião relativa a ele para a sua compreensão. Este texto tem um bom grau de informatividade e, com uma linguagem simples, trata de um assunto relevante na atualidade: a Internet como instrumento para a obtenção de informações. Para responder ao item, o aluno poderia recorrer à observação das formas verbais, pois, assim, conseguiria chegar à opção considerada adequada. No gabari- to, opção “B” (“essa avalanche de informações pode atrapalhar”), percebe-se que, para o autor do texto, embora haja no senso comum a idéia de que o acesso a uma grande quantidade de informações é imprescindível, o excesso de informações também é negativo. Ao usar a forma verbal “pode” em um período no qual emite sua opinião, o autor procura suavizar sua afirmação, considerando que existe uma possibilidade de o exagero em relação à quantidade de informações trazer conse- qüências negativas para as pessoas. Acertaram este item 38% dos alunos, o que demonstra um alto grau de difi- culdade. Aqueles que obtiveram um resultado satisfatório na prova como um todo acertaram este item. Houve, porém, 32% que consideraram a opção “D” como gabarito. Possivelmente, aqueles que marcaram essa opção consideraram que a expressão maior, por qualificar um termo, seria uma forma de expressar subjetivi- dade e, por isso, esse exemplo consistiria em uma análise, e não na apresentação de um fato. Percebe-se, portanto, a necessidade de desenvolver nos alunos a habilidade de leitura por meio de textos argumentativos para que eles possam ser capazes de distinguir um acontecimento, algo real, concreto, daquilo que é a opinião relativa a um fato, fruto da subjetividade do emissor. Percentual de respostas às alternativas A B C D E 7% 38% 11% 32% 10%
  • 37. Unidade4LínguaPortuguesa 37 Que sugestões podem ser dadas para melhor desenvolver essa habilidade? Sugerimos que o professor, para trabalhar a habilidade de o aluno estabelecer a diferença entre fato e opinião sobre o fato, recorra a gêneros textuais variados, especialmente os que apresentam estrutura narrativa, tais como contos (fragmen- tos) e crônicas. Os textos argumentativos também se prestam para trabalhar essa habilidade. Entretanto, torna-se necessário trabalhar nos textos as situações criadas por instrumentos gramaticais, como as expressões adverbiais e as denotativas em relações de mera referencialidade textual ou de influência externa de intromissão do locutor/produtor/narrador. Tópico II – Implicações do Suporte, Gênero e/ou Enunciador na Compreen- são do Texto Este tópico requer do aluno habilidades lingüísticas de interpretar textos que conjuguem as linguagens verbal e não-verbal ou, ainda, textos não-verbais. O aluno deve, também, demonstrar conhecimento de gêneros textuais variados para que pos- sa reconhecer a função social dos textos. A seguir, temos análises de itens referentes aos descritores 5 e 12, que com- põem o Tópico II. Descritor 5 – Interpretar texto com auxílio de material gráfico diverso (propa- gandas, quadrinhos, fotos etc) Que habilidade pretendemos avaliar? Além do material especificamente lingüístico, muitos textos lançam mão de signos ou sinais de outros códigos, de outras linguagens, que, de muitas formas, con- correm para o entendimento global de seu sentido. Articular esses diferentes sinais representa uma habilidade de compreensão de grande significação, sobretudo atual- mente, pois são muitos os textos que misturam tais tipos de representação, fazendo demandas de leitura de elementos não-verbais para o entendimento global do texto exposto. Um item que se destina a avaliar essa habilidade deve ter como estímulo um texto que conjugue diferentes linguagens, com o intuito, no entanto, de o aluno poder Descritores D5 D12
  • 38. Unidade4LínguaPortuguesa 38 Eu gosto do natal porque as pessoas se amam muito mais. Ah!... Você também sente isso? Como fico feliz! Quer dizer que você também se ama muito mais no natal? Eu, então, você nem imagina o quanto eu me amo no natal! Por que será que as pessoas se amam muito mais no natal? articulá-las em razão de um sentido global. Para demonstrar essa habilidade, não basta apenas decodificar sinais e sím- bolos, mas ter a capacidade de perceber a interação entre a imagem e o texto escrito. A integração de imagens e palavras contribui para a formação de novos sentidos do texto. Exemplo de item: QUINO. Mafalda inédita. São Paulo: Martins Fontes, 1993, p. 42. A respeito da tirinha da Mafalda, é correto afirmar que ela (A) gosta do Natal pelo mesmo motivo de sua amiga. (B) pensa em resposta à pergunta da amiga. (C) concorda com a forma de pensar de sua amiga. (D) e a amiga têm as mesmas opiniões. (E) percebe que a amiga não compreendeu sua fala. O que o resultado do item indica? O texto escrito conta, muitas vezes, com o apoio necessário de material gráfico diverso. Há casos, inclusive, em que esse material é o próprio texto. Dados estatís- ticos, traços físicos refletindo estados psicológicos, mapas, tabelas, propagandas, fotos, são diversas as maneiras de externalizar o pensamento. Tornar o estudante apto a compreender textos a partir de elementos não-verbais é imprescindível nos dias de hoje. Espera-se que a habilidade de reconhecer sentidos e significados em Percentual de respostas às alternativas A B C D E 12% 5% 10% 9% 63%
  • 39. Unidade4LínguaPortuguesa 39 linguagem não-verbal seja aferida, principalmente quando ela estiver associada à linguagem verbal. O item em análise foi construído a partir de um texto que tem como tema o Natal. O texto escrito, nesse caso, não é o único recurso a ser explorado pelo leitor. A própria estrutura em quadrinhos mostra a necessidade de se ler as imagens, es- pecificamente as expressões faciais das personagens. O tema é atual e recorrente, levantando uma discussão que envolve o amor de si versus o amor de um para com o outro. As interpretações geradas pela estrutura “se amam” no primeiro quadrinho tornam-se evidentes com os demais quadrinhos: enquanto uma das personagens apropriou-se da leitura reflexiva (“eu me amo no Natal!”), a outra demonstrou, por meio de uma face decepcionada, que pretendia expressar uma noção de reciproci- dade (“as pessoas se amam” umas às outras). O item vem justamente solicitar ao leitor que demonstre compreensão do texto a partir da combinação da leitura do material escrito e do material gráfico (as ex- pressões faciais). Acertaram a alternativa correta (letra “E”) 63% dos estudantes. Ressalta-se que houve certo equilíbrio em relação à escolha das respostas incorretas “A”, “C” e “D”, fato devido à proximidade de sentido que existe entre elas. Esse fato valoriza, ainda mais, o estudante que escolheu a alternativa correta, dado que re- velou ter ele também a habilidade de reconhecer opções incorretas próximas. O item tem grau alto de dificuldade e o estudante que acertou a resposta teve muito bom desempenho na prova como um todo. Que sugestões podem ser dadas para melhor desenvolver essa habilidade? Levando em conta que grande parte dos textos com os quais nos deparamos nas diversas situações sociais de leitura exige que se integre texto escrito e mate- rial gráfico para sua compreensão, a escola pode contribuir para o desenvolvimento dessa habilidade explorando a integração de múltiplas linguagens como forma de expressão de idéias e sentimentos. Para trabalhar essa habilidade, o professor deve levar para a sala de aula a maior variedade possível de textos desse gênero. Além das revistas em quadrinhos e das tirinhas, pode-se explorar materiais diversos que contenham apoio em recursos gráficos. Esses materiais vão de peças publicitárias e charges de jornais aos textos presentes em materiais didáticos de outras disciplinas, tais como gráficos, mapas, tabelas, roteiros. Descritor 12 – Identificar a finalidade de textos de diferentes gêneros
  • 40. Unidade4LínguaPortuguesa 40 Que habilidade pretendemos avaliar? Todo texto se realiza com uma determinada finalidade. Ou seja, tem um propósito interativo específico. Pode pretender, por exemplo, informar ou esclarecer, expor um ponto de vista, refutar uma posição, narrar um acontecimento, fazer uma advertência, persuadir alguém de alguma coisa etc. O entendimento bem sucedido de um texto depende, também, da identificação das intenções pretendidas por esse texto. Um item relacionado a esse descritor deve incidir, exatamente, sobre as preten- sões reconhecíveis para o texto. Elementos lingüísticos e outros contextuais funcio- nam como pistas para a identificação da finalidade pretendida pelo texto. Esse descritor indica a habilidade de o aluno reconhecer, na leitura de gêne- ros textuais diferenciados, a função social dos textos: informar, convencer, advertir, instruir, explicar, comentar, divertir, solicitar, recomendar etc. Exemplo de item: Qual a origem do doce brigadeiro? Em 1946, seriam realizadas as primeiras eleições diretas para presidente após os anos do “Estado Novo”, de Getúlio Vargas. O candidato da aliança PTB/PSD, Eurico Gaspar Dutra, venceu com relativa folga. Mas o título de maior originalidade na campanha ficou para as correligionárias do candidato derrotado, Eduardo Gomes (da UDN). Brigadeiro da Aeronáutica, com pinta de galã, Eduardo Gomes tinha um apoio, digamos, entusiasmado. Para fazer o “corpo-a-corpo” com o eleitorado, senhoras da sociedade saiam às ruas convocando as mulheres a votar em Gomes, com o slogan: “Vote no brigadeiro. Ele é bonito e solteiro”. Não satisfeitas ainda promoviam almoços e chás, nos quais serviam um irresistível docinho coberto com chocolate granulado. Ao qual deram o nome, claro, de brigadeiro. Almanaque das curiosidades, p. 89. A finalidade desse gênero de texto é (A) propor mudanças. (B) refutar um argumento. (C) advertir as pessoas. (D) trazer uma informação. (E) orientar procedimentos. 5 10
  • 41. Unidade4LínguaPortuguesa 41 O que o resultado do item indica? Textos diferentes normalmente têm intenções comunicativas diferentes. Algu- mas vezes, a finalidade do texto, ou seja, sua função na situação de interlocução, é definida no próprio gênero textual que o autor escolheu. Reconhecer a finalidade do texto apresentado revelou-se uma tarefa de dificuldade mediana, já que mais da metade dos alunos acertaram a alternativa correta “D”. Acrescente-se a isso o fato de a estrutura do texto ser simples e o vocabulário comum, com referência a um doce que é conhecido na maior parte do país. As demais alternativas (erradas) atraíram alunos que, ou não leram o texto até o final, ou não estão familiarizados com a variedade de gêneros textuais que circu- lam em nossa sociedade letrada. Que sugestões podem ser dadas para melhor desenvolver essa habilidade? É imprescindível que a escola trabalhe com os alunos a leitura de textos de diferentes gêneros, como notícias, avisos, anúncios, cartas, convites, instruções, pro- pagandas, telefonema, sermão, romance, bilhete, aula expositiva, ata de reunião de condomínio, entre muitos outros, em que é solicitado ao aluno identificar a função social de cada texto. Tópico III – Relação entre Textos Este tópico apresenta dois descritores (D20 e D21) que identificam a habili- dade de comparar textos que tratam do mesmo tema, analisando a relação entre o modo de tratamento do tema e as condições de produção, recepção e circulação dos textos. Temos, então, a análise de itens representativos deste tópico. Descritor 20 – Reconhecer diferentes formas de tratar uma informação na comparação de textos que tratam do mesmo tema, em função das condições em que ele foi produzido e daquelas em que será recebido Percentual de respostas às alternativas A B C D E 16% 11% 16% 49% 6% Descritores D20 D21
  • 42. Unidade4LínguaPortuguesa 42 Que habilidade pretendemos avaliar? Por meio deste item, podemos avaliar a habilidade de se comparar dois textos do mesmo gênero e com a mesma temática e perceber características que não são comuns aos dois. Nesse caso, o aluno deve analisar dois textos sobre o mesmo as- sunto, publicado em jornais diferentes. Exemplo de item: Texto I “Sou completamente a favor da flexibilização das relações trabalhistas, pois a velhís- sima legislação brasileira, além de anacrônica, vem comprometendo seriamente a nossa competitividade em nível global.” Texto II “É uma falácia dizer que com a eliminação dos direitos trabalhistas se criarão mais empregos. O trabalhador brasileiro já é por demais castigado para suportar mais essa provocação.” O Povo, 17 abr. 1997. Os textos acima tratam do mesmo assunto, ou seja, da relação entre patrão e em- pregado. Os dois se diferenciam, porém, pela abordagem temática. O texto II em relação ao texto I apresenta uma (A) ironia. (B) semelhança. (C) oposição. (D) aceitação. (E) confirmação. O que o resultado do item indica? O objetivo do descritor é justamente medir a habilidade que todo cidadão pre- cisa ter: diferenciar evidências e análises, tendo em vista que um mesmo objeto pode ser alvo de inúmeros olhares. A quantidade de informações veiculadas na mídia Percentual de respostas às alternativas A B C D E 19% 19% 42% 8% 11%
  • 43. Unidade4LínguaPortuguesa 43 exige a formação de um leitor crítico, atento, seguro e capaz de extrair o fato em meio às opiniões que se formam em torno dele. A habilidade de comparar dois ou mais textos sobre um mesmo tema exige maturidade e discernimento, que devem ser desenvolvidos também na escola. Os textos utilizados nesse item são provenientes de jornal, um veículo muito importante para uma sociedade da informação como a nossa, sendo ele um dos principais meios de divulgação de fatos e opiniões. O tema do texto, apesar de ele ter sido escrito em 1997, é atual. As relações trabalhistas, a legislação e os aspectos da economia diretamente ligados ao dia-a-dia do cidadão comum são prioridade na atual realidade brasileira. O item explora a habilidade de o estudante reconhecer as posições conflitantes de dois textos, quando confrontados entre si. O enunciado destaca que os textos tratam do mesmo assunto, embora apresentem posições diferentes. Diante disso, espera-se que o leitor seja capaz de detectar qual é o tipo de relação que existe en- tre os textos. Acertaram a resposta (letra “C”) 42% dos estudantes. Possivelmente, os estudantes que marcaram as alternativas “A” e “B”, respostas com percentual de 19% cada uma, tiveram dificuldades quanto ao vocabulário dos textos, embora isso não devesse ter sido um fator determinante, visto que o próprio enunciado traz pistas para a resolução do item, cujo grau de dificuldade é médio. Espera-se que seja desenvolvida a capacidade crítica de leitura do mundo a partir da leitura de textos com posições diferentes sobre um mesmo tópico. Que sugestões podem ser dadas para melhor desenvolver essa habilidade? A escola pode favorecer o desenvolvimento da capacidade crítica do aluno a partir da leitura de textos com posições diferentes sobre um mesmo tema, formando leitores mais atentos, seguros e capazes de extrair o fato em meio às opiniões que se formam em torno dele. A habilidade de comparar dois ou mais textos sobre um mesmo tema exige maturidade do aluno e discernimento, proporcionando-lhe maior autonomia para se posicionar e analisar criticamente os argumentos utilizados pelo autor do texto. As estratégias utilizadas podem ser: a) a contraposição da interpretação da realidade a diferentes opiniões; b) a inferência das possíveis intenções do autor mar- cadas no texto; c) a identificação das referências intertextuais presentes no texto; d) a percepção dos processos de convencimento utilizados pelo autor para atuar so- bre o interlocutor/leitor; d) a identificação e o repensar dos juízos de valor tanto sócio- ideológicos (preconceituosos ou não) quanto histórico-culturais (inclusive estéticos) associados à linguagem e à língua e, e) a reafirmação da sua identidade pessoal e social.
  • 44. Unidade4LínguaPortuguesa 44 Descritor 21 – Reconhecer posições distintas entre duas ou mais opiniões relativas ao mesmo fato ou ao mesmo tema Que habilidade pretendemos avaliar? Diferentemente do que é exposto no descritor anterior, dois ou mais textos que desenvolvem o mesmo tema podem ser confrontados para se procurar perceber os pontos em que tais textos divergem. Também pode acontecer de um único texto apresentar opiniões distintas em relação a um mesmo fato. A habilidade para esta- belecer esses pontos divergentes é de grande relevância na vida social de cada um, pois, constantemente, somos submetidos a informações e opiniões distintas acerca de um fato ou de um tema. O item que se destina a avaliar essa habilidade deve apoiar-se em um, dois ou mais textos diferentes e focalizar os pontos em que esses textos divergem. A habilidade avaliada por meio deste descritor relaciona-se, pois, à identifica- ção, pelo aluno, das diferentes opiniões emitidas sobre um mesmo fato ou tema. A construção desse conhecimento é um dos principais balizadores de um dos objetivos do ensino da Língua Portuguesa, qual seja, o de capacitar o aluno a analisar critica- mente os diferentes discursos, inclusive o próprio, desenvolvendo a capacidade de avaliação dos textos. Exemplo de item: Texto I Tio Pádua Tio Pádua e tia Marina moravam em Brasília. Foram um dos primeiros. Mu- daram-se para lá no final dos anos 50. Quando Dirani, a filha mais velha, fez dezoito anos, ele saiu pelo Brasil afora atrás de um primo pra casar com ela. Encontrou Jairo, que morava em Marília. Estão juntos e felizes até hoje. Jairo e Dirani casaram-se em 1961. Fico pensando se os casamentos arranjados não têm mais chances de dar certo do que os desarranjados. Ivana Arruda Leite. Tio Pádua. Internet: http://www.doidivana.zip net. Acesso em 07/01/2007.
  • 45. Unidade4LínguaPortuguesa 45 Texto II O casamento e o amor na Idade Média (fragmento) Nos séculos IX e X, as uniões matrimoniais eram constantemente combina- das sem o consentimento da mulher, que, na maioria das vezes, era muito jovem. Sua pouca idade era um dos motivos da falta de importância que os pais davam a sua opinião. Diziam que estavam conseguindo o melhor para ela. Essa total falta de importância dada à opinião da mulher resultava muitas vezes em raptos. Como o consentimento da mulher não era exigido, o raptor garantia o casamento e ela de- veria permanecer ligada a ele, o que era bastante difícil, pois os homens não davam importância à fidelidade. Isso acontecia talvez principalmente pelo fato de a mulher não poder exigir nada do homem e de não haver uma conduta moral que proibisse tal ato. Ingo Muniz Sabage. O casamento e o amor na Idade Média. Internet: <http://www.milenio.com.br/ ingo/ideias/hist/casament.htm>. Acesso em 07/01/2007 (com adaptações). Sobre o “casamento arranjado”, o texto I e o texto II apresentam opiniões (A) complementares. (B) duvidosas. (C) opostas. (D) preconceituosas. (E) semelhantes. O que o resultado do item indica? Analisando a dificuldade do item pelos percentuais de respostas às alternativas, percebe-se que uma percentagem de 46% dos alunos responderam corretamente ao item, dando a ele um status médio de complexidade, em virtude de ter havido uma dispersão quase homogênea pelas alternativas incorretas. Era de se esperar que alu- nos nesse ano de escolaridade soubessem reconhecer opiniões diferenciadas sobre um tema, em textos diferentes. Percentual de respostas às alternativas A B C D E 12% 15% 46% 11% 14% 5 10
  • 46. Unidade4LínguaPortuguesa 46 Os alunos que se houveram bem neste item possivelmente estão familiarizados com a comparação de textos que tratam de um mesmo tema e expostos a textos mais complexos, como o caso do Texto II. São leitores capazes de ler criticamente e conseguem distinguir as diferentes opiniões sobre o tema. Que sugestões podem ser dadas para melhor desenvolver essa habilidade? Aos professores incumbe oportunizar aos alunos o exercício de comparação de textos que abordem uma mesma temática. O desenvolvimento dessa habilidade ajuda o aluno a perceber-se como um ser autônomo, dotado da capacidade de se posicionar e transformar a realidade, ao inferir as possíveis intenções do autor mar- cadas no texto e ao identificar referências intertextuais presentes nele. Tópico IV – Coerência e Coesão no Processamento do Texto A competência indicada neste tópico vai exigir do aluno habilidades que o levem a identificar a linha de coerência do texto. A coerência e a coesão ocorrem nos diver- sos tipos de texto. Cada tipo de texto tem uma estrutura própria, por isso, os meca- nismos de coerência e de coesão também vão se manifestar de forma diferente, conforme se trate de um texto narrativo, descritivo, ou dissertativo-argumentativo. Com relação a este tópico, são apresentados itens referentes aos descritores 2, 10, 11, 15, 7, 8 e 9. Descritor 2 – Estabelecer relações entre partes de um texto, identificando repetições ou substituições que contribuem para a continuidade de um texto Que habilidade pretendemos avaliar? Com este item pretendemos avaliar a habilidade de o aluno reconhecer as relações coesivas do texto, mais especificamente as repetições ou substitu- ições, que servem para estabelecer a continuidade textual. No texto a seguir, por exemplo, destacamos o entrelaçamento das idéias e a sua continuidade. A com- preensão de informações e idéias apresentadas pelo autor ultrapassa a simples decodificação e depende da devida percepção dessas relações para o efetivo entendimento da leitura. Descritores D2 D10 D11 D15 D7 D8 D9
  • 47. Unidade4LínguaPortuguesa 47 Exemplo de item: Sermão do Mandato O primeiro remédio que dizíamos, é o tempo. Tudo cura o tempo, tudo faz es- quecer, tudo gasta, tudo digere, tudo acaba. Atreve-se o tempo a colunas de már- more, quanto mais a corações de cera? São as afeições como as vidas, que não há mais certo de haverem de durar pouco, que terem durado muito. São como as li- nhas, que partem do centro para a circunferência, que tanto mais continuadas, tanto menos unidas. Por isso os Antigos sabiamente pintaram o amor menino; porque não há amor tão robusto que chegue a ser velho. De todos os instrumentos com que o armou a natureza, o desarma o tempo. Afrouxa-lhe o arco, com que já não atira; embota-lhe as setas, com que já não fere; abre-lhe os olhos, com que vê o que não via; e faz-lhe crescer as asas, com que voa e foge. A razão natural de toda esta dife- rença, é porque o tempo tira a novidade às cousas, descobre-lhe defeitos, enfastia- lhe o gosto, e basta que sejam usadas para não serem as mesmas. Gasta-se o ferro com o uso, quanto mais amor? O mesmo amor é a causa de não amar, e o de ter amado muito, de amar menos. VIEIRA, Antônio. Sermão do Mandato. In: Sermões. 8. ed. Rio de Janeiro: Agir, 1980. Em “...para não serem as mesmas...” (ℓ.12), a expressão destacada refere-se a (A) afeições. (B) asas. (C) cousas. (D) linhas. (E) setas. O que o resultado do item indica? O descritor 2 procura medir a habilidade desenvolvida pelo leitor no esta- belecimento de relações entre partes de um texto, identificando repetições ou substituições de termos, o que contribui para a coesão, ou seja, o entrelaçamento das idéias e a sua progressividade ou continuidade. A compreensão de informações e idéias apresentadas pelo autor ultrapassa a simples decodificação e depende da devida percepção dessas relações. Quando a interpretação das referências não é correta, há risco de incompreensão. Percentual de respostas às alternativas A B C D E 34% 5% 53% 5% 2% 5 10
  • 48. Unidade4LínguaPortuguesa 48 O enunciado deste item solicita ao leitor que identifique qual a expressão do texto que é retomada pelo termo “as mesmas”. Trata-se de um texto adequado a alu- nos do ensino médio, pois, embora apresente sintaxe complexa, focaliza tema de in- teresse permanente (o tempo e suas conseqüências), provoca a reflexão, apresenta riqueza de recursos estilísticos, representa de forma exemplar um período literário e, mesmo assim, suas referências são facilmente apreensíveis. O item apresentou resultados satisfatórios, pois, além de obter um percentual alto de repostas corretas – alternativa “C” – (53%), os alunos com melhor resultado na prova como um todo escolheram o gabarito. A expressão “as mesmas” retoma o termo antecedente “cousas”, que é retomado antes disso duas vezes pelo pronome “lhe”, o que pode ter representado uma dificuldade adicional. O significativo índice de respostas na alternativa “A” sugere que essa atração decorreu, provavelmente, do fato de o texto apresentar uma mudança de referente em cadeia, ou seja, um mesmo referente retomado várias vezes. Há várias elipses do termo “afeições” antes da retomada de “cousas” pela expressão “as mesmas”. Apenas os leitores mais ex- perientes e estratégicos percebem adequadamente essa mudança. Que sugestões podem ser dadas para melhor desenvolver essa habilidade? Partindo do nível de acertos apresentados pelos alunos neste item, parece adequado que a escola desenvolva mais atividades voltadas para a reconstrução textual. Devemos considerar as especificidades dos tipos e gêneros textuais, to- mando os textos lidos como objeto de estudo, sempre que possível, em situações reais de uso. Nas atividades de leitura em sala de sala, também é relevante reconstruirmos com os alunos a linha de organização do texto seguida pelo autor, destacando as expressões que estabelecem as relações parte/todo e as idéias que o texto traz. Além disso, podemos questionar o percurso de análise promovida pelo aluno, apre- sentando contra-exemplos, auxiliando-o a reconstruir os significados do texto. Descritor 10 – Identificar o conflito gerador do enredo e os elementos que constroem a narrativa Toda narrativa obedece a um esquema de constituição, de organização, que, salvo algumas alterações, compreende as seguintes partes: I) Introdução ou Apresentação – corresponde ao momento inicial da narrativa, marcado por um estado de equilíbrio, em que tudo parece conformar-se à normali- dade. Do ponto de vista da construção da narrativa, nesta parte, são indicadas as
  • 49. Unidade4LínguaPortuguesa 49 circunstâncias da história, ou seja, o local e o tempo em que decorrerá a ação e são apresentada(s) a(s) personagem (ns) principais (os protagonistas); tal apresen- tação se dá por meio de elementos descritivos (físicos, psicológicos, morais e ou- tros). Cria-se, assim, um cenário e um tempo para os personagens iniciarem suas ações; já se pode antecipar alguma direção para o enredo da narrativa. É, portanto, o segmento da ordem existente. II) O segundo momento – Desenvolvimento e Complicação – corresponde ao bloco em que se sucedem os acontecimentos, numa determinada ordem e com a intervenção do(s) protagonistas. Corresponde, ainda, ao bloco em que se instala o conflito, a complicação, ou a quebra daquele equilíbrio inicial, com a intervenção opositora do(s) antagonista(s) – (personagem (ns) que, de alguma forma, tenta(m) impedir o protagonista de realizar seus projetos, normalmente positivos). É, portanto, o segmento da ordem perturbada. III) O terceiro momento – Clímax – corresponde ao bloco em que a narrativa chega ao momento crítico, ou seja, ao momento em que se viabiliza o desfecho da nar- rativa. IV) O quarto e último momento – Desfecho ou desenlace – corresponde ao seg- mento em que se dá a resolução do conflito. Dentro dos padrões convencionais, em geral, a narrativa acaba com um desfecho favorável. Daí, o tradicional “final feliz”. Esse último bloco é o segmento da ordem restabelecida. Um item vinculado a esse descritor deve levar o aluno a identificar um desses elementos constitutivos da estrutura da narrativa. Evidentemente, o texto utilizado deve ser do tipo narrativo. Vejamos o item a seguir. Exemplo de item: O Mato Veio o vento frio, e depois o temporal noturno, e depois da lenta chuva que pas- sou toda a manhã caindo e ainda voltou algumas vezes durante o dia, a cidade entar- deceu em brumas. Então o homem esqueceu o trabalho e as promissórias, esqueceu a condução e o telefone e o asfalto, e saiu andando lentamente por aquele morro coberto de um mato viçoso, perto de sua casa. O capim cheio de água molhava seu sapato e as pernas da calça; o mato escurecia sem vaga-lumes nem grilos. Pôs a mão no tronco de uma árvore pequena, sacudiu um pouco, e recebeu nos cabelos e na cara as gotas de água como se fosse uma bênção. Ali perto mesmo a cidade murmurava, estava com seus ruídos vespertinos, ranger de bondes, buzi- nar impaciente de carros, vozes indistintas; mas ele via apenas algumas árvores, um canto de mato, uma pedra escura. Ali perto, dentro de uma casa fechada, um 5 10
  • 50. Unidade4LínguaPortuguesa 50 telefone batia, silenciava, batia outra vez, interminável, paciente, melancólico. Alguém, com certeza já sem esperança, insistia em querer falar com alguém. Por um instante o homem voltou seu pensamento para a cidade e sua vida. Aquele telefone tocando em vão era um dos milhões de atos falhados da vida ur- bana. Pensou no desgaste nervoso dessa vida, nos desencontros, nas incertezas, no jogo de ambições e vaidades, na procura de amor e de importância, na caça ao dinheiro e aos prazeres. Ainda bem que de todas as grandes cidades do mundo o rio é a única a permitir a evasão fácil para o mar e a floresta. Ele estava ali num desses limites entre a cidade dos homens e a natureza pura; ainda pensava em seus pro- blemas urbanos - mas um camaleão correu de súbito, um passarinho piou triste em algum ramo, e o homem ficou atento àquela humilde vida animal e também à vida silenciosa e úmida das árvores, e à pedra escura, com sua pele de musgo e seu mis- terioso coração mineral. ARRIGUCCI, Jr. Os melhores contos de Rubem Braga. São Paulo: Editora Global Ltda, 1985. No texto, o elemento que gera a história narrada é (A) a preocupação do homem com os problemas alheios. (B) a proximidade entre a casa do homem e o morro com mato viçoso. (C) o desejo do homem de buscar alento próximo da natureza. (D) o toque insistente do telefone em uma casa fechada e silenciosa. (E) os ruídos vespertinos da cidade, com seus murmúrios constantes. O que o resultado do item indica? Toda narrativa obedece a um esquema de constituição, de organização. O foco do item está no segundo momento – Desenvolvimento e Complicação. Corresponde ao bloco em que se sucedem os acontecimentos, numa determinada ordem e com a intervenção dos protagonistas. Corresponde, ainda, ao bloco em que se instala o conflito, a complicação, ou a quebra daquele equilíbrio inicial, com a intervenção opositora do(s) antagonista(s) – (personagem (ns) que, de alguma forma, tenta(m) impedir o protagonista de realizar seus projetos, normalmente positivos). É, portanto, o segmento da ordem perturbada. É um item de difivuldade mediana com 52% de acertos. Os alunos que es- colheram o gabarito “C” demonstram familiaridade com textos narrativos e sabem identificar os elementos que constituem a superestrutura esquemática da narrativa. Percentual de respostas às alternativas A B C D E 15% 16% 52% 7% 9% 15 20
  • 51. Unidade4LínguaPortuguesa 51 Os que escolheram as demais alternativas erradas são leitores imaturos que não souberam identificar a situação que quebrou o equilíbrio apresentado no primeiro momento do texto e provocou o conflito gerador do enredo. Que sugestões podem ser dadas para melhor desenvolver essa habilidade? Cabe aos professores fazerem uma seleção de textos clássicos – narrativas, poemas, crônicas – para que os alunos se familiarizem com as construções sintáti- cas e recursos estilísticos característicos de épocas diferentes. Com esses textos, o trabalho deve centrar-se na identificação dos elementos que constituem a narra- tiva. Descritor 11 – Estabelecer relação causa/conseqüência entre partes e elementos do texto Que habilidade pretendemos avaliar? Em geral, os fatos se sucedem numa ordem de causa e conseqüência, ou de motivação e efeito. Estabelecer esse nexo constitui um recurso significativo para a apreensão dos sentidos do texto, sobretudo quando estão em jogo relações lógicas ou argumentativas. O propósito do item ligado a esse descritor é, portanto, solicitar do aluno que ele identifique os elementos que, no texto, estão na interdependência de causa e conseqüência. Por meio deste descritor, pode-se avaliar a habilidade do aluno em identificar o motivo pelo qual os fatos são apresentados no texto, ou seja, o reconhecimento de como as relações entre os elementos organizam-se de forma que um torna-se o resultado do outro. Entende-se como causa/conseqüência todas as relações entre os elementos que se organizam de tal forma que um é resultado do outro. Exemplo de item: O Quiromante Há muitos anos atrás, havia um rapaz cigano que, nas horas vagas, ficava lendo as linhas das mãos das pessoas. O pai dele, que era muito austero no que dizia respeito à tradição cigana de somente as mulheres lerem as mãos, dizia sempre para ele não fazer isso, que não era ofício de homem, que fosse fazer tachos, tocar música, comerciar cavalos.5
  • 52. Unidade4LínguaPortuguesa 52 E o jovem cigano teimava em ser quiromante. Até que um dia ele foi ler a sorte de uma pessoa e, quando ela se virou de frente, ele viu, assustado, que ela não tinha mãos. A partir daí, abandonou a quiromancia. PEREIRA, Cristina da Costa. Lendas e histórias ciganas. Rio de Janeiro: Imago, 1991. O trecho “A partir daí, abandonou a quiromancia” (ℓ. 8) apresenta, com relação ao que foi dito no parágrafo anterior, o sentido de (A) comparação. (B) condição. (C) conseqüência. (D) finalidade. (E) oposição. O que o resultado do item indica? A leitura do texto não exige domínio da nomenclatura de classificação gramati- cal (conjunções), mas da compreensão efetiva da natureza e do sentido das articu- lações e ligações entre os diversos segmentos dos períodos e do texto. Este item apresenta certo nível de dificuldade, provavelmente, em virtude de os alunos terem de relacionar dois parágrafos e fazer uma operação inferencial para a reconstrução da relação causa/conseqüência. Embora 59% dos alunos tivessem acertado o item, um número significativo (41%) optou pelas alternativas incorretas, o que demonstra desconhecimento da organização textual e dificuldade de identi- ficar a relação causa/conseqüência quando o conectivo não se encontra presente no texto. São leitores ainda imaturos e não apreenderam o sentido global do texto e podem ter seguido pistas verbais falsas. Que sugestões podem ser dadas para melhor desenvolver essa habilidade? Para trabalhar as relações de causa e conseqüência, o professor pode se valer de textos verbais de gêneros variados, em que os alunos possam reconhecer as múl- tiplas relações que contribuem para dar ao texto coerência e coesão. As notícias de jornais, por exemplo, são excelentes para trabalhar essa habilidade, tendo em vista que, nesse tipo de gênero textual, há sempre a explicitação de um fato, das conse- qüências que provoca e das causas que lhe deram origem. Percentual de respostas às alternativas A B C D E 9% 11% 59% 16% 5%
  • 53. Unidade4LínguaPortuguesa 53 Descritor 15 – Estabelecer relações lógico-discursivas presentes no texto, marcadas por conjunções, advérbios etc. Que habilidade pretendemos avaliar? Em todo texto de maior extensão, aparecem expressões conectoras – sejam conjunções, preposições, advérbios e respectivas locuções – que criam e sinalizam relações semânticas de diferentes naturezas. Entre as mais comuns, podemos citar as relações de causalidade, de comparação, de concessão, de tempo, de condição, de adição, de oposição etc. Reconhecer o tipo de relação semântica estabelecida por esses elementos de conexão é uma habilidade fundamental para a apreensão da coerência do texto. Um item voltado para o reconhecimento de tais relações deve focalizar as ex- pressões sinalizadoras e seu valor semântico, sejam conjunções, preposições ou locuções adverbiais. Com este item, pretendemos avaliar a habilidade do aluno em perceber a coerência textual, partindo da identificação dos recursos coesivos e de sua função textual. No texto a seguir, enfatizamos a relação lógico-discursiva das conjunções. Exemplo de item: Câncer As novas frentes de ataque A ciência chega finalmente à fase de atacar o mal pela raiz sem efeito colateral. A luta contra o câncer teve grandes vitórias nas últimas décadas do século 20, mas deve-se admitir que houve também muitas esperanças de cura não concretiza- das. Após sucessivas promessas de terapias revolucionárias, o século 21 começou com a notícia de uma droga comprovadamente capaz de bloquear pela raiz a gênese de células tumorais. Ela foi anunciada em maio deste ano, na cidade de San Fran- cisco, no EUA, em uma reunião com a presença de cerca de 26 mil médicos e pes- quisadores. A genética, que já vinha sendo usada contra o câncer em diagnósticos e avaliações de risco, conseguiu, pela primeira vez, realizar o sonho das drogas “inteli- gentes”: impedir a formação de tumores. Com essas drogas, será possível combater a doença sem debilitar o organismo, como ocorre na radioterapia e na quimioterapia convencional. 5 10
  • 54. Unidade4LínguaPortuguesa 54 O próximo passo é assegurar que as células cancerosas não se tornem resistentes à medicação. São, portanto, várias frentes de ataque. Além das mais de 400 drogas em testes, aposta-se no que já vinha dando certo, como a prevenção e o diagnóstico precoce. Revista Galileu. Julho de 2001, p. 41. O conectivo “portanto”, (ℓ. 13), estabelece com as idéias que o antecedem uma rela- ção de (A) adversidade. (B) conclusão. (C) causa. (D) comparação. (E) finalidade. O que o resultado do item indica? Aqui a leitura também não exige domínio da nomenclatura de classificação gramatical, mas da compreensão efetiva da natureza e do sentido das articulações e ligações entre os diversos segmentos dos períodos e do texto. O enunciado do item solicita ao leitor que reconheça que a relação marcada pela palavra “portanto” é de conclusão, conhecimento considerado adequado e de grau médio de dificuldade para alunos de 3ª série do EM. É interessante ressaltar que a relação conclusiva ocorre no último parágrafo, o que reforça a probabilidade de identificação e reconhecimento. Para demonstrar essa habilidade, o leitor pode lançar mão de seu conhecimento de mundo e não é necessário que domine a no- menclatura de classificação gramatical. Os resultados indicam que 50% dos alunos acertaram e que muitos dos que obtiveram melhor resultado na avaliação como um todo estão entre os que escolhe- ram o gabarito. É muito provável que o sucesso neste item advenha da familiaridade com a escrita, já que o conectivo em pauta não é de uso freqüente na fala, isto é, na linguagem coloquial informal. Possivelmente, esse fato tenha levado uma grande parcela de alunos a serem atraídos por respostas incorretas, dispersando, de forma equilibrada, as escolhas pelas outras alternativas. Percentual de respostas às alternativas A B C D E 12% 50% 13% 10% 13% 15
  • 55. Unidade4LínguaPortuguesa 55 Que sugestões podem ser dadas para melhor desenvolver essa habilidade? Para desenvolver essa habilidade, o professor pode se valer de textos de gêne- ros variados, a fim de trabalhar as relações lógico-discursivas, mostrando aos alunos a importância de reconhecer que todo texto se constrói a partir de múltiplas relações de sentido que se estabelecem entre os enunciados que compõem o texto. As notí- cias de jornais, por exemplo, os textos argumentativos, os textos informativos são excelentes para trabalhar essa habilidade. Descritor 7 – Identificar a tese de um texto Que habilidade pretendemos avaliar? Em geral, um texto dissertativo expõe uma tese, isto é, defende um determi- nado posicionamento do autor em relação a uma idéia, a uma concepção ou a um fato. A exposição da tese constitui uma estratégia discursiva do autor para mostrar a relevância ou consistência de sua posição e, assim, ganhar a adesão do leitor pela adoção do mesmo conjunto de conclusões. Um item que avalia essa habilidade deve ter como base um texto dissertativo- argumentativo, no qual uma determinada posição ou ponto de vista são defendidos e propostos como válidos para o leitor. Este descritor indica a habilidade de o aluno reconhecer o ponto de vista ou a idéia central defendida pelo autor. A tese é uma proposição teórica de intenção per- suasiva, apoiada em argumentos contundentes sobre o assunto abordado. Exemplo de item: O teatro da etiqueta No século XV, quando se instalavam os Estados nacionais e a monarquia ab- soluta na Europa, não havia sequer garfos e colheres nas mesas de refeição: cada comensal trazia sua faca para cortar um naco da carne – e, em caso de briga, para cortar o vizinho. Nessa Europa bárbara, que começava a sair da Idade Média, em que nem os nobres sabiam escrever, o poder do rei devia se afirmar de todas as manei- ras aos olhos de seus súditos como uma espécie de teatro. Nesse contexto surge a etiqueta, marcando momento a momento o espetáculo da realeza: só para servir o vinho ao monarca havia um ritual que durava até dez minutos. Quando Luís XV, que reinou na França de 1715 a 1774, passou a usar lenço não como simples peça de vestuário, mas para limpar o nariz, ninguém mais na corte de 5 10
  • 56. Unidade4LínguaPortuguesa 56 15 Versalhes ousou assoar-se com os dedos, como era costume. Mas todas essas regras, embora servissem para diferenciar a nobreza dos demais, não tinham a petulância que a etiqueta adquiriu depois. Os nobres usavam as boas maneiras com naturali- dade, para marcar uma diferença política que já existia. E representavam esse teatro da mesma forma para todos. Depois da Revolução Francesa, as pessoas começam a aprender etiqueta para ascender socialmente. Daí por que ela passou a ser usada de forma desigual – só na hora de lidar com os poderosos. Revista Superinteressante, junho 1988, nº 6 ano 2. Nesse texto, o autor defende a tese de que (A) a etiqueta mudou, mas continua associada aos interesses do poder. (B) a etiqueta sempre foi um teatro apresentado pela realeza. (C) a etiqueta tinha uma finalidade democrática antigamente. (D) as classes sociais se utilizam da etiqueta desde o século XV. (E) as pessoas evoluíram a etiqueta para descomplicá-la. O que o resultado do Item indica? O descritor 7 procura analisar a habilidade do leitor em relação às estruturas próprias de textos argumentativos, pois se espera que identifique o ponto de vista ou a idéia central defendida pelo autor. Trata-se de um descritor importante para alunos de ensino médio, já que esses devem apresentar maior capacidade de lidar com o pensamento lógico e com o raciocínio abstrato. O texto selecionado apresenta-se difícil para os jovens, que necessitam, inclu- sive, de conhecimentos históricos para compreender o texto. A temática também apresenta certo nível de dificuldade, por não fazer parte do cotidiano dos alunos. O nível de dificuldade do item relaciona-se ao fato de as informações das alternativas serem inferenciais e não textuais. Apenas 40% dos estudantes acertaram o item. De toda forma, esses alunos podem ser considerados leitores competentes, pois souberam estabelecer hierarquia entre as idéias do texto e distinguir a afirmativa que apresenta a idéia defendida pelo autor. É de se observar que a atração maior para a alternativa “D” (30%) e que as dispersões homogêneas para as demais alternativas revelam o desconhecimento por parte de uma parcela dos alunos (60%) do que seja a idéia do autor sobre o tema. Percentual de respostas às alternativas A B C D E 40% 10% 10% 30% 10%
  • 57. Unidade4LínguaPortuguesa 57 Todas as outras alternativas focalizam a língua de forma parcial, especificando a- penas um detalhe do universo lingüístico: as regras, a gramática, os manuais de redação, a escrita. Que sugestões podem ser dadas para melhor desenvolver essa habilidade? A exposição da tese constitui uma estratégia discursiva do autor para mostrar a relevância ou consistência de sua posição e, assim, ganhar a adesão do leitor pela adoção do mesmo conjunto de conclusões. A diversidade de convívio com gêneros e com suportes é uma das diretrizes da pedagogia de leitura na atualidade. O professor deve trabalhar, em sala de aula, com textos argumentativos para que os alunos tenham a oportunidade de desenvolver habilidades de identificar as teses e os argumentos utilizados pelos autores para sustentá-las. Essa tarefa exige que o leitor reconheça o ponto de vista que está sendo defendido. O grau de dificul- dade dessa tarefa será maior se um mesmo texto apresentar mais de uma tese. Descritor 8 – Estabelecer a relação entre a tese e os argumentos oferecidos para sustentá-la Que habilidade pretendemos avaliar? Expor uma tese, naturalmente, exige a apresentação de argumentos que a fun- damentem. Ou seja, os argumentos apresentados funcionam como razões, ou como fundamentos de que a tese defendida tem sentido e consistência. Nas práticas so- ciais que envolvem a proposição de um certo posicionamento ou ponto de vista, a estratégia de oferecer argumentos – não por acaso chamada de argumentação – é um recurso de primeira importância. Um item relacionado a esse descritor deve levar o aluno a identificar, em uma passagem de caráter argumentativo, as razões oferecidas em defesa do posiciona- mento assumido pelo autor. Pretende-se, com este descritor, que o leitor identifique os argumentos utiliza- dos pelo autor na construção de um texto argumentativo. Essa tarefa exige que o leitor, primeiramente, reconheça o ponto de vista que está sendo defendido e rela- cione os argumentos usados para sustentá-lo.
  • 58. Unidade4LínguaPortuguesa 58 Exemplo de item: A língua está viva Ivana Traversim Na gramática, como muitos sabem e outros nem tanto, existe a exceção da exceção. Isso não quer dizer que vale tudo na hora de falar ou escrever. Há normas sobre as quais não podemos passar, mas existem também as preferências de de- terminado autor – regras que não são regras, apenas opções. De vez em quando aparece alguém querendo fazer dessas escolhas uma regra. Geralmente são os que não estão bem inteirados da língua e buscam soluções rápidas nos guias práticos de redação. Nada contra. O problema é julgar inquestionáveis as informações que es- ses manuais contêm, esquecendo-se de que eles estão, na maioria dos casos, sendo práticos – deixando para as gramáticas a explicação dos fundamentos da língua portuguesa. (...) Com informação, vocabulário e o auxílio da gramática, você tem plenas condições de escrever um bom texto. Mas, antes de se aventurar, considere quem vai ler o que você escreveu. A galera da faculdade, o pessoal da empresa ou a turma da balada? As linguagens são diferentes. Afinal, a língua está viva, renovando-se sem parar, circulando em todos os lu- gares, em todos os momentos do seu dia. Estar antenado, ir no embalo, baixar um arquivo, clicar no ícone – mais que expressões – são maneiras de se inserir num grupo, de socializar-se. (Você S/A, jun. 2003.) A tese da dinamicidade da língua comprova-se pelo fato de que (A) as regras gramaticais podem transformar-se em exceção. (B) a gramática permite que as regras se tornem opções. (C) a língua se manifesta em variados contextos e situações. (D) os manuais de redação são práticos para criar idéias. (E) é possível buscar soluções praticas na hora de escrever Percentual de respostas às alternativas A B C D E 11% 17% 42% 7% 21% 5 10 15
  • 59. Unidade4LínguaPortuguesa 59 O que o resultado do item indica? O descritor 8 procura também analisar a habilidade do leitor em relação às estruturas próprias de textos argumentativos, pois se espera que ele identifique os elementos que são apresentados como fatores que reforçam, sustentam ou confir- mam uma determinada tese, ou seja, que o leitor compreenda a relação entre a tese e seus argumentos. Trata-se de um descritor importante para alunos de ensino médio, já que esses devem apresentar maior capacidade de lidar com o pensamento lógico e com o raciocínio abstrato. Nesse sentido, o texto apresentado é adequado ao público, pois apresenta lin- guagem formal atual, tema importante e de interesse geral, nível de dificuldade apro- priado e é proveniente de um veículo de comunicação de ampla circulação. O título é significativo em relação à idéia central e favorece a interpretação do leitor. O item em pauta solicita ao leitor que identifique, entre vários argumentos apre- sentados no texto e retomados nas diversas opções, aquele que reforça a idéia da di- namicidade da língua, já apresentada no título. No enunciado, entretanto, essa idéia é apresentada por meio de uma substituição lexical, uma nova denominação – “di- namicidade” – o que exige a habilidade de reconhecer vocabulário mais complexo em uma outra formulação, ou seja, uma paráfrase. Este item apresentou resultados muito satisfatórios, pois, além de obter um percentual considerável de respostas corretas na alternativa “C” (42%), os alunos com melhor resultado na prova como um todo escolheram o gabarito. Entretanto, muitos alunos foram atraídos para a alternativa “E” (21%) e para a alternativa “B” (17%). Indicar corretamente a resposta exige do leitor a habilidade de estabelecer hierarquia entre as idéias do texto e distinguir a afirmativa que apresenta maior grau de generalização. Todas as outras alternativas focalizam a língua de forma parcial, especificando apenas um detalhe do universo lingüístico: as regras, a gramática, os manuais de redação, a escrita. Que sugestões podem ser dadas para melhor desenvolver essa habilidade? O professor deve trabalhar, em sala de aula, com textos argumentativos para que os alunos tenham a oportunidade de desenvolver habilidades de identificar as teses e os argumentos utilizados pelos autores para sustentá-las. Essa tarefa exige que o leitor, primeiramente, reconheça o ponto de vista que está sendo defendido para depois relacionar os argumentos usados para sustentá-lo. O grau de dificuldade dessa tarefa será maior, se um mesmo texto apresentar mais de uma tese.
  • 60. Unidade4LínguaPortuguesa 60 Descritor 9 – Diferenciar as parte principais das secundárias em um texto Que habilidade pretendemos avaliar? Se um texto é uma rede de relações, um “tecido” em que diferentes fios se articulam, nem todos “os fios” têm a mesma importância para o seu entendimento global. Tudo não pode ser percebido, portanto, como tendo igual relevância. Ou seja, há uma espécie de hierarquia entre as informações ou idéias apresentadas, de modo que umas convergem para o núcleo principal do texto, enquanto outras são apenas informações adicionais, acessórias, que apenas ilustram ou exemplificam o que está sendo dito. Perceber essa hierarquia das informações, das idéias, dos argumentos presentes em um texto constitui uma habilidade fundamental para a constituição de um leitor crítico e maduro. Um item voltado para a avaliação dessa habilidade deve levar o aluno a distin- guir, entre uma série de segmentos, aqueles que constituem elementos principais ou secundários do texto. É comum, entre os alunos, confundir “partes secundárias” do texto com a “parte principal”. A construção dessa competência é muito importante para desenvolver a habilidade de resumir textos. Exemplo de item: Animais no espaço Vários animais viajaram pelo espaço como astronautas. Os russos já usaram cachorros em suas experiências. Eles têm o sistema cardíaco parecido com o dos seres humanos. Estudando o que acontece com eles, os cientistas descobrem quais problemas podem acontecer com as pessoas. A cadela Laika, tripulante da Sputnik-2, foi o primeiro ser vivo a ir ao espa- ço, em novembro de 1957, quatro anos antes do primeiro homem, o astronauta Gagarin. Os norte-americanos gostam de fazer experiências científicas espaciais com macacos, pois o corpo deles se parece com o humano. O chimpanzé é o preferido porque é inteligente e convive melhor com o homem do que as outras espécies de macacos. Ele aprende a comer alimentos sintéticos e não se incomoda com a roupa espacial. Além disso, os macacos são treinados e podem fazer tarefas a bordo, como acionar os comandos das naves, quando as luzes coloridas acendem no painel, por exemplo. Enos foi o mais famoso macaco a viajar para o espaço, em novembro de 1961, 5 10 15
  • 61. Unidade4LínguaPortuguesa 61 a bordo da nave Mercury/Atlas 5. A nave de Enos teve problemas, mas ele voltou são e salvo, depois de ter trabalhado direitinho. Seu único erro foi ter comido muito depressa as pastilhas de banana durante as refeições. (Folha de São Paulo, 26 de janeiro de 1996) Entre as informações do texto acima, uma das principais é que (A) o chimpanzé mais famoso viajou para o espaço a bordo da Mercury-Atlas 5. (B) os cientistas descobrem problemas que podem acontecer com as pessoas. (C) a cadela Laika viajou ao espaço quatro anos depois de Gagarin. (D) a viagem do mais famoso macaco para o espaço aconteceu em 1961. (E) na nave espacial serviam pastilhas de banana durante as refeições. O que o resultado do item nos indica? O item mostrou-se relativamente fácil, visto que 69% dos alunos marcaram a resposta correta “B” e podem ser considerados bons leitores. O percentual significa- tivo de alunos atraídos pela alternativa “D” (18%), provavelmente, seguiram pistas verbais falsas que os induziram a confundir a informação secundária com a principal. Aqueles que se dispersaram entre as alternativas “A”, “C” e “E” são leitores precários que não conseguem localizar o que é essencial e o que é acessório no texto. Como podemos trabalhar essa habilidade? Essa habilidade é característica, principalmente, de textos informativos e argu- mentativos. Dada a importância dessa habilidade para a compreensão das partes constitutivas do texto, sugere-se ao professor que, além de levar os alunos a se fami- liarizarem com esses textos, trabalhe efetivamente o desenvolvimento dessa habili- dade por meio de outras práticas, tais como a elaboração de resumos, de esquemas, de quadros sinóticos etc. Percentual de respostas às alternativas A B C D E 7% 69% 6% 15% 2%
  • 62. Unidade4LínguaPortuguesa 62 Tópico V – Relações entre Recursos Expressivos e Efeitos de Sentido Em diferentes gêneros textuais, tais como a propaganda, os recursos expres- sivos são largamente utilizados. Os poemas também se valem desses recursos, exi- gindo atenção redobrada e sensibilidade do leitor para perceber os efeitos de sentido subjacentes ao texto. Vale destacar que os sinais de pontuação e outros mecanismos de notação, como o itálico, o negrito, a caixa alta e o tamanho da fonte podem expressar sentidos variados. O ponto de exclamação, por exemplo, nem sempre expressa surpresa. Faz- se necessário, portanto, que o leitor, ao explorar o texto, perceba como esses elemen- tos constroem a significação, na situação comunicativa em que se apresentam. Em relação a este tópico, apresentamos itens referentes aos descritores 16, 17, 18 e 19. Descritor 16 – Identificar efeitos de ironia ou humor em textos variados Que habilidade pretendemos avaliar? A forma como as palavras são usadas ou a quebra na regularidade de seus usos constituem recursos que, intencionalmente, são mobilizados para produzir no inter- locutor certos efeitos de sentido. Entre tais efeitos, são comuns os efeitos de ironia ou aqueles outros que provocam humor ou outro tipo de impacto. Para que a preten- são do autor tenha sucesso, é preciso que o interlocutor reconheça tais efeitos. Por exemplo, na ironia, o ouvinte ou leitor devem entender que o que é dito corresponde, na verdade, ao contrário do que é explicitamente afirmado. Um item relacionado a essa habilidade deve ter como base textos em que tais efeitos se manifestem (como anedotas, charges, tiras etc.) e deve levar o aluno a reconhecer quais expressões ou outros recursos criaram os efeitos em jogo. Por meio deste descritor, pode-se avaliar a habilidade do aluno em reconhecer os efeitos de ironia ou humor causados por expressões diferenciadas utilizadas no texto pelo autor ou, ainda, pela utilização de pontuação e notações. No caso deste item, o que se pretende é que o aluno reconheça o fato que provocou o efeito de iro- nia no texto. Descritores D16 D17 D18 D19
  • 63. Unidade4LínguaPortuguesa 63 Exemplo de item: Prova falsa Quem teve a idéia foi o padrinho da caçula — ele me conta. Trouxe o cachorro de presente e logo a família inteira se apaixonou pelo bicho. Ele até que não é contra isso de se ter um animalzinho em casa, desde que seja obediente e com um mínimo de educação. — Mas o cachorro era um chato — desabafou. Desses cachorrinhos de caça, cheios de nhenhenhém, que comem comidinha especial, precisam de muitos cuidados, enfim, um chato de galocha. E, como se isto não bastasse, implicava com o dono da casa. — Vivia de rabo abanando para todo mundo, mas quando eu entrava em casa vinha logo com aquele latido fininho e antipático, de cachorro de francesa. Ainda por cima era puxa-saco. Lembrava certos políticos da oposição, que es- pinafram o ministro, mas quando estão com o ministro, ficam mais por baixo que tapete de porão. Quando cruzavam num corredor ou qualquer outra dependência da casa, o desgraçado rosnava ameaçador, mas quando a patroa estava perto, abanava o rabinho, fingindo-se seu amigo. — Quando eu reclamava, dizendo que o cachorro era um cínico, minha mulher brigava comigo, dizendo que nunca houve cachorro fingido e eu é que implicava com o “pobrezinho”. Num rápido balanço poderia assinalar: o cachorro comeu oito meias suas, roeu a manga de um paletó de casemira inglesa, rasgara diversos livros, não podia ver um pé de sapato que arrastava para locais incríveis. A vida lá em sua casa estava se tornando insuportável. Estava vendo a hora em que se desquitava por causa daquele bicho cretino. Tentou mandá-lo embora umas vinte vezes e era uma choradeira das crianças e uma espinafração da mulher. — Você é um desalmado — disse ela, uma vez. Venceu a guerra fria com o cachorro graças à má educação do adversário. O cãozinho começou a fazer pipi onde não devia. Várias vezes exemplado, prosseguiu no feio vício. Fez diversas vezes no tapete da sala. Fez duas na boneca da filha maior. Quatro ou cinco vezes fez nos brinquedos da caçula. E tudo culminou com o pipi que fez em cima do vestido novo de sua mulher. — Aí mandaram o cachorro embora? — perguntei. — Mandaram. Mas eu fiz questão de dá-lo de presente a um amigo que adora cachorros. Ele está levando um vidão em sua nova residência. — Ué... mas você não o detestava? Como é que ainda arranjou essa sopa pra ele? — Problema de consciência — explicou: O pipi não era dele. E suspirou cheio de remorso. PONTE PRETA, Stanislaw. Para gostar de ler. Gol de padre e outras crônicas. São Paulo: Ática, 1998. v. 23. p. 24-25. 5 10 15 20 25 30 35
  • 64. Unidade4LínguaPortuguesa 64 O que gera humor no texto é o fato de (A) a família se apaixonar pelo cachorro. (B) a mulher dizer que nunca houve cachorro fingido. (C) o cachorro fazer pipi onde não devia. (D) o dono da casa achar o cachorro um chato. (E) o pipi feito no vestido novo não ser do cachorro. Que habilidade pretendemos avaliar? Por meio dessa habilidade, pretendemos avaliar a capacidade do aluno em perceber humor a partir de marcas do texto. O humor está presente em textos de gêneros variados, mas, na maioria dos casos, oferece dificuldade para o leitor, pois muitas vezes exige o conhecimento de situações que não são marcadas no texto, mas que devem ser inferidas a partir de sua formação, de seu universo cultural e de seu conhecimento de mundo. O que o desempenho do item nos indica? A dificuldade desse item reside no fato de que os alunos deveriam identificar o efeito de humor decorrente de um fato atribuído ao cachorro e que gerou conse- qüências. A omissão do autor da ação e a revelação no final do texto é que provoca o humor. O índice de acerto de apenas (20%) indica a dificuldade do item, o que deve ser explicado pela falta de entendimento do texto, tanto que 70% dos alunos esco- lheram erroneamente as demais alternativas. Os alunos que escolheram a alternativa correta “E” podem ser considerados leitores proficientes que, além de apreenderem o sentido do texto como um todo, souberam reconhecer a situação que provocou o humor no texto. Como podemos trabalhar essa habilidade? Sugere-se que o professor trabalhe mais, em sala de aula, textos variados que busquem provocar um efeito de humor, pois, na maioria das vezes, esse resulta do deslocamento do sentido convencional de uma palavra. Percentual de respostas às alternativas A B C D E 30% 20% 10% 10% 20%
  • 65. Unidade4LínguaPortuguesa 65 É importante chamar a atenção para o fato de que muitas vezes o efeito de humor pode ser resultante de contextos evidenciados pela imagem ou ainda pela combinação das linguagens verbal e não-verbal. Essa habilidade é avaliada por meio de textos verbais e de textos verbais e não-verbais, sendo muito valorizadas neste descritor atividades com textos de gêne- ros variados sobre temas atuais, com espaço para várias possibilidades de leituras, como os textos publicitários, as charges, os textos de humor ou letras de músicas, levando o aluno a perceber o sentido irônico ou humorístico do texto, que pode es- tar representado, por exemplo, por uma expressão verbal inusitada ou por uma ex- pressão facial da personagem. Descritor 17 – Identificar o efeito de sentido decorrente do uso da pontuação e de outras notações Que habilidade pretendemos avaliar? Entre os recursos referidos acima, estão os sinais de pontuação. Além de es- tarem vinculados intimamente à coerência do texto, esses sinais podem acumular outras funções discursivas, como aquelas ligadas à ênfase, à reformulação ou à justificação de certos segmentos. Nessa perspectiva, a pontuação tem de ser vista muito mais além; isto é, não são simples sinais para separar ou marcar segmentos da superfície do texto. Um item relativo a essa habilidade deve, portanto, conceder primazia aos efeitos discursivos produzidos por notações como itálico, negrito, caixa alta etc. e pelo uso dos sinais; muito mais, portanto, do que simplesmente a identificação de suas funções na sintaxe da frase. Com este item, pretendemos avaliar a habilidade de o aluno identificar o efeito provocado no texto pelo uso das aspas, que colabora para a construção do seu sen- tido global, não se restringindo ao seu aspecto puramente gramatical. Consideremos o item a seguir: Exemplo de item: A culpa é do dono? A reportagem “Eles estão soltos” (17 de janeiro), sobre os cães da raça pit bull que passeiam livremente pelas praias cariocas, deixou leitores indignados com a
  • 66. Unidade4LínguaPortuguesa 66 defesa que seus criadores fazem de seus animais. Um deles dizia que os cães só se tornam agressivos quando algum movimento os assusta. Sandro Megale Pizzo, de São Carlos, retruca que é difícil saber quais de nossos movimentos “assustariam” um pit bull. De Siegen, na Alemanha, a leitora Regina Castro Schaefer diz que pergunta a si mesma que tipo de gente pode ter como animal de estimação um cachorro que é capaz de matar e desfigurar pessoas. Veja, Abril. 28/2/2001. O que sugere o uso de aspas na palavra “assustariam”? (A) raiva. (B) ironia. (C) medo. (D) insegurança. (E) ignorância. O que o resultado do item indica? O item focaliza o uso das aspas na palavra “assustariam” e o feito que isso pro- voca no leitor. Menos da metade dos alunos assinalou, corretamente, a alternativa “B”, de- monstrando ter percebido que as aspas transmitem ao leitor o efeito irônico que o autor do texto quis provocar no interlocutor. No entanto, houve uma dispersão quase homogênea para as alternativas “C” e “D”, em uma demonstração de que identificam apenas a função gramatical das notações, mas não conseguem identificar o efeito de sentido decorrente de seu uso. Por meio do item, evidencia-se a importância de se construir não apenas o co- nhecimento dos usos convencionais desses recursos, como também das funções tex- tuais que podem vir a exercer em relação a um uso não-convencional. Tanto a pontuação (aspas, reticências, parênteses etc.) quanto as demais no- tações (tipo e tamanho da letra, caixa alta etc.) são recursos gráficos, próprios do sistema da escrita, que promovem e/ou intensificam efeitos de sentido, sendo es- senciais para o processamento da leitura. Percentual de respostas às alternativas A B C D E 10% 44% 20% 21% 4% 5
  • 67. Unidade4LínguaPortuguesa 67 Que sugestões podem ser dadas para melhor desenvolver essa habilidade? Ao longo do processo de leitura, podemos oferecer aos nossos alunos o con- tato com gêneros textuais que utilizam largamente recursos, como propagandas, reportagens, quadrinhos, entre outros, orientando-os a perceber e analisar os efeitos de sentido dos sinais de pontuação (travessão, interrogação, exclamação, reticên- cias etc.) e das notações (itálico, negrito, caixa alta, entre outros) como elementos significativos para construção de sentidos. Descritor 18 – Reconhecer o efeito de sentido decorrente da escolha de uma determinada palavra ou expressão Que habilidade pretendemos avaliar? Se é verdade que nada no texto acontece aleatoriamente, ganha relevo admitir que a seleção de determinada palavra em lugar de uma outra pode responder a uma intenção particular do interlocutor de produzir certo efeito discursivo. Optar por um diminutivo, por exemplo, pode ser um recurso para expressar uma ressalva, para desprestigiar um objeto, como pode, ao contrário, revelar afeto, carinho, aceitação. Optar por uma palavra estrangeira também tem seus efeitos. Portanto a com- petência comunicativa inclui a capacidade de não apenas conhecer os significados das palavras, mas, sobretudo, de discernir os efeitos de sentido que suas escolhas proporcionam. Isso nos leva a ultrapassar a simples identificação “do que o outro diz” para perceber “por que ele diz com essa ou aquela palavra”. Um item destinado a avaliar essa habilidade deve focalizar uma determinada palavra ou expressão e solicitar do aluno o discernimento de por que essa, e não outra palavra ou expressão, foi selecionada. Com este item, pretendemos avaliar a habilidade do aluno em reconhecer a alteração de significado ou a criação de um determinado termo ou vocábulo, decor- rente da escolha do autor. Devemos compreender a seleção vocabular como uma estratégia do autor para que o leitor depreenda seus propósitos. Vejamos o exemplo a seguir: Exemplo de item: Leite Vocês que têm mais de 15 anos, se lembram quando a gente comprava leite
  • 68. Unidade4LínguaPortuguesa 68 em garrafa, na leiteria da esquina? (...) Mas vocês não se lembram de nada, pô! Vai ver nem sabem o que é vaca. Nem o que é leite. Estou falando isso porque agora mesmo peguei um pacote de leite − leite em pacote, imagina, Tereza! − na porta dos fundos e estava escrito que é pas- terizado ou pasteurizado, sei lá, tem vitamina, é garantido pela embromatologia, foi enriquecido e o escambau. Será que isso é mesmo leite? No dicionário diz que leite é outra coisa: “líquido branco, contendo água, proteína, açúcar e sais minerais”. Um alimento pra ninguém botar defeito. O ser humano o usa há mais de 5.000 mil anos. É o único alimento só alimento. A carne serve pro animal andar, a fruta serve para fazer outra fruta, o ovo serve pra fazer outra galinha (...) O leite é só leite. Ou toma ou bota fora. Esse aqui examinando bem, é só pra botar fora. Tem chumbo, tem benzina, tem mais água do que leite, tem serragem, sou capaz de jurar que nem vaca tem por trás desse negócio. Depois o pessoal ainda acha estranho que os meninos não gostem de leite. Mas, como não gostam? Não gostam como? Nunca tomaram! Múúúúúúú! Millôr Fernandes. O Estado de São Paulo. 22/08/1999. Ao criar a palavra “embromatologia” (ℓ. 6), o autor pretendeu ser (A) conciso. (B) sério. (C) formal. (D) cordial. (E) irônico. O que o resultado do item indica? A seleção vocabular deve ser compreendida como estratégia pela qual se po- dem depreender propósitos do autor do texto. Os alunos que responderam corretamente à questão, assinalando a alternativa “E” (irônico), demonstraram não apenas habilidade de usar conhecimento vocabular relevante (embromar + bromatologia), como também de identificar o uso estratégico que se faz de uma palavra criada com base em outras e reconhecer que o autor usou esse artifício para expressar sua ironia diante da propaganda dos elementos consti- tutivos do leite, recurso utilizado para atrair o consumidor. Percentual de respostas às alternativas A B C D E 4% 13% 22% 9% 43% 5 10 15
  • 69. Unidade4LínguaPortuguesa 69 Aqueles que optaram pelas demais alternativas erradas são leitores imaturos que não apreenderam o sentido do texto, nem souberam ler as entrelinhas para chegar à intenção do autor em criticar as estratégias de venda do leite. Que sugestões podem ser dadas para melhor desenvolver essa habilidade? Para desenvolvermos essa habilidade, podemos utilizar textos publicitários, literários, entre outros, nos quais sejam explorados recursos expressivos impor- tantes, proporcionando ao aluno a percepção das estratégias utilizadas pelo autor para a ampliação do significado do texto. Seria desejável que a exploração de outros recursos expressivos (metáforas, ironia, pontuação etc.) acompanhasse, nas atividades em sala de aula, o estudo da construção dos diferentes elementos da narrativa (narrador, personagens, enredo, espaço e tempo). Descritor 19 – Reconhecer o efeito de sentido decorrente da exploração de recursos ortográficos e/ou morfossintáticos Que habilidade pretendemos avaliar? As explicações dadas para o descritor anterior, em parte, podem valer para este. Ou seja, as escolhas que fazemos para a elaboração de um texto respondem a intenções discursivas específicas, sejam escolhas de palavras, sejam escolhas de es- truturas morfológicas ou sintáticas. Assim, não é por acaso que, em certos textos, o autor opta por períodos mais curtos – para dar um efeito de velocidade, por exemplo; ou opta por inversões de segmentos – para surtir certos efeitos de estranhamento, de impacto, de encantamento, afinal (“tinha uma pedra no meio do caminho; no meio do caminho tinha uma pedra”). Ou seja, mais do que identificar a estrutura sintática apresentada, vale discernir sobre o efeito discursivo provocado no leitor. Um item relativo a essa habilidade deve, pois, conceder primazia aos efeitos discursivos produzidos pela escolha de determinada estrutura morfológica ou sintáti- ca. Incide, portanto, sobre os motivos de uma escolha para alcançar certos efeitos. Com este item, pretende-se avaliar a habilidade do aluno em identificar o efeito de sentido decorrente das variações relativas aos padrões gramaticais da língua. No texto a seguir, exploramos, como recurso expressivo, a repetição lexical (verbo querer).
  • 70. Unidade4LínguaPortuguesa 70 Exemplo de item: Você não entende nada Quando eu chego em casa nada me consola Você está sempre aflita Com lágrimas nos olhos de cortar cebola Você é tão bonita Você traz coca-cola Eu tomo Você bota a mesa Eu como eu como eu como eu como eu como Você Não tá entendendo quase nada do que eu digo Eu quero é ir-me embora Eu quero dar o fora E quero que você venha comigo Eu me sento Eu fumo Eu como Eu não agüento Você está tão curtida Eu quero é tocar fogo nesse apartamento Você não acredita Traz meu café com suíta Eu tomo Bota a sobremesa Eu como eu como eu como eu como eu como Você Tem que saber que eu quero é correr mundo Correr perigo Eu quero é ir-me embora Eu quero dar o fora E quero que você venha comigo. (VELOSO, Caetano. Literatura Comentada: Você Não Entende Nada. 2 Ed. Nova Cultura. 1998) 5 10 15 20 25 30
  • 71. Unidade4LínguaPortuguesa 71 A repetição da expressão “eu quero”, em diversos versos, tem por objetivo (A) fazer associações de sentido. (B) refutar argumentos anteriores. (C) detalhar sonhos e pretensões. (D) apresentar explicações novas. (E) reforçar a expressão dos desejos. O que o resultado do item indica? O texto analisado recorre à estratégia da repetição lexical (querer) com o propósito de reforçar a expressão de um desejo. Assim, este é um item por meio do qual se pode avaliar se o aluno sabe identificar a função textual do recurso em foco, sabendo diferenciá-la de outras que também seriam possíveis pelo uso do mesmo recurso expressivo. Os alunos que marcaram a alternativa correta “E” (57%) sou- beram estabelecer essa diferença. Os alunos que optaram pelas alternativas erradas têm dificuldades de leitura num nível mais abstrato e não construíram ainda a com- petência de investigar as diferentes funções textuais utilizadas pelo autor. Que sugestões podem ser dadas para melhor desenvolver essa habilidade? As atividades de leitura e de análise lingüística possibilitam ao aluno inves- tigar diferentes funções textuais produzidas por um único recurso expressivo e os diferentes efeitos de sentido que podem daí derivar. Temos, muitas vezes, a idéia equivocada de que a repetição de palavras e expressões é um recurso típico de textos produzidos na modalidade oral, que indica falta de maestria no uso da linguagem. O recurso da repetição é, entretanto, estratégia que pode promover múltiplos e vários efeitos (por exemplo, topicalização, seqüenciação textual, entre outros). Tópico VI – Variação Lingüística Este tópico expõe o descritor 13, que avalia a habilidade do aluno de perceber as marcas lingüísticas identificadoras do locutor e do interlocutor, assim como as situações de interlocução do texto e as possíveis variações da fala. Percentual de respostas às alternativas A B C D E 11% 5% 16% 7% 57% Descritor D13
  • 72. Unidade4LínguaPortuguesa 72 Descritor 13 – Identificar as marcas lingüísticas que evidenciam o locutor e o interlocutor de um texto. Que habilidade pretendemos avaliar? As variações lingüísticas, evidentemente, manifestam-se por formas, marcas, estruturas que revelam características (regionais ou sociais) do locutor e, por vezes, do interlocutor a quem o texto se destina. Essas variações são, portanto, resultado do empenho dos interlocutores para se ajustarem às condições de produção e de circulação do discurso. Um item relacionado a essa habilidade deve, portanto, centrar-se no reconheci- mento das variações (gramaticais ou lexicais) que, mais especificamente, revelam as características dos locutores e dos interlocutores. Essa habilidade vai exigir do aluno a habilidade em identificar as variações lingüísticas resultantes da influência de diversos fatores, como o grupo social a que o falante pertence, o lugar e a época em que ele nasceu e vive, bem como verificar quem fala no texto e a quem este se destina, reconhecendo as marcas lingüísticas expressas por meio de registros usados, vocabulário empregado, uso de gírias ou expressões ou níveis de linguagem. Exemplo de item: 13 de Dezembro Passei de carro pela Esplanada e vi a multidão. Estranhei aquilo. O motorista me lembrou: “Hoje é 13 de dezembro, Dia de Santa Luzia. A igreja dela está cheia, ela protege os olhos da gente”. Agradeci a informação, mas fiquei inquieto. Bolas, o 13 de dezembro tinha alguma coisa a ver comigo e nada com Santa Luzia e sua eficácia nas doenças que ainda não tenho. O que seria? Aniversário de um amigo? Uma data inconfessável, que tivesse marcado um relacionamento para o bom ou para o pior? Não lembrava de nada de importante naquele dia, mas ele piscava dentro de mim. E as horas se passaram iluminadas pelo intermitente piscar da luzinha ver- melha dentro de mim. 13 de dezembro! Preciso tomar um desses tonificantes da memória, vivo em parte dela e não posso ter brancos assim, um dia importante e não me lembro por quê. Somente à noite, quando não era mais 13 de dezembro, ao fechar o livro que estava lendo, de repente a luz parou de piscar e iluminou com nitidez a cena noturna: eu chegando no prédio em que morava, no Leme, a Kombi que saiu dos fundos da garagem, o homem que se aproximou e me avisou que o comandante do 1º Exército 5 10 15
  • 73. Unidade4LínguaPortuguesa 73 queria falar comigo. Eram 11 horas da noite, estranhei aquele convite, nada tinha a falar com o general Sarmento e não acreditava que ele tivesse alguma coisa a falar comigo. Mas o homem insistiu. E outro homem que saíra da Kombi já entrava dentro do meu carro, com uma pequena metralhadora. Naquela mesma hora, a mesma cena se repetia pelo Brasil afora, o governo baixara o AI-5, eu nem ouvira o decreto lido no rádio. Num motel da Barra, eu estivera à toa na vida, e meu amor me chamara e eu não vira a banda passar. Tantos anos depois, ninguém me chama nem me convida para falar com o comandante do 1º Exército. O País talvez tenha melhorado, mas eu certamente pi- orei. CONY, Carlos Heitor. Folha de São Paulo. 16/12/2001. A fala do motorista (ℓ. 2) é exemplo de linguagem (A) culta. (B) coloquial. (C) vulgar. (D) técnica. (E) regional. O que o resultado do item indica? A linguagem verbal não é uniforme. Toda língua natural passa por transforma- ções. O próprio português falado no Brasil é resultante de um conjunto de influências de diversos tipos, registrados ao longo de nossa história. Com o texto, não é dife- rente, sendo ele a expressão dessa linguagem humana. Todo texto apresenta mar- cas lingüísticas, que revelam, por exemplo, características dos falantes envolvidos, como origem social ou regional, grau de escolaridade, sexo, profissão, idade, entre outras. Como parte da leitura plena de um texto, é fundamental que o leitor iden- tifique quem fala ou quem escreve, para quem se fala ou para quem se escreve e de que maneira os traços dos indivíduos envolvidos na produção de um texto são expressos nele e chegam até o receptor. O tema da crônica é histórico, como já sugere o próprio título. Mesmo assim, não é um texto que se prende a uma mera descrição histórica. Ele gira em torno de um indivíduo que se vê diante de uma data importante, mas que não consegue se Percentual de respostas às alternativas A B C D E 23% 41% 7% 6% 22% 20 25
  • 74. Unidade4LínguaPortuguesa 74 lembrar por que ela é importante. Ao chegar a noite, com ela chegou também a lem- brança do que acontecera na noite do dia 13 de dezembro, quando foram cassados os direitos dos brasileiros pelo AI-5 (Ato Institucional nº 5), promulgado no ano de 1968. Espera-se, com textos dessa natureza, que o estudante tenha base para for- mar opinião, a partir do acesso a fatos importantes de nossa história mais recente. O item explora os atores do texto, colocando em relevo uma das vozes que são utilizadas nele, a voz do motorista. Espera-se que o leitor consiga, a partir do exem- plo de discurso direto escolhido, identificar o tipo de linguagem dos interlocutores do texto. Acertaram a resposta (letra “B”) 41% dos estudantes, optaram pela alternativa “A”, 23%, talvez por não terem lido a fala do motorista até o fim, em que fica evidente o seu caráter coloquial. Outros 22%, que tiveram relativo sucesso na prova como um todo, marcaram a alternativa “E”. Supõe-se que optaram por essa resposta dado o preconceito de que a classe “motorista” tenha, necessariamente, uma linguagem regional, fato que pode estar mostrando que não houve leitura, nem análise da fala e de suas marcas lingüísticas. Que sugestões podem ser dadas para melhor desenvolver essa habilidade? O professor deve trabalhar com textos que contenham muitas variantes lingüísti- cas, privilegiando expressões informais, expressões regionais, expressões caracterís- ticas de certa faixa etária ou de uma época etc. O trabalho com variação lingüística é essencial para o desenvolvimento de uma postura não preconceituosa dos alu- nos em relação a usos lingüísticos distintos dos seus. É importante que o profes- sor mostre aos seus alunos as razões dos diferentes usos lingüísticos por diferentes grupos de falantes, para que eles adquiram a noção do valor social atribuído a essas variações. Podemos, também, trabalhar a variação lingüística em gravações de áu- dio e vídeo de textos orais (por exemplo, programas de televisão), dramatização de textos de vários gêneros e em atividades com músicas de estilos variados (regionais, sertanejas, entre outras). Atividades de análise lingüística a partir das quais os alunos possam refletir sobre a interferência dos fatores variados, que se manifestam tanto na modalidade oral como na escrita, favorecem o desenvolvimento desta habilidade. Os fatores que intervêm no uso da língua e provocam tal variação são de ordem geográfica (em fun- ção das regiões do país e de seus espaços rurais e urbanos), histórica (o que envolve a época histórica de sua produção), sociológica (tais como classe social ou gênero sexual), do contexto social, entre outros.
  • 75. Unidade4LínguaPortuguesa 75 4.8. Considerações finais – Língua Portuguesa Os itens apresentados neste caderno foram aplicados no Saeb da 3ª série do Ensino Médio. Eles revelam a condição em que os estudantes se situam em relação à construção das competências lingüísticas reunidas no foco leitura. A análise pedagógica destes itens mostra que determinadas competências foram construídas ao término de oito ou nove anos de escolaridade; que outras não foram construídas e que algumas estão em processo de construção. Naturalmente, com base nas análises, o professor pode refletir sobre o que está ensinando e como está ensinando as estratégias de leitura, bem como reavaliar sua prática em sala de aula. É de se notar que muitas dessas habilidades requeridas pelos itens já deveriam ter sido desenvolvidas nas séries iniciais do ensino fundamental e que, na 3ª série do ensino médio, os alunos deveriam apresentar um melhor desempenho nos itens que medem algumas habilidades já trabalhadas até a 8ª série/9º ano do ensino fun- damental. A competência estabelecida no Tópico V é de grande importância para a com- preensão do texto, tendo em vista que as habilidades indicadas pelos descritores 16, 17, 18 e 19 são fundamentais para a construção de significados do texto, levando o leitor para além do que está na superfície dele. O efeito de sentido decorrente do uso de pontuação e de outras notações con- figura-se uma competência de fundamental importância, tendo em vista que os alu- nos, desde a 4ª série/5° ano do Ensino Fundamental, deveriam ter desenvolvido a habilidade de fazer a distinção entre a função gramatical dos sinais e o efeito de sentido que estes causam no leitor (surpresa, exagero, ironia, indignação, deboche, indiferença etc.). No que diz respeito ao conhecimento da variação lingüística, consideramos que a escola deve praticar uma pedagogia culturalmente sensível aos saberes dos alu- nos. Identificar as várias realizações da fala é de fundamental importância para a inclusão dos alunos considerados lingüisticamente fora do processo ensino/apren- dizagem. Importante, ainda, é que a escola pratique o respeito às características culturais e psicológicas dos alunos. Bagno (2000) defende um ensino crítico da norma-padrão. Para ele, a escola deve dar espaço ao máximo possível de manifestações lingüísticas concretizadas no maior número possível de gêneros textuais e de variedades de línguas: rurais, urba- nas, orais, escritas, formais, informais, cultas, não-cultas etc.
  • 76. Unidade4LínguaPortuguesa 76 Unidade4LínguaPortuguesa 76 É importante reforçar que a construção da competência lingüística dos alunos depende necessariamente da variedade de gêneros textuais que circulam na escola e das práticas sociais de letramento de que os alunos participam. Considerando que a leitura é condição essencial para que o aluno possa com- preender o mundo, os outros, suas próprias experiências e para que possa inserir-se no mundo da escrita, torna-se imperativo que a escola proporcione as oportunidades de construção das competências lingüísticas necessárias para se formar um leitor competente. Ademais, as formas de se trabalhar com a leitura não se esgotam em apenas um item ou no desenvolvimento de uma habilidade. Na verdade, são inúmeras as possibilidades de que o professor pode lançar mão em sala de aula e que, em uma avaliação como esta, devido às limitações operacionais e à metodologia utilizada, as quais permitem medir apenas uma habilidade por item, não são passíveis de serem mensuradas. O desenvolvimento das habilidades de leitura, além de proporcionar um melhor resultado nas avaliações institucionais, possibilitam aos alunos terem outra postura diante do quantitativo de informações que lhes chegam aos sentidos. Passam a com- preender e controlar o sistema de representação e suas potencialidades, deixando de ser meros críticos para serem vistos como reconstrutores e transformadores dos signos. Finalizando, espera-se que as observações feitas sobre o desempenho dos alu- nos e a sinalização de quais competências não foram ainda construídas, de outras que estão em fase de construção ou daquelas que já foram construídas possam ser- vir de subsídios que permitam ao professor fazer uma reflexão sobre a importância de um espaço, no currículo escolar do ensino fundamental brasileiro, para a prática da leitura.
  • 77. Unidade5Matemática 77 5. MATEMÁTICA 5.1. O que se avalia em Matemática e por que se avalia As matrizes de referência que norteiam os testes de Matemática do Saeb e da Prova Brasil estão estruturadas sobre o foco Resolução de Problemas. Essa opção traz implícita a convicção de que o conhecimento matemático ganha significado quando os alunos têm situações desafiadoras para resolver e trabalham para desen- volver estratégias de resolução. As Matrizes de Referência de Matemática, diferentemente do que se espera de um currículo, não trazem orientações ou sugestões de como trabalhar em sala de aula. Além disso, não mencionam certas habilidades e competências que, em- bora sejam importantes, não podem ser medidas por meio de uma prova escrita. Em outras palavras, as Matrizes de Referências de Matemática do Saeb e da Prova Brasil não avaliam todos os conteúdos que devem ser trabalhados pela escola no decorrer dos períodos avaliados. Sob esse aspecto, parece também ser evidente que o desempenho dos alunos em uma prova com questões de múltipla escolha não for- nece ao professor indicações de todas as habilidades e competências desenvolvidas nas aulas de matemática. Desse modo, as Matrizes envolvem habilidades relacionadas a conhecimen- tos e a procedimentos que podem ser objetivamente verificados. Um exemplo: o conteúdo “utilizar procedimentos de cálculo mental”, que consta nos Parâmetros Curriculares Nacionais, apesar de indicar uma importante capacidade que deve ser desenvolvida ao longo de todo o Ensino Fundamental, não tem nessa Matriz um de- scritor correspondente. Assim, a partir dos itens do Saeb e da Prova Brasil, é possível afirmar que um aluno desenvolveu uma certa habilidade, quando ele é capaz de resolver um prob- lema a partir da utilização/aplicação de um conceito por ele já construído. Por isso, o teste busca apresentar, prioritariamente, situações em que a resolução de proble- mas seja significativa para o aluno e mobilize seus recursos cognitivos. 5.2. A Matriz de Referência de Matemática: Temas e seus Descritores – 3ª série do Ensino Médio As matrizes de matemática estão estruturadas por anos e séries avaliadas. Para cada um deles, são definidos os descritores que indicam uma determinada
  • 78. Unidade5Matemática 78 habilidade que deve ter sido desenvolvida nessa fase de ensino. Esses descritores são agrupados por temas que relacionam um conjunto de objetivos educacionais. Tema I. Espaço e Forma Identificar a relação entre o número de vértices, faces e/ou arestas de poliedros expressa em um problema Reconhecer aplicações das relações métricas do triângulo retângulo em um problema que envolva figuras planas ou espaciais Identificar figuras semelhantes mediante o reconhecimento de relações de proporcionalidade Relacionar diferentes poliedros ou corpos redondos com suas planificações ou vistas D1 D2 D3 Resolver problema que envolva razões trigonométricas no triângulo retângulo (seno, cosseno, tangente) Identificar a localização de pontos no plano cartesiano Interpretar geometricamente os coeficientes da equação de uma reta Identificar a equação de uma reta apresentada a partir de dois pontos dados ou de um ponto e sua inclinação Relacionar a determinação do ponto de interseção de duas ou mais retas com a resolução de um sistema de equações com duas incógnitas Reconhecer, dentre as equações do 2.º grau com duas incógnitas, as que representam circunferências D4 D5 D6 D7 D8 D9 D10 Descritores 3ª EM D11 D12 D13 Tema II. Grandezas e Medidas Resolver problema envolvendo o cálculo de área de figuras planas Resolver problema envolvendo o cálculo de perímetro de figuras planas Resolver problema envolvendo a área total e/ou volume de um sólido (prisma, pirâmide, cilindro, cone, esfera). Descritores 3ª EM
  • 79. Unidade5Matemática 79 Tema III. Números e Operações/Álgebra e Funções Resolver problema que envolva variação proporcional, direta ou inversa, entre grandezas Identificar a localização de números reais na reta numérica Reconhecer expressão algébrica que representa uma função a partir de uma tabela Descritores 3ª EM Resolver problema que envolva porcentagem Resolver problema envolvendo equação do 2.º grau Resolver problema envolvendo uma função do 1.º grau Analisar crescimento/decrescimento, zeros de funções reais apresentadas em gráficos Identificar o gráfico que representa uma situação descrita em um texto Resolver problema envolvendo P.A./P.G. dada a fórmula do termo geral Reconhecer o gráfico de uma função polinomial de 1.º grau por meio de seus coeficientes Reconhecer a representação algébrica de uma função do 1.º grau dado o seu gráfico Resolver problemas que envolvam os pontos de máximo ou de mínimo no gráfico de uma função polinomial do 2.º grau Relacionar as raízes de um polinômio com sua decomposição em fatores do 1.º grau Identificar a representação algébrica e/ou gráfica de uma função exponencial Identificar a representação algébrica e/ou gráfica de uma função logarítmica, reconhecendo-a como inversa da função exponencial Resolver problema que envolva função exponencial Identificar gráficos de funções trigonométricas (seno, cos- seno, tangente), reconhecendo suas propriedades Determinar a solução de um sistema linear, associando-o a uma matriz Resolver problema de contagem utilizando o princípio multi- plicativo ou noções de permutação simples, arranjo simples e/ou combinação simples Calcular a probabilidade de um evento D14 D15 D16 D17 D18 D19 D20 D21 D22 D23 D24 D25 D26 D27 D28 D29 D30 D31 D32 D33
  • 80. Unidade5Matemática 80 5.3. Exemplos de itens de 3ª série do Ensino Médio – Matemática A seguir, são apresentados itens que foram utilizados no Saeb e na Prova Brasil. Inicialmente, discorre-se sobre cada tema; depois, há a apresentação de cada descri- tor e da habilidade por ele indicada. Para cada descritor, há dois exemplos de itens: o primeiro, com percentuais de respostas para cada alternativa assinalada, com base nos quais é feita uma análise pedagógica; o segundo, com a indicação do gabarito e sem percentuais de respostas. Por fim, algumas sugestões para o professor trabalhar com seus alunos no sentido de desenvolver as habilidades apontadas pelos descri- tores. Tema I – Espaço e Forma Esse campo do conhecimento é uma parte importante do currículo do ensino médio, permitindo que o aluno compreenda, descreva e represente o mundo em que vive, exercitando a passagem do abstrato para o concreto. Nesse tema, trabalha-se com cálculo de áreas, volumes e distâncias, conectados ou não a suas possíveis apli- cações. O trabalho com geometria incentiva o aluno a observar, perceber semelhan- ças e diferenças, identificar padrões em figuras e objetos e definir estratégias para resolver problemas. Alem disso, permite o desenvolvimento de percepção espacial, possibilitando aos alunos relacionar a Matemática a outras áreas do conhecimento. Por fim, permite também estimular a capacidade de generalizar, independentemente da aplicação de tal capacidade ao mundo material. Descritor 1 – Identificar figuras semelhantes mediante o reconhecimento de relações de proporcionalidade Tema IV. Tratamento da Informação Associar informações apresentadas em listas e/ou tabelas simples aos gráficos que as representam e vice-versa Resolver problema envolvendo informações apresentadas em tabelas e/ou gráficos Descritores 3ª EM D34 D35 Descritores D1 D2 D3 D4 D5 D6 D7 D8 D9 D10
  • 81. Unidade5Matemática 81 Que habilidade pretendemos avaliar? Pretende-se avaliar a habilidade de o aluno reconhecer relações de proporcio- nalidade com o objetivo de identificar figuras que sejam semelhantes. Exemplo de item: A figura abaixo mostra os trapézios ABEF e ACDF formados pelas retas r, s e t, parale- las entre si, e cortadas por duas transversais. Com base nas informações da figura, qual é o valor do comprimento x? (A) 1,5 (B) 4 (C) 5 (D) 8 (E) 15 Observações: 1. O quadro explicativo com os percentuais de respostas às alternativas refere-se ao desempenho de alunos em testes do Saeb e da Prova Brasil, com abrangência em todo o País. 2. A soma dos percentuais não perfaz, necessariamente, 100%, pois não estão apresentados os correspondentes às respostas em branco ou nulas. Isso vale para todos os itens comentados. Percentual de respostas às alternativas A B C D E 15% 11% 18% 33% 20%
  • 82. Unidade5Matemática 82 O que o resultado do item indica? A resolução envolve reconhecer que os feixes de retas formam diferentes triân- gulos. O triângulo GCD tem dois de seus lados conhecidos e com valores GC = 10 e CD = 10. O triângulo GBE tem o lado GB = 8 e o lado BE com o valor que se quer de- terminar. Como esses dois triângulos são semelhantes, existe uma relação de propor- cionalidade entre seus lados. Assim: = e então x=8, alternativa “D”, assinalada por 33% dos alunos. Que sugestões podem ser dadas para melhor desenvolver essa habilidade? Trabalhar com os alunos a existência de figuras que são semelhantes entre si e, a partir daí, as relações de proporcionalidade que reforcem as suas semelhanças. Descritor 2 – Reconhecer aplicações das relações métricas do triângulo retân- gulo em um problema que envolva figuras planas ou espaciais Que habilidade pretendemos avaliar? Com itens referentes a esse descritor, pretende-se medir a habilidade de o aluno trabalhar com as relações métricas do triângulo retângulo, principalmente o teorema de Pitágoras. Exemplo de item: Um bloco de formato retangular ABCDEFGH, representado pela figura abaixo, tem as arestas que medem 3 cm, 4 cm e 6 cm. 10 10 8 X
  • 83. Unidade5Matemática 83 A medida da diagonal FC do bloco retangular, em centímetros, é (A) 3. (B) 5. (C) 4 6 . (D) 2 13. (E) 61. O que o resultado do item indica? O início da solução do problema envolve reconhecer que, na figura apresentada, existe um triângulo formado pelos vértices A, C e F. A partir desse reconhecimento, para calcular a diagonal FC, que é a hipotenusa do triângulo ACF, é necessário con- hecer os valores dos catetos AC e AF. O valor do cateto AF é igual ao valor de DE, já que ambos são paralelos. O cateto AC é a hipotenusa do triângulo ABC, com lados AB = 6 e BC = 3. Assim, aplicando Pitágoras AB2 + BC2 = AC2 . Logo AB2 + BC2 = 62 + 32 = 45 Então: FC = AF2 + AC2 = 42 + 45 = 16 + 45 = 61 , logo a alternativa correta é a alternativa “E”, assinalada por apenas 13% dos alunos, portanto um item que pode ser considerado difícil. Que sugestões podem ser dadas para melhor desenvolver essa habilidade? É necessário trabalhar com os alunos atividades em que seja possível desen- volver sua visão espacial. Uma forma de fazer isso é utilizar os exemplos do dia-a-dia para que os alunos verifiquem as diversas situações em que as relações métricas do triângulo retângulo são utilizadas na resolução de problemas. Descritor 3 – Relacionar diferentes poliedros ou corpos redondos com suas planificações ou vistas Que habilidade pretendemos avaliar? Percentual de respostas às alternativas A B C D E 11% 19% 33% 23% 13% ( ) 2
  • 84. Unidade5Matemática 84 Pretende-se, com esse descritor, avaliar a habilidade dos alunos em conseguir decompor diversos sólidos, identificando diferentes vistas e suas respectivas planifi- cações. Exemplo de item: A figura abaixo representa a planificação de um sólido geométrico. O sólido planificado é (A) uma pirâmide de base hexagonal. (B) um prisma de base hexagonal. (C) um paralelepípedo. (D) um hexaedro. (E) um prisma de base pentagonal O que o resultado do item indica? Para resolver esse problema, o aluno precisará ter desenvolvido habilidades que permitam a ele reconstruir, a partir da planificação de um sólido, a sua forma. Para isso, ele terá de identificar, em cada parte da figura, a existência das diversas faces do sólido que estão colocadas sobre o plano e, a partir daí, reconstruir passo a passo esse sólido. Os que dominam essa habilidade conseguiram acertar o item assinalando a alternativa “B”, escolhida por 39% do total de alunos. Que sugestões podem ser dadas para melhor desenvolver essa habilidade? Trazer para a sala de aula uma série de objetos tridimensionais e solicitar aos alunos que os examinem em diferentes perspectivas e desenhem as faces desses objetos a partir do ponto de observação utilizado. Percentual de respostas às alternativas A B C D E 8% 39% 11% 20% 18%
  • 85. Unidade5Matemática 85 Descritor 4 – Identificar a relação entre o número de vértices, faces e/ou ar- estas de poliedros expressa em um problema Que habilidade pretendemos avaliar? Pretende-se que o aluno demonstre a habilidade de utilizar, em situações práti- cas, a relação entre faces, arestas e vértices de um sólido geométrico expressas na relação de Euler: V + F - A = 2 Exemplo de item: Uma caixa no formato de um poliedro precisa ser reforçada com 3 parafusos em cada vértice, um revestimento de metal nas suas 7 faces e uma aplicação de uma cola especial em todas as 15 arestas. A quantidade necessária de parafusos será igual a (A) 72. (B) 66. (C) 24. (D) 30. (E) 10. O que o resultado do item indica? A resolução desse problema envolve a habilidade de relacionar as faces, ares- tas e vértices de um sólido entre si, que são expressas na relação de Euler. Assim, onde F = 7 e A = 12. Portanto, o número de vértices é igual a 10. Como serão utiliza- dos três parafusos por vértice, serão necessários 30 parafusos. Os alunos que desen- volveram esse caminho para a solução do problema conseguiram chegar à resposta correta indicada pela alternativa “D”, que correspondeu a 24% do total de respostas. Aqueles que assinalaram a alternativa “E” provavelmente não se aperceberam de que o problema não pedia o número de vértices, mas sim o número de parafusos por vértice e assim não realizaram a operação de multiplicação por três. Que sugestões podem ser dadas para melhor desenvolver essa habilidade? Estimular os alunos a manipular diversos sólidos geométricos, identificando seus elementos para que consigam, a partir daí, chegar até a relação de Euler. Percentual de respostas às alternativas A B C D E 13% 26% 29% 24% 6%
  • 86. Unidade5Matemática 86 Descritor 5 – Resolver problema que envolva razões trigonométricas no triân- gulo retângulo (seno, cosseno, tangente) Que habilidade pretendemos avaliar? Com itens desse descritor, pretende-se testar a habilidade de os alunos utiliza- rem as razões trigonométricas para a solução de problemas do dia-a-dia. Exemplo de item: Um caminhão sobe uma rampa inclinada 15o em relação ao plano horizontal. Saben- do-se que a distância HORIZONTAL que separa o início da rampa até o ponto vertical mede 24 m, a que altura, em metros, aproximadamente, estará o caminhão depois de percorrer toda a rampa? (A) 6 (B) 23 (C) 25 (D) 92 (E) 100 O que o resultado do item indica? Para a solução desse problema, o aluno primeiramente terá de identificar entre as três razões trigonométricas sugeridas pelos dados (seno, cosseno e tangente), qual delas será usada para resolver o problema. No caso, o aluno deverá utilizar a tangente de 15º. Assim: tg (15º) = = 0,26. Logox =6,24,queaproximado,comopedeoenunciado,dariacomoresultadoovalorx = 6, conforme indica a alternativa “A”, assinalada por 30% dos alunos. Provavelmente 10% dos alunos que assinalaram como certa a alternativa “B” e os que assinalaram a alternativa “C” confundiram os conceitos, identificando que utilizando o cosseno do ângulo resolveriam o problema. Percentual de respostas às alternativas A B C D E 30% 10% 24% 23% 9% x 24
  • 87. Unidade5Matemática 87 Que sugestões podem ser dadas para melhor desenvolver essa habilidade? Esse descritor aborda um dos assuntos de maior aplicação no cotidiano dos alu- nos. Existe uma infinidade de problemas que devem ser trazidos para resolução em sala de aula. O professor pode construir com seus alunos um instrumento para medir ângulos, usando um transferidor e um canudinho e, com a ajuda destes, resolver questões bem práticas como: calcular a altura de um prédio, conhecido o ângulo de visão e a distância do observador até a base do prédio, a largura de uma rua etc. Descritor 6 – Identificar a localização de pontos no plano cartesiano Que habilidade pretendemos avaliar? Este descritor pretende medir a habilidade de os alunos identificarem adequada- mente um ponto no plano a partir de seu par ordenado, ou vice-versa. Exemplo de item: A figura abaixo mostra um ponto em um plano cartesiano. As coordenadas do ponto A são (A) (6, 6). (B) (-3, 4). (C) (3, 4). (D) (3, 7). (E) (4,5). Percentual de respostas às alternativas A B C D E 5% 10% 62% 6% 10%
  • 88. Unidade5Matemática 88 O que o resultado do item indica? Os 62% dos alunos que marcaram a alternativa correta “C” indicam que o item é bastante fácil. Para chegar ao gabarito, o aluno teve de contar a distância entre o ponto “A” e os eixos x e y. Além disso, como a localização é dada por um par ordena- do, foi preciso que o aluno identificasse que o primeiro número refere-se à abscissa e o segundo à ordenada. Que sugestões podem ser dadas para melhor desenvolver essa habilidade? Enfatizar a ordem e o significado dos valores negativos e positivos das coordenadas cartesianas de um ponto. Sugere-se a montagem de um grande plano cartesiano no quadro ou na parede, no qual os alunos localizariam ou marcariam pontos. Mostrar, por meio de exemplos a analogia entre coordenadas cartesianas e coordenadas no campo da geografia (latitude e longitude). Se possível, usar um GPS e determinar posições de pontos na própria escola. Descritor 7 – Interpretar geometricamente os coeficientes da equação de uma reta Que habilidade pretendemos avaliar? Esse descritor pretende avaliar a habilidade de os alunos identificarem os coefi- cientes de uma equação de 1º grau. Exemplo de item: A reta de equação 2y + x = 0 (A) é paralela ao eixo 0X. (B) é paralela ao eixo 0Y. (C) tem coeficiente angular - . (D) tem coeficiente angular . (E) tem coeficiente angular 2. 1 2 1 2
  • 89. Unidade5Matemática 89 O que o resultado do item indica? Para resolver acertadamente o problema, o aluno deveria reconhecer as pro- priedades da reta, que é dada na sua forma genérica como y = ax + b . No caso do problema em questão, manipulando-se a equação dada, a expressão da reta seria: y = - x . Assim, o coeficiente angular “a” seria igual a - , o coeficiente linear “b” seria igual a zero. Se a reta fosse paralela ao eixo OX, sua expressão seria do tipo y = c, e no caso de a reta ser paralela ao eixo OY, sua expressão seria do tipo x = c, onde “c” é um número real qualquer. Dessa forma, a alternativa correta é aque- la assinalada na alternativa “C”, marcada por apenas 18% dos alunos. Isso demon- stra a necessidade de trabalhar mais fortemente esses conceitos com os alunos, já que mais de 78% deles erraram o item. Que sugestões podem ser dadas para melhor desenvolver essa habilidade? Uma boa sugestão é procurar levar para a sala de aula uma série de aplica- ções práticas. Utilizando-se da física, por exemplo, pode-se discutir o significado da inclinação da reta em um gráfico v x t de um movimento uniformemente variado. Na economia, podem-se utilizar a relação de demanda x preço. Descritor 8 – Identificar a equação de uma reta apresentada a partir de dois pontos dados ou de um ponto e sua inclinação Que habilidade pretendemos avaliar? Itens referentes a esse descritor pretendem avaliar a habilidade de o aluno cons- truir a equação de uma reta a partir de dois de seus pontos ou então a partir de um ponto e de sua inclinação. Percentual de respostas às alternativas A B C D E 19% 15% 18% 16% 28% 1 2 1 2
  • 90. Unidade5Matemática 90 Exemplo de item: Qual é a equação da reta que contém os pontos (3, 5) e (4, -2)? (A) y = - 7x + 26 (B) - x - (C) x - (D) y = x + 2 (E) y = 7 x - 16 O que o resultado do item indica? Ao calcular a equação da reta determinada pelos pontos dados, os alunos po- dem ter utilizado, por exemplo, qualquer um dos seguintes procedimentos: I. cálculo da declividade da reta, a = = = -7 e substituição desse valor e das coordenadas de um dos pontos na forma reduzida da equação da reta, y = ax + b, a fim de determinar o valor do coeficiente linear. Assim, 5 = (- 7) x 3 + b, e b = 5 + 21 = 26 ; II. resolução de um sistema de duas equações de primeiro grau, a fim de determi- nar os valores dos coeficientes envolvidos nas equações: 5 = 3a + b - 2 = 4a + b 1 7 10 7 1 7 18 7 Percentual de respostas às alternativas A B C D E 23% 18% 18% 16% 21% 5 - ( -2) 3 - 4 7 -1 {
  • 91. Unidade5Matemática 91 A resposta correta a esse item é a alternativa “A”, escolhida por 23% dos avali- ados, indicando tratar-se de um item de média dificuldade. Esse resultado indica que 73% dos alunos, soma das porcentagens das alternativas de “B” a “E”, não dominam essa habilidade. Analisando-se cada uma das alternativas erradas é possível perceber pos- síveis caminhos que os alunos poderiam ter percorrido na tentativa de resolver o problema proposto. Provavelmente, o procedimento “I” é o mais ensinado nas escolas e é a partir dele que serão feitos os comentários a seguir. A alternativa “B” poderia indicar que, para calcular o coeficiente angular, os alunos inverteram o numerador pelo denominador obtendo como resultado o va- lor de - e a partir dele, o coeficiente linear de - . A alternativa “C” indicaria que os alunos, além de terem realizado a inversão, erraram no momento de estabe-lecer os sinais, obtendo assim como coeficientes angular e linear valo- res iguais a e , respectivamente. Para as alternativas de “B” a “C”, parece que, muito mais que o entendimento do significado da representação geo- métrica do coeficiente angular, os alunos estariam utilizando o procedimento como indicado em “I” para a resolução do problema e memorizando fórmulas, caindo assim na armadilha de inverter seus termos e obtendo valores errados. A alternativa “D” foi marcada pelos alunos que muito provavelmente não dominam a habilidade medida, pois utilizaram um caminho, impossível de ser descrito, que nada tem a ver com o problema proposto. Por fim, a alternativa “E” foi provavelmente marcada por aqueles que, ao rea- lizarem a conta , obtiveram como resultado +7, e utilizando-o na equação, obtiveram como coeficiente linear o valor -16. Que sugestões podem ser dadas para melhor desenvolver essa habili- dade? A principal sugestão é trabalhar fortemente com os alunos a representação geométrica do coeficiente angular da reta. De forma complementar, podem-se tra- balhar problemas que envolvam o descritor D8 utilizado na resolução de sistemas de duas equações. Assim, não é necessária a memorização de fórmulas. 1 7 10 7 1 7 18 7 7 -1
  • 92. Unidade5Matemática 92 Descritor 9 – Relacionar a determinação do ponto de interseção de duas ou mais retas com a resolução de um sistema de equações com duas incógnitas Que habilidade pretendemos avaliar? Esse descritor pretende avaliar a habilidade de o aluno relacionar dois impor- tantes conceitos matemáticos: a resolução de problemas que envolvam um sistema de equações com duas incógnitas e a determinação do ponto de interseção de duas retas. Exemplo de item: O ponto de interseção das retas de equações x + 3y – 1 = 0 e x – y + 3 = 0 é (A) (1, -2). (B) (-2, 1). (C) (-1, -2). (D) (-2, -1). (E) (1, 2). O que o resultado do item indica? Para a solução do problema, o aluno deverá primeiramente ter em mente que o ponto de interseção de duas retas concorrentes pode ser determinado algebrica- mente a partir da montagem de um sistema de duas equações. Assim, a resolução do problema passa pela solução do seguinte sistema: x + 3y - 1 = 0 x - y + 3 = 0 Resolvendo o sistema, obtém-se o par (-2, 1) Por esse resultado, a alternativa correta é a “B”, assinalada por 32% dos alu- nos, o que demonstra ser um item de média complexidade. O restante dos alunos demonstram não dominar a habilidade. Percentual de respostas às alternativas A B C D E 14% 32% 18% 17% 16% {
  • 93. Unidade5Matemática 93 Que sugestões podem ser dadas para melhor desenvolver essa habilidade? Inicialmente, é necessário fixar o conceito de que a solução de um sistema de equações de primeiro grau pode ser expressa por um par ordenado, sendo que esse par representa um ponto no sistema cartesiano. A interseção de duas retas corresponde a um par ordenado que indica a solução do sistema de equações. Com noções simples da geometria analítica, o aluno determina o ponto de interseção de duas retas. Descritor 10 – Reconhecer, dentre as equações do 2.º grau com duas incóg- nitas, as que representam circunferências Que habilidade pretendemos avaliar? Com relação a essa habilidade, pretende-se avaliar a capacidade de o aluno reconhecer, dentre um conjunto de equações de 2º grau, aquela que representa a equação de uma circunferência. Exemplo de item: Dentre as equações abaixo, pode-se afirmar que a de uma circunferência é (A) (x - 1)2 + y2 = 25 . (B) x2 - y - 4x = -3. (C) x2 + y2 = -16. (D) x2 - y - 9 = 0. (E) x2 - y2 - 4x = 9. O que o resultado do item indica? A solução do problema passa pela habilidade de reconhecer as propriedades de uma circunferência. Genericamente, essa figura geométrica possui centro (xc , yc ) e raio R. Como qualquer de seus pontos é eqüidistante do centro, a distância deles ao centro é o raio. A partir dessas propriedade, chega-se facilmente à equação re- duzida da circunferência utilizando-se o teorema de Pitágoras, obtendo-se (x - xc )2 + (y - yc )2 = R2. . Desenvolvendo essa equação obtém-se a equação geral da circunferên- cia, que é dada por x2 + y2 - 2xc x - 2yc y + xc 2 + yc 2 - R2 = 0. Percentual de respostas às alternativas A B C D E 24% 14% 19% 27% 12%
  • 94. Unidade5Matemática 94 Portanto, o aluno teria de verificar cada uma das alternativas e compará-las com as duas formas que expressam a equação da circunferência. Agindo assim, chegaria à solução do problema marcando a alternativa “A”, que foi assinalada por 24% dos alunos. Que sugestões podem ser dadas para melhor desenvolver essa habili- dade? Uma das alternativas para desenvolver essa habilidade é apresentar aos alunos o desenvolvimento da equação da circunferência a partir do teorema de Pitágoras. Dessa forma, a equação ficará mais compreensível ao aluno. Tema II: Grandezas e Medidas Medir é uma atividade que está presente no cotidiano das pessoas. O estudo desse campo tem forte motivação empírica envolvendo cálculo de volumes e ca- pacidades de recipientes. Descritor 11 – Resolver problema envolvendo o cálculo de perímetro de figu- ras planas Que habilidade pretendemos avaliar? Esse descritor pretende avaliar a habilidade de o aluno resolver problemas do cotidiano utilizando cálculo de perímetro. Exemplo de item: Uma praça quadrada, que possui o perímetro de 24 metros, tem uma árvore próxima de cada vértice e fora dela. Deseja-se aumen- tar a área da praça, alteran- do-se sua forma e mantendo as árvores externas a ela, conforme ilustra a figura. Descritores D11 D12 D13 2m 2m 2m2m
  • 95. Unidade5Matemática 95 O novo perímetro da praça, é (A) 24 metros. (B) 32 metros. (C) 36 metros. (D) 40 metros. (E) 64 metros. O que o resultado do item indica? Para solucionar esse problema, o aluno primeiramente deverá identificar que o perímetro da praça é dado pela soma dos seus lados. Assim, se ela é quadrada, seus lados têm o valor de 6 metros. Para aumentar o perímetro da praça, cada lado é acrescido em 2 metros. Com isso, o perímetro total da nova praça será 4x (2 + 6 + 2) = 40. Aqueles que assinalaram a alternativa “B”, 44% do total, provavelmente acharam o perímetro da praça anterior à reforma, ou seja, 4 x 6 = 24, e adicionaram a esse valor 4 x 2 = 8 , referentes às larguras das áreas adicionadas, perfazendo um total de 24 + 8 = 32 . Que sugestões podem ser dadas para melhor desenvolver essa habilidade? O desenvolvimento dessa habilidade é fundamental na construção da com- petência de medir, que já deve ter sido desenvolvida na etapa anterior da educação básica, mas precisa ser aprimorada na etapa atual. Para tanto, o professor deve uti- lizar vivências do cotidiano do aluno, como o cálculo do perímetro do círculo central da quadra ou de polígonos com outras formas. Descritor 12 – Resolver problema envolvendo o cálculo de área de figuras planas Que habilidade pretendemos avaliar? Pretende-se avaliar com esse descritor a habilidade de o aluno trabalhar com cálculo de áreas envolvendo figuras planas. Percentual de respostas às alternativas A B C D E 10% 44% 13% 21% 8%
  • 96. Unidade5Matemática 96 Exemplo de item: Paulo resolve modificar o revestimento do piso de sua sala de estar e escolhe uma cerâmica cujo formato está representado na figura a seguir. A cerâmica escolhida tem a forma de um quadrado cujo lado mede 40cm e possui 4 arcos de circunferên- cia, de raio igual a 10cm, cujos centros estão localizados nos vértices do quadrado. Com base nessas informações, qual é a área do desenho formado na cerâmica, em centímetros quadrados? (Considere  = 3,14) (A) 314 (B) 400 (C) 486 (D) 1114 (E) 1286 O que o resultado do item indica? Um dos caminhos possíveis para calcular a área da figura inscrita no quadrado é visualizar as figuras geométricas que são formadas no ladrilho. Assim, existem quatro triângulos com base igual a 20cm e altura também de 20cm e quatro círcu- los, cada um dividido por quatro, de raio igual a 10cm. A área da figura desenhada na cerâmica será igual à área do ladrilho quadrado de lado 40 cm subtraída da soma das áreas das figuras geométricas, ou seja: (I) Afigra = Aladrilho - 4x( Atriângulo + x Acirculo ) (II) Aladrilho = 40 x 40 = 1600 (III) Atriângulo = = 200 Percentual de respostas às alternativas A B C D E 22% 26% 21% 12% 14% 1 4 20 x 20 2
  • 97. Unidade5Matemática 97 (IV) Acírculo =  x 102 = 314 Fazendo as substituições de (II), (III) e (IV) em (I) tem-se que: Afigra = 1600 - 4x (200 + x 314) = 486 O valor encontrado é o que está marcado na alternativa “C”, que foi assinalada por 21% dos alunos, o que indica que esse item é de média complexidade. Que sugestões podem ser dadas para melhor desenvolver essa habilidade? Valer-se de exemplos concretos, como o piso e as paredes da sala de aula, para fixar o cálculo de área de retângulos e induzir à conclusão de que a área de um triângulo é obtida como metade da área de um retângulo (dividindo este por uma de suas diagonais). Outros polígonos podem ser desmembrados em retângulos e triân- gulos para o cálculo de sua área. Para o cálculo de áreas de setores circulares, estes devem ser apresentados como frações do círculo. Descritor 13 – Resolver problema envolvendo a área total e/ou volume de um sólido (prisma, pirâmide, cilindro, cone, esfera) Que habilidade pretendemos avaliar? O descritor pretende avaliar, entre os alunos, a habilidade de resolver proble- mas que envolvam cálculo de área de sólidos geométricos. Exemplo de item: Um corpo cilíndrico, com 4 cm de raio e 12 cm de altura, está com água até a altura de 8 cm. Foram então colocadas em seu interior n bolas de gude, e o nível da água atingiu a boca do vidro, sem derramamento. Qual é o volume, em cm3 , de todas as n bolas de gude juntas? (A) 32 π (B) 48 π (C) 64 π (D) 80 π (E) 96 π 1 4
  • 98. Unidade5Matemática 98 O que o resultado do item indica? Apesar de as situações que envolvem o cálculo de volume estarem presentes no cotidiano, o resultado da avaliação indica que muitos alunos ainda não desen- volveram adequadamente as habilidades necessárias para resolver problemas dessa natureza, pois 78% deles responderam o item erradamente. Apenas 22% dos alunos acertaram o item, marcando a alternativa “C”, indican- do que esse item é difícil. A solução desse item envolvia o cálculo do volume total do cilindro, seguido do cálculo do volume ocupado pela água e, finalmente, a subtração desses dois volumes, o que forneceria o volume ocupado pelas bolas de gude adicio- nadas. Que sugestões podem ser dadas para melhor desenvolver essa habili- dade? É importante partir do cálculo do volume de sólidos, tais como paralelepípedos reto-retângulos e cilindros, mostrando que ele sempre é obtido pelo produto da área da base pela altura. A partir dessa constatação, pode-se deduzir as fórmulas dos volumes. A habilidade deve ser aprimorada com a utilização de prismas de bases triangulares ou hexagonais. Para visualizar o cálculo da área total de um sólido, é possível valer-se de objetos concretos: caixas de sapato, dados de RPG (pirâmides e outros poliedros), caixa de chocolate com a forma de prisma de base triangular etc. Se possível, deve ser mostrado com o uso de material sólido (massa de modelar ou argila), que o volume da pirâmide é 1/3 do volume de um prisma do qual ela foi obtida. Tema III: Números e Operações / Álgebras e Funções Percentual de respostas às alternativas A B C D E 27% 36% 22% 6% 8% D14 D15 D16 D17 D18 D19 D20 D21 D22 D23 Descritores D24 D25 D26 D27 D28 D29 D30 D31 D32 D33
  • 99. Unidade5Matemática 99 Nesse campo, encontram-se várias competências do último ciclo do ensino fundamental, desenvolvidas com um maior grau de complexidade. Espera-se que o aluno transponha informações de uma representação matemática para outra, como, por exemplo, da linguagem algébrica para a geométrica e vice-versa. Ao fim do ensino médio, supõe-se que os alunos tenham desenvolvido uma compreensão adequada do conceito de número e suas operações, o que os capacita a fazer julga- mentos matemáticos e a decidir quanto a estratégias de manipulação dos números e das operações, visando à solução de situações-problema. Descritor 14 – Identificar a localização de números reais na reta numérica Que habilidade pretendemos avaliar? Itens referentes a esse descritor têm por objetivo avaliar a habilidade de os alunos representarem a posição de números reais na reta numérica Exemplo de item: Na figura abaixo, estão representados os números reais 0, x, 1, y. A posição do produto xy é (A) à esquerda do zero. (B) entre 0 e x. (C) entre x e y. (D) entre y e 1. (E) à direita de 1. O que o resultado do item indica? A solução do problema passa primeiro pela verificação de que os valores Percentual de respostas às alternativas A B C D E 10% 11% 52% 8% 17%
  • 100. Unidade5Matemática 100 associados aos números x e y são menores que 1, já que x e y estão posicionados na reta entre 0 e 1. Para descobrir o lugar da reta em que estará localizado o produto de x por y, o aluno deverá reconhecer que o produto de dois números menores que um é igual a um número menor que o menor deles. No caso, o menor dos números envol- vendo x e y é o número x. Portanto, o produto de x por y é um número menor que x, e na reta ficará posicionado entre 0 e x, conforme indica a alternativa “B”, assinalada por 11% dos alunos. É importante destacar que 52% dos alunos assinalaram a alter- nativa “C”, indicando que não desenvolveram a habilidade de calcular mentalmente que o produto de dois números menores que 1 é menor do que o menor deles. Que sugestões podem ser dadas para melhor desenvolver essa habilidade? Essa é uma habilidade que já deve ter sido desenvolvida na outra etapa da educação básica, mas precisa ser aprimorada no ensino médio. Pode-se partir da construção de uma reta numerada, solicitando-se que os alunos localizem, sucessi- vamente, números racionais entre dois racionais dados. O objetivo dessa atividade é que os alunos concluam que, entre dois números racionais quaisquer, existem outros infinitos números racionais. A seguir, devem ser localizados alguns números irracio- nais como √2, √3, √5 e √7 . As atividades práticas de localização de pontos nas retas construídas ajudarão muito no desenvolvimento da habilidade. Descritor 15 – Resolver problema que envolva variação proporcional, direta ou inversa, entre grandezas Que habilidade pretendemos avaliar? Esse descritor pretende avaliar a habilidade de os alunos resolverem problemas que envolvam variação proporcional entre grandezas. Exemplo de item: Um pai vai repartir 180 reais entre seus dois filhos, diretamente proporcional à idade de cada um. O mais novo dos filhos tem 7 anos e o outro, 11 anos. Qual a quantia, em reais, que o mais velho receberá? (A) 110 (B) 100 (C) 90 (D) 80 (E) 60
  • 101. Unidade5Matemática 101 O que o resultado do item indica? Os conceitos necessários à resolução do item são: noções de razão e de propor- ção de números diretamente proporcionais e a sua resolução por meio da soma ou de simples equação de 1º grau. A resposta correta assinalada na alternativa “A” foi dada por 56% dos alunos, o que mostra que o item é de dificuldade média. Provavel- mente, o caminho percorrido por aqueles que acertaram o item foi calcular primeiro a soma das idades dos irmãos 7 + 11 = 18 para, a seguir, saber quanto cada um receberia em função de cada ano de vida: = = 10 Assim, para saber o valor que o irmão mais velho receberia, bastaria realizar a opera- ção: 10 x 11 = 110. Que sugestões podem ser dadas para melhor desenvolver essa habilidade? Montar uma regra de três simples é uma habilidade rapidamente desenvolvida pelos alunos. A partir daí, deve ser dada uma ênfase no reconhecimento de gran- dezas diretamente ou inversamente proporcionais. Diversos exemplos do cotidiano dos alunos podem ser explorados para verificar se as duas grandezas são direta ou in- versamente proporcionais: escala em mapas, velocidade x tempo, espaço x tempo. Descritor 16 – Resolver problema que envolva porcentagem Que habilidade pretendemos avaliar? Com itens referentes a esse descritor, pretende-se avaliar a habilidade de o alu- no usar os conceitos de percentagens para solucionar problemas. Exemplo de item: Uma pesquisa sobre o perfil dos que bebem café mostrou que, num grupo de 1 000 pessoas, 70% bebem café e, dentre os que bebem café , 44% são mulheres. Percentual de respostas às alternativas A B C D E 56% 19% 15% 4% 4% Real anos de vida 180 18
  • 102. Unidade5Matemática 102 Qual a quantidade de homens que bebem café no grupo de 1 000 pessoas? (A) 700 (B) 660 (C) 392 (D) 308 (E) 260 O que o resultado do item indica? Para solucionar o problema proposto, um dos caminhos possíveis é o aluno primeiro identificar que no grupo existem 70% de pessoas que bebem café, por- tanto: Bebem café = 1 000 x 0,7 = 700 pessoas. Entre os que bebem café, existem tanto homens como mulheres, e o problema quer saber a quantidade de homens que bebem café. Como é dado que, entre os que bebem café, 44% deles são mulheres, o total de mulheres que bebem café é: 700 x 0,44 = 308. Assim, para achar o número de homens que bebem café, basta fazer a diferença entre o total de pessoas que bebem café e o número de mulheres que bebem café, ou seja: 700 - 308 = 392. Esse valor é o que está indicado na alter- nativa “C”, que foi assinalada por 26% dos alunos. Que sugestões podem ser dadas para melhor desenvolver essa habilidade? A habilidade tratada é necessária para que o aluno resolva problemas com os quais se deparará cotidianamente e, portanto, deve ser exaustivamente trabalhada em sala de aula. Alguns exemplos de problemas que podem ser trabalhados: por- centagem de alunos, porcentagem de questões de prova, índice de aprovação, por- centual de variação da bolsa de valores e do dólar, porcentagem de reajuste salarial, porcentagem de aprovação de determinado candidato etc. Descritor 17 – Resolver problema envolvendo equação do 2.º grau Que habilidade pretendemos avaliar? Com esse descritor, pretende-se medir a habilidade de o aluno resolver proble- mas em que seja necessário utilizar uma equação de 2º grau. Percentual de respostas às alternativas A B C D E 13% 23% 26% 11% 26%
  • 103. Unidade5Matemática 103 Exemplo de item: Em um terreno retangular de 10 m x 12 m, deseja-se construir um jardim com 80 m2 de área, deixando uma faixa para o caminho (sempre de mesma largura), como mostra a figura. A largura do caminho deve ser de (A) 1 m. (B) 1,5 m. (C) 2 m. (D) 2,5 m. (E) 3 m. O que o resultado do item indica? Uma forma de solucionar esse problema é identificar a largura da faixa para o caminho como tendo um valor arbitrário “x”. Assim, a área do jardim é dada pela multiplicação dos lados do terreno, que tem formato de um retângulo, em que cada lado deve ser subtraído do valor “x”, ou seja: Ajardim = (12 - x) x (10- x) = 80. Desenvolvendo a relação, tem-se: x2 - 22x + 120 = 80 . Resolvendo a equação de 2º grau, obtém-se que x = 2 , conforme indicado na alternativa “C”, que foi assi- nalada por 45% dos participantes, o que indica que o item é de média dificuldade. Que sugestões podem ser dadas para melhor desenvolver essa habilidade? As atividades em sala de aula, para facilitar o desenvolvimento dessa habili- dade, devem iniciar-se com representações simples de sentenças matemáticas que expressem situações do contexto e, gradativamente, evoluir para a construção de equações do 2º grau. Podem ser utilizados com muito sucesso exemplos da física: a função quadrática do movimento uniformemente variado, a equação da força em função do deslocamento de uma mola etc. Percentual de respostas às alternativas A B C D E 7% 16% 45% 17% 11%
  • 104. Unidade5Matemática 104 Descritor 18 – Reconhecer expressão algébrica que representa uma função a partir de uma tabela Que habilidade pretendemos avaliar? Com base nesse descritor, pretende-se avaliar a habilidade de o aluno identifi- car a expressão algébrica que representa a função que rege os dados indicados em uma tabela dada. Exemplo de item: Uma empresa, em processo de reestruturação, propôs a seus funcionários, admitidos hápelomenosdoisanos,umaindenizaçãofinanceiraparaosquepedissemdemissão, que variava em função do número de anos trabalhados. A tabela abaixo era utilizada para calcular o valor (i) da indenização, em função do tempo trabalhado (t). A expressão que permite determinar o valor da indenização i para t anos trabalhados é (A) i = 450 t. (B) i = 450 + 500 t. (C) i = 450 (t - 1). (D) i = 450 + 500 (t - 1). (E) i = 500 t. O que o resultado do item indica? Com relação a esse item, vale a pena comentar o caminho que percorreram Tempo trabalho (em anos) Valor de Indenização (em reais) 1 450 2 950 3 1450 4 1950 Percentual de respostas às alternativas A B C D E 33% 16% 18% 21% 10%
  • 105. Unidade5Matemática 105 os alunos que assinalaram a alternativa incorreta “A”. Esses alunos provavelmente leram a primeira linha da tabela e perceberam que existia uma relação direta entre o tempo trabalhado e o valor da indenização e, sem acompanhar as demais linhas, foram em busca de uma resposta entre as alternativas e a encontraram na letra “A”. O caminho correto seria observar pela tabela que, a cada ano trabalhado, eram acrescentados R$ 500,00 de indenização, partindo de R$ 450,00 do primeiro ano. Assim, a relação expressa pelos dados na tabela é: i = 450 + 500(t -1), que pode ser encontrada na alternativa “D”. Que sugestões podem ser dadas para melhor desenvolver essa habilidade? Uso de situações-problema contextualizadas, nas quais o aluno examina va- lores em uma tabela de dados e procura identificar a função que pode exprimi-los. É importante insistir que nem sempre um pequeno número de dados é bastante para identificar uma função. Descritor 19 – Resolver problema envolvendo uma função do primeiro grau Que habilidade pretendemos avaliar? O estudo das funções inicia-se no ensino fundamental, com o reconhecimento de regularidades numéricas ou geométricas, e amplia-se no ensino médio. A im- portância do estudo da função de primeiro grau está relacionada à necessidade de resolução de problemas simples do cotidiano. Exemplo de item: O custo de produção de uma pequena empresa é composto por um valor fixo de R$ 1.500,00 mais R$ 10,00 por peça fabricada. O número x de peças fabricadas quando o custo é de R$ 3.200,00 é (A) 470. (B) 150. (C) 160. (D) 170. (E) 320. Percentual de respostas às alternativas A B C D E 9% 11% 13% 28% 37%
  • 106. Unidade5Matemática 106 O que o resultado do item indica? O item é bastante simples e está relacionado a uma situação comum do dia-a- dia e surpreende que ele tenha sido considerado difícil, tendo em vista que 70% dos alunos assinalaram respostas incorretas. Os 28% que acertaram a questão e, portanto, assinalaram a alternativa “D”, podem ter utilizado algum dos seguintes procedimentos: 1. Transpor os dados numéricos apresentados para uma situação geral, adaptada a uma equação do tipo y = ax + b, com a = 10 e b = 1500. Nessa situação, y repre- senta a variável custo, enquanto x representa a variável quantidade de peças fabri- cadas. 2. Raciocinar aritmeticamente sobre os dados numéricos, realizando operações inversas: 3200 - 1500 = 1700; 1700 ÷ 10 = 170 . Que sugestões podem ser dadas para melhor desenvolver essa habilidade? A compreensão da proporcionalidade direta entre um par de grandezas pre- cede o estudo da função de primeiro grau. Assim, o aluno precisa reconhecer as características importantes da função de equação y = ax, como, por exemplo: • a proporcionalidade direta entre x e y; • a linearidade do gráfico da função; e • o fato de esse gráfico passar pela origem do sistema. Reconhecidas essas características, o próximo passo é compará-las com aque- las que são próprias de uma função afim, do tipo y = ax +b, com b diferente de zero. Espera-se, dessa forma, que os alunos utilizem a condição de proporcionalidade para diferenciar uma função da outra. Descritor 20 – Analisar crescimento/decrescimento, zeros de funções reais apresentadas em gráficos Que habilidade pretendemos avaliar? Tendo por base esse descritor, pretende-se avaliar a habilidade de o aluno
  • 107. Unidade5Matemática 107 identificar os zeros de qualquer função e/ou o crescimento e/ou decrescimento tam- bém de qualquer função. Exemplo de item: O gráfico abaixo mostra a temperatura numa cidade da Região Sul, em um dia do mês de julho. De acordo com o gráfico, a temperatura aumenta no período de (A) 8 às 16h . (B) 16 às 24h. (C) 4 às 12h. (D) 12 às 16h. (E) 4 às 16h. O que o resultado do item indica? Esse item avalia a habilidade de o aluno analisar os trechos de crescimento, onde os valores das ordenadas crescem com o crescimento dos valores das abscis- sas, e de decrescimento da função, onde os valores das ordenadas diminuem com o aumento do valor das abscissas. Dessa forma, a temperatura aumenta, ou dito de outra forma, a função é crescente entre 4 e 12 horas, conforme mostra a alternativa “C”, assinalada por 39% dos alunos. Que sugestões podem ser dadas para melhor desenvolver essa habilidade? Devem-se mostrar situações do dia-a-dia em que gráficos de funções retratam diversos fenômenos como: variação da cotação de moedas (dólar, euro), bolsas de valores, salário mínimo, expectativa de vida etc. Podem-se utilizar também as diver- sas funções já estudadas (quadrática, exponencial, trigonométricas) e discutir com os alunos seus intervalos de crescimento, decrescimento e seus zeros. Percentual de respostas às alternativas A B C D E 15% 8% 39% 20% 16%
  • 108. Unidade5Matemática 108 Descritor 21 – Identificar o gráfico que representa uma situação descrita em um texto Que habilidade pretendemos avaliar? Esse descritor tem por objetivo avaliar a habilidade de o aluno associar um grá- fico à descrição de uma situação-problema. Exemplo de item: Luizinho desafia seu irmão mais velho, Pedrão, para uma corrida. Pedrão aceita e permite que o desafiante saia 20 metros a sua frente. Pedrão ultrapassa Luizinho e ganha a corrida. O gráfico que melhor ilustra essa disputa é (A) (B) (C) (D) (E)
  • 109. Unidade5Matemática 109 O que o resultado do item indica? Para a solução do item apresentado, os alunos primeiramente devem identifi- car que existe um ponto de origem de onde partirá Luizinho, dado pelo par ordenado (0,0). Como Pedrão sairá 20 metros na frente de Luizinho, ele estará no ponto (20,0). A corrida terminará quando os dois atingirem o mesmo ponto. Além disso, Pedrão, em determinado ponto da corrida, ultrapassa Luizinho e vence, chegando à linha de chegada em menos tempo. Pelo que foi descrito, os dois gráficos possíveis, nos quais os dois se cruzariam, são os representados nas alternativas “B” e “C”. No primeiro gráfico, Pedrão vence, pois gasta menos tempo. No segundo gráfico, Luizinho vence. Assim, a alternativa correta é a “B”. Aqueles que assinalaram a alternativa “D” não conseguiram interpretar que, nessa alternativa, os dois irmãos não se cruzam ao longo da corrida. Que sugestões podem ser dadas para melhor desenvolver essa habilidade? Diversos exemplos vindos dos estudos da Física podem ser utilizados com bastante sucesso: movimento de um corpo a partir de uma origem, paradas e mu- danças de sentido. Outras situações também podem ser úteis: curva de crescimento de uma criança, tabela de engorda e estabilização do peso de um animal, enchi- mento de uma vasilha com água etc. Descritor 22 – Resolver problema envolvendo P.A./P.G. dada a fórmula do termo geral Que habilidade pretendemos avaliar? Com base nesse descritor, pretende-se avaliar a habilidade de os alunos com- preenderem as propriedades de progressão aritmética e progressão geométrica para resolver problemas. Como o objetivo não é a memorização, é indicado que a fórmula do termo geral seja dada. Percentual de respostas às alternativas A B C D E 6% 39% 15% 32% 5%
  • 110. Unidade5Matemática 110 Exemplo de item: Luciano resolveu fazer economia guardando dinheiro num cofre. Iniciou com R$ 30,00 e, de mês em mês, ele coloca R$ 5,00 no cofre. Considere que an = a1 + (n - 1) x r , em que an é a quantia poupada; a1 , a quantia inicial; n, o número de meses; e r, a quantia depositada a cada mês. Após 12 meses o cofre conterá (A) R$ 41,00 (B) R$ 42,00 (C) R$ 55,00 (D) R$ 65,00 (E) R$ 85,00 O que o resultado do item indica? O item é de baixa complexidade, sendo exigido que o aluno apenas siga co- mandos simples e substitua valores numéricos na fórmula do termo geral da PA. Seguindo esse caminho, 70% dos alunos marcaram a alternativa correta, indicando que esse item é fácil. Que sugestões podem ser dadas para melhor desenvolver essa habilidade? Como a PA e a PG são casos particulares de seqüências, deve-se iniciar seu estudo a partir da utilização de seqüências variadas, inclusive aquelas que não têm uma lei de formação. É fácil mostrar que o conjunto dos números naturais forma uma PA infinita, a partir da sua definição. A demonstração da fórmula do termo geral é bastante simples e deve ser exercitada como alternativa à sua memorização. Vários exemplos de aplicação podem ser usados, como o do treinamento de um corredor, adicionando a cada dia uma distância maior. Descritor 23 – Reconhecer o gráfico de uma função polinomial de 1.º grau por meio de seus coeficientes Que habilidade pretendemos avaliar? Com esse descritor, pretende-se avaliar a habilidade de os alunos manusearem os coeficientes linear e angular da reta de forma a identificar o gráfico de uma fun- ção polinomial do 1º grau. Percentual de respostas às alternativas A B C D E 6% 3% 7% 13% 70%
  • 111. Unidade5Matemática 111 Exemplo de item: Em uma promoção de venda de camisas, o valor (P) a ser pago pelo consumidor é calculado pela expressão P(x) = - x + 35 , onde x é a quantidade de camisas compradas (0 ≤ x ≤ 20). O gráfico que representa o preço P em função da quantidade x é O que o resultado do item indica? A alternativa correta “D” foi assinalada por 18% dos alunos, o que caracteriza o item como difícil. Para chegar à alternativa correta, bastaria aos alunos utilizarem o ponto x = 0 para determinar P = 35, o valor do coeficiente angular (- 1/2) para iden- tificar que a função é decrescente e utilizar o enunciado que indica que a função é válida dentro do intervalo (0 ≤ x ≤ 20). Chama a atenção o fato de 24% dos alunos 1 2 Percentual de respostas às alternativas A B C D E 18% 14% 19% 18% 24%
  • 112. Unidade5Matemática 112 terem assinalado a alternativa “E”, em que dois poderiam ter sido os caminhos es- colhidos pelos alunos: o primeiro, identificando o valor do coeficiente angular como sendo linear; o segundo, fazendo a livre associação entre a existência do valor na expressão algébrica e o ponto 0,5 no gráfico. Que sugestões podem ser dadas para melhor desenvolver essa habilidade? Dada uma função do 1º grau, deve ser ensinado aos alunos como identificar seus coeficientes angular e linear. Conhecidos esses coeficientes, deve ser de- monstrado que bastam dois pontos para desenhar o gráfico da função. Podem-se utilizar exemplos do cotidiano como: o valor de uma corrida de táxi, envolvendo a bandeirada acrescida do valor por km rodado; dilatação de um sólido; juros simples. Descritor 24 – Reconhecer a representação algébrica de uma função do 1.º grau dado o seu gráfico Que habilidade pretendemos avaliar? Com esse descritor, pretende-se avaliar a capacidade de os alunos associarem o gráfico de uma função polinomial de 1º grau ao seu gráfico. Exemplo de item: O gráfico abaixo mostra uma reta em um plano cartesiano Qual é a equação da reta representada no gráfico? (A) x – y – 5 = 0 (B) x + y – 5 = 0 (C) x + y + 5 = 0 (D) x + y – 4 = 0 (E) x + y = 6 1 2 Percentual de respostas às alternativas A B C D E 10% 22% 26% 21% 16%
  • 113. Unidade5Matemática 113 O que o resultado do item indica? Pelo resultado, 22% dos alunos demonstraram dominar a habilidade medida. Os 26% dos alunos que assinalaram a alternativa “C” parecem ter trocado o sinal do termo independente. Os que assinalaram a alternativa “D” e “E” provavelmente as escolheram aleatoriamente. Que sugestões podem ser dadas para melhor desenvolver essa habilidade? O professor poderá partir dos modelos apresentados no descritor 23 e trabalhar a construção da expressão algébrica, determinando, por análise, os coeficientes an- gular e linear. É importante ressaltar a idéia da formação de diferentes representa- ções algébricas, na medida em que se alteram os coeficientes e, também, observar que mudanças nos coeficientes implicam em alterações no comportamento. Nesse caso, é sugestivo apresentar expressões para retas paralelas, concorrentes. Descritor 25 – Resolver problemas que envolvam os pontos de máximo ou de mínimo no gráfico de uma função polinomial do 2.º grau. Que habilidade pretendemos avaliar? Pretende-se com esse descritor avaliar a habilidade de os alunos resolverem problemas relacionados com os pontos de máximo ou de mínimo de uma função polinomial de 2º grau. Exemplo de item: Observe o gráfico ao lado. A função apresenta ponto de (A) mínimo em (1,2). (B) mínimo em (2,1). (C) máximo em (-1,-8). (D) máximo em (2,1). (E) máximo em (1,2).
  • 114. Unidade5Matemática 114 O que o resultado do item indica? Apesar de o item ser de baixa complexidade, pois exige que o aluno identifique no gráfico pontos de mínimo ou de máximo, sem que seja necessário nenhum cál- culo, apenas 24% dos alunos assinalaram a alternativa correta, indicando que essa habilidade ainda não está desenvolvida entre eles. Chama a atenção o fato de 37% deles terem indicado como correta a alternativa “C”, um ponto qualquer da parábola, escolhido ao acaso. Que sugestões podem ser dadas para melhor desenvolver essa habilidade? No estudo da função do 2º grau, deve ser enfatizada a importância da deter- minação do ponto de máximo ou de mínimo. A ordenada do vértice corresponde ao maior (ou menor) valor possível para a variável y e a ele corresponde o respectivo valor x. É fácil mostrar que a abscissa do vértice é a média aritmética das raízes da função. Determinada a abscissa do vértice, deduz-se a ordenada. É importante desta- car que o vértice é o ponto no qual os valores da função mudam de crescentes para decrescentes e vice-versa. Entre os diversos exemplos do contexto do aluno, o mais simples e fácil de ser experimentado em sala de aula é o da observação da trajetória de um objeto (por exemplo, uma bola) lançado obliquamente. Descritor 26 – Relacionar as raízes de um polinômio com sua decomposição em fatores do 1.º grau Que habilidade pretendemos avaliar? Com esse descritor, pretende-se avaliar a habilidade de os alunos decomporem um polinômio em fatores do 1º grau. Percentual de respostas às alternativas A B C D E 10% 13% 37% 24% 12%
  • 115. Unidade5Matemática 115 Exemplo de item: As raízes do polinômio P(x) = (x – 3) . (x + 1) são (A) –2 e 1. (B) 3 e –1. (C) –3 e 1. (D) 3 e 1. (E) –3 e –1. O que o resultado do item indica? Mesmo o item tendo apresentado como distrator a alternativa “A”, que apre- senta um resultado com um formato diferente dos demais, ela foi assinalada por 12% dos estudantes, sugerindo com isso que esses alunos claramente não dominam a habilidade medida. A alternativa correta foi assinalada por 35% dos alunos. Com relação às outras alternativas, percebe-se que, no geral, a habilidade ainda não está totalmente desenvolvida entre os alunos, pois elas são variações da correta e con- seguiram atrair 48% dos alunos. Que sugestões podem ser dadas para melhor desenvolver essa habilidade? Facilmente se demonstra que uma função de primeiro e segundo graus pode ser fatorada a partir de suas raízes. Esse deve ser o foco do trabalho do professor em sala de aula. Descritor 27 – Identificar a representação algébrica e/ou gráfica de uma fun- ção exponencial Que habilidade pretendemos avaliar? Esse descritor pretende avaliar a habilidade de o aluno identificar a representa- ção algébrica ou gráfica de uma função exponencial. Exemplo de item: Percentual de respostas às alternativas A B C D E 12% 35% 33% 12% 6%
  • 116. Unidade5Matemática 116 Abaixo estão relacionadas algumas funções. Entre elas, a função exponencial crescente é (A) f(x) = 5–x . (B) f(x) = (C) f(x) = (0,1)x . (D) f(x) = 10x . (E) f(x) = 0,5x . O que o resultado do item indica? Pelos resultados apresentados pelos alunos ao responderem ao teste, chama a atenção o fato de 26% deles terem identificado que a função constante f(x) = seria uma função exponencial, talvez associando a resposta ao fato de a alternativa possuir expoente. Os que assinalaram as alternativas “C” e “E”, 22% do total, não demonstraram ter a habilidade de identificar que essas duas funções, apesar de serem exponenciais, são decrescentes. Do total, 36% dos alunos demons- traram ter desenvolvido a habilidade medida, o que classifica esse item como de média complexidade. Que sugestões podem ser dadas para melhor desenvolver essa habilidade? Uma função exponencial simples é dada genericamente por y = ax , sendo a > 0. A partir dessa definição, o professor deve construir vários gráficos usando diferentes valores para “a”: valores maiores que 1 e valores compreendidos entre 0 e 1. Obser- va-se que desses gráficos resultam curvas crescentes e decrescentes. É importante levar o aluno a perceber que a curva corta o eixo das ordenadas no ponto (0, 1) e que tem como assíntota o eixo das abscissas. Exemplos do cotidiano que podem ser utilizados: decaimento radioativo de uma substância; crescimento da população de uma colônia de bactérias; valores da escala Richter para a medição da intensidade de um terremoto. Percentual de respostas às alternativas A B C D E 8% 26% 14% 36% 8% 3 2 3 2
  • 117. Unidade5Matemática 117 Descritor 28 – Identificar a representação algébrica e/ou gráfica de uma fun- ção logarítmica, reconhecendo-a como inversa da função exponencial Que habilidade pretendemos avaliar? Com esse descritor, pretende-se avaliar a habilidade de o aluno reconhecer a repre- sentação algébrica ou gráfica de uma função logaritmica e associá-la a uma função exponencial. Exemplo de item: Abaixo estão representados dois gráficos. De acordo com os gráficos, (A) y = 2x está representada no gráfico 1. (B) y = x2 +1 está representada no gráfico 2. (C) y = log2 x está representada no gráfico 2. (D) y = 2x está representada no gráfico 2. (E) y = log x está representada no gráfico 2. O que o resultado do item indica? Pelo resultado, pode-se depreender que a grande maioria dos alunos não pos- sui a habilidade de identificar uma função logaritmica e que ela deve ser melhor trabalhada na sala de aula. Chama a atenção o fato de 29% dos alunos identificarem a função linear y = 2x como sendo uma função logarítimica. Percentual de respostas às alternativas A B C D E 29% 20% 17% 19% 11%
  • 118. Unidade5Matemática 118 Que sugestões podem ser dadas para melhor desenvolver essa habilidade? Para desenvolvimento dessa habilidade é importante reconhecer função loga- rítmica no plano cartesiano e na forma algébrica. O trabalho com papel logarítmico mono log e di log, é significativo nesse momento da aprendizagem. A construção das funções exponencial e logarítmica no mesmo plano cartesiano permite ao aluno identificar que são funções inversas. O professor pode utilizar os modelos apresenta- dos no descritor D27 para o trabalho e criar situações na própria sala de aula tendo a realidade como fonte de criação. Descritor 29 – Resolver problema que envolva função exponencial Que habilidade pretendemos avaliar? Esse descritor é utilizado para avaliar a habilidade de o aluno resolver um pro- blema envolvendo a função exponencial, muito comum no contexto de fenômenos químicos, biológicos, entre outros. Exemplo de item: Em uma pesquisa realizada, constatou-se que a população A de determinada bacté- ria cresce segundo a expressão A(t) = 25 . 2t , onde t representa o tempo em horas. Para atingir uma população de 400 bactérias, será necessário um tempo de (A) 2 horas. (B) 6 horas. (C) 4 horas. (D) 8 horas. (E) 16 horas. O que o resultado do item indica? Para resolver corretamente a situação proposta, o aluno deveria estabelecer corretamente a relação entre um valor da imagem de uma função com seu valor correspondente no domínio dessa função (400 = 25 x 2t ) e, por último, utilizar as propriedades de potenciação necessárias para a resolução da equação formada (16 = 2t ). Percentual de respostas às alternativas A B C D E 10% 12% 35% 26% 13%
  • 119. Unidade5Matemática 119 A alternativa correta, “C”, foi escolhida por 35% dos alunos que souberam transpor os dados do problema para a equação da função e também resolver corre- tamente a equação 400 = 25 x 2t, , indicando que o item pode ser considerado como relativamente difícil. A alternativa “D” foi assinalada por 26% dos alunos. Um provável caminho que pode ter sido seguido está exemplificado a seguir, demonstrando a falta de habili- dade dos alunos para operar com funções exponenciais. 400 = 25 ∙ 2t 16 = 2t t= 16 ÷ 2 = 8 As alternativas “A” e “B” apresentam valores que não expressam nenhuma correspondência entre os valores dados e as variáveis da função. Apesar disso foram escolhidas por 22% dos alunos. A alternativa “E” foi escolhida por 13% dos avaliados. Podemos supor, nesse caso, que tenham tratado a função exponencial como se fosse uma função linear realizando a operação 400 ÷ 25 = 16. Que sugestões podem ser dadas para melhor desenvolver essa habilidade? Uma sugestão útil é utilizar problemas contextualizados nas ciências da natu- reza, onde a função exponencial aparece com muita freqüência. Por exemplo, poderi- am ser utilizados problemas relacionados ao crescimento das bactérias em determi- nado meio, aos fenômenos radioativos, à escala de Richter, que mede a intensidade dos terremotos. Descritor 30 – Identificar gráficos de funções trigonométricas (seno, cosse- no, tangente), reconhecendo suas propriedades Que habilidade pretendemos avaliar? Esse descritor tem por objetivo avaliar a capacidade de o aluno, dada uma fun- ção trigonométrica, identificar o gráfico que a representa e vice-versa. Exemplo de item:
  • 120. Unidade5Matemática 120 O gráfico de função y = cos x é (A) (B) (C) (D) (E) O que o resultado do Item indica? Pelo resultado das respostas ao item, chama a atenção o número de alunos, 34%, que marcou como certa a alternativa “D”, já que ela não apresenta nenhuma função trigonométrica. Os 17% dos alunos que assinalaram a alternativa “A” con- fundiram, o que infelizmente é muito comum, a função seno com a cosseno. Os 26% dos alunos que assinalaram a alternativa “B” demonstraram possuir a habilidade medida. Percentual de respostas às alternativas A B C D E 17% 26% 9% 34% 9%
  • 121. Unidade5Matemática 121 Que sugestões podem ser dadas para melhor desenvolver essa habilidade? Esse assunto é de grande importância para o ensino de Matemática no ensino médio e deve ser tratado com muito cuidado e dedicado a ele bastante tempo. O foco deve ser nos gráficos de seno, cosseno (principalmente) e tangente. A partir do círculo trigonométrico, monta-se uma tabela, verificando-se, para os pontos principais (0, , , e 2 ), os valores da função, seu crescimento ou decres- cimento,sinale,aseguir,constrói-seseugráfico.Éimportantedestacaraperidicidade das funções, sua amplitude, seu domínio e sua imagem. Exemplos: determinados tipos de movimentos, eletricidade, oscilação das marés. Descritor 31 – Determinar a solução de um sistema linear, associando-o à uma matriz Que habilidade pretendemos avaliar? Pretende-se avaliar a habilidade de o aluno determinar a solução de um sistema linear de equações utilizando, para isso, as propriedades de uma matriz. Exemplo de item: 1 4 0 5 A matriz 2 3 5 10 está associada ao sistema 3 0 1 4 (A) x + y + z = 5 (D) 4x + 5z = 1 2x + 3y + 5z = 10 3x + 5y + 10z = 2 3x + y + z = 4 y + 4z = 3 (B) x + y = 5 (E) x + 4y = 0 2x + 3y + 5z = 10 2x + 3y = 5 3x + z = 4 3x = 1 (C) x + 4y = 5 2x + 3y + 5z = 10 3x + z = 4 { { { { {  2 3 2
  • 122. Unidade5Matemática 122 O que o resultado do item indica? Pelo resultado, percebe-se que apenas 31% dos alunos demonstraram domi- nar a habilidade medida. O restante parece ter marcado aleatoriamente uma alter- nativa. Que sugestões podem ser dadas para melhor desenvolver essa habilidade? Deve ser mostrada a correspondência entre um sistema de equações do primeiro grau e a matriz completa associada a ele, na qual as linhas são os coefi- cientes das variáveis. Para sistemas de grau maior ou igual a 3, deve-se incentivar a resolução por escalonamento. Descritor 32 – Resolver problema de contagem utilizando o princípio multipli- cativo ou noções de permutação simples, arranjo simples e/ou combinação simples Que habilidade pretendemos avaliar? Com itens associados a esse descritor, pode-se avaliar a habilidade de o alu- no resolver um problema de contagem usando ou o princípio multiplicativo ou a aplicação de fórmulas na resolução de uma situação-problema contextualizada. O raciocínio combinatório é uma das idéias da multiplicação, trabalhada desde as séries/anos iniciais, e que se revela importante na continuidade dos estudos e nos cálculos probabilísticos. Exemplo de item: Flamengo, Palmeiras, Internacional, Cruzeiro, Bahia, Náutico e Goiás disputam um torneio em cuja classificação final não pode haver empates. Qual é o número de possibilidades de classificação para os três primeiros lugares desse torneio? (A) 21 (B) 24 (C) 42 (D) 210 (E) 343 Percentual de respostas às alternativas A B C D E 21% 16% 31% 12% 7%
  • 123. Unidade5Matemática 123 O que o resultado do item indica? Para a solução do item em questão, utiliza-se a habilidade de realizar uma operação básica de multiplicação entre números naturais. Apesar dessa aparente facilidade, ao ser aplicada à solução de problemas que envolvem uma análise com- binatória, essa operação traz enormes dificuldades para os alunos. Dificuldade essa que se reflete no fato de apenas 17% dos alunos terem assinalado a alternativa cor- reta. A solução do problema envolve a operação: 7 × 6 × 5 = 210. Que sugestões podem ser dadas para melhor desenvolver essa habilidade? Os resultados mostrados na avaliação deste item servem para reforçar a ne- cessidade de se trabalhar os conceitos de análise combinatória com base no princí- pio multiplicativo, apresentando exaustivamente a árvore de possibilidades associa- da ao problema. A partir da compreensão desses conceitos, devem ser introduzidos os casos de agrupamentos, permutações, arranjos ou combinações. Descritor 33 – Calcular a probabilidade de um evento Que habilidade pretendemos avaliar? Pretende-se que esse descritor avalie a habilidade de o aluno calcular a proba- bilidade de ocorrência de um determinado evento. Exemplo de item: No lançamento de um dado, qual é a probabilidade de se obter um número par maior ou igual a 4? (A) (B) (C) (D) (E) 1 Percentual de respostas às alternativas A B C D E 41% 16% 20% 17% 4% 1 6 1 3 1 2 2 3
  • 124. Unidade5Matemática 124 O que o resultado do item indica? Pelo resultado, percebe-se que ainda é muito baixo o percentual de alunos que conseguem dominar a habilidade medida, apenas 24% deles. Isso indica a necessi- dade de os professores trabalharem mais fortemente essa habilidade com seus alu- nos. Que sugestões podem ser dadas para melhor desenvolver essa habilidade? Para a construção dessa habilidade, podem ser utilizados exemplos simples, como o lançamento de dados e a escolha de um número ao acaso em um conjunto, e exemplos de genética. Tema IV: Tratamento da Informação Nos tempos atuais, estamos inseridos no mundo da informação e nosso cotidi- ano está repleto de informações que circulam rapidamente em diferentes formatos. Esse campo é essencial para o desenvolvimento do cidadão contemporâneo e está conectado a outros campos do conhecimento. O trabalho com esse tema possibilita ao aluno a oportunidade de organizar e apresentar dados em forma de gráficos ou tabelas e fazer interpretações sobre as informações neles contidas. Descritor 34 – Resolver problema envolvendo informações apresentadas em tabelas e/ou gráficos Que habilidade pretendemos avaliar? Itens referentes a esse descritor têm por objetivo avaliar a habilidade de o aluno resolver problemas simples com base na leitura e na interpretação de informações apresentadas em uma tabela ou em um gráfico. Percentual de respostas às alternativas A B C D E 22% 24% 23% 16% 12% Descritores D34 D35
  • 125. Unidade5Matemática 125 Exemplo de iten: A tabela mostra a distribuição dos domicílios, por Grandes Regiões, segundo a condição de ocupação, no Brasil, em 1995. Fonte: IBGE – Diretoria de Pesquisas – Departamento de Emprego e Rendimento – PNAD. Em 1995, nos domicílios particulares do Nordeste, qual a porcentagem de domicílios alugados e cedidos? (A) 9,8% (B) 12,7% (C) 22,5% (D) 22,9% (E) 27,6% O que o resultado do item indica? Os resultados mostram que 57% dos alunos marcaram a alternativa correta “C”, o que indica que fizeram a leitura correta do problema: localizaram na tabela as informações solicitadas e efetuaram a soma (9,8% + 12,7% = 22,5%) necessária para se chegar à resposta. Esse percentual classificaria esse item como relativa- mente fácil. Condição de ocupação Total Grandes Regiões Norte urbano Nordeste Sudeste Sul Centro-Oeste Próprio 71,9 78,3 77,1 68,3 74,9 65,1 Alugado 14,5 13,1 9,8 17,9 12,4 16,2 Cedido 13,1 8,0 12,7 13,2 12,4 18,2 Outra 0,5 0,6 0,4 0,6 0,3 0,5 Total 100,0 100,0 100,0 100,0 100,0 100,0 Domicílios par ticulares (% ) Percentual de respostas às alternativas A B C D E 8% 11% 57% 10% 4% Total Norte urbano Nordeste Sudeste Sul Centro-Oeste Grandes Regiões
  • 126. Unidade5Matemática 126 Que sugestões podem ser dadas para melhor desenvolver essa habilidade? É importante que os professores trabalhem com materiais diversos, principal- mente, notícias de jornais e revistas em que gráficos e tabelas normalmente ilustram as matérias. Descritor 35 – Associar informações apresentadas em listas e/ou tabelas simples aos gráficos que as representam e vice-versa Que habilidade pretendemos avaliar? A partir desse descritor, pretende-se avaliar a habilidade de o aluno associar informações a partir de dados fornecidos em listas ou tabelas à sua representação na forma de um gráfico ou o inverso, de gráfico para tabela ou lista. Exemplo de item: A tabela abaixo representa as profundidades alcançadas na exploração de produção de petróleo, em águas profundas, no litoral do Rio de Janeiro e do Espírito Santo. Ano Profundidade 1977 124 m 1979 189 m 1983 293 m 1988 492 m 1992 781 m 1994 1227 m 1997 1709 m 1999 1853 m 2000 1877 m
  • 127. Unidade5Matemática 127 O gráfico que melhor representa esta situação é (A) (B) (C) (D) (E) O que o resultado do item indica? A solução do problema passa pela habilidade de os alunos encontrarem a varia- ção dos dados ponto a ponto e, a partir disso, avaliarem como essa variação acon- tece. É a forma como essa variação se comporta que determinará qual o gráfico representa a tabela. Reproduzindo a tabela e indicando a variação ponto a ponto, teremos: Percentual de respostas às alternativas A B C D E 28% 13% 18% 33% 5%
  • 128. Unidade5Matemática 128 Ao se observar a tabela, percebe-se que a curva que indica a profundidade em função do ano inicia-se em um ponto diferente de zero no primeiro ano. Dessa forma, elimina-se a alternativa “D”, que foi assinalada por 33% dos alunos, o maior percen- tual entre todas as alternativas. Continuando a análise, percebe-se que, a cada ano até 1997, a profundidade vem aumentando continuamente e passa a partir daí a aumentar menos. Pelos gráficos, eliminam-se: a alternativa “E”, que indica que não existe variação da profundidade ao longo dos anos e as alternativas “B” e “C”, que indicam um decrescimento da profundidade ao longo do tempo. Resta, portanto, a alternativa “A”, que reflete exatamente a variação retratada na tabela. Que sugestões podem ser dadas para melhor desenvolver essa habilidade? Esse é um assunto de grande relevância para o entendimento dos fatos nos dias de hoje. É fundamental que o professor trabalhe com gráficos e tabelas em sala de aula. Há exemplos em profusão na mídia e os alunos devem ser fortemente incentivados a pesquisar e discutir em sala de aula gráficos e tabelas obtidos em jornais, revistas, televisão, Internet etc. Esse tipo de atividade é riquíssimo para de- senvolver a habilidade pretendida e para bem situar os alunos nos acontecimentos e problemas da atualidade. 5.4. Considerações finais - Matemática Os itens apresentados foram aplicados nas provas do Saeb da 3ª série do ensi- no médio. Eles revelam a condição em que os estudantes se situam em relação à construção das competências matemáticas reunidas no foco da resolução de pro- blemas. Ano Profundidade Variação 1977 124 m - 1979 189 m 65m 1983 293 m 104m 1988 492 199 m 1992 781 m 289 m 1994 1127 m 346 m 1997 1709 m 482 m 1999 1853 m 144 m 2000 1877 m 24 m
  • 129. Unidade5Matemática 129 A análise dos resultados obtidos com a aplicação dos itens mostra que de- terminadas competências foram construídas, que outras não foram construídas e que algumas estão em processo de construção. Naturalmente, com base nessa análise, o professor pode refletir sobre o que está ensinando e como está ensi- nando e reavaliar sua prática de sala de aula. A reflexão sobre as estratégias de ensino deve considerar a resolução de problemas como eixo norteador da atividade matemática. A resolução de problemas possibilita o desenvolvimento de capacidades tais como: observação, estabelecimento de relações, comunicação (diferentes linguagens), argumentação e validação de processos, além de estimular formas de raciocínio como intuição, dedução e estimativa. Essa opção traz implícita a convicção de que o conhecimen- to matemático ganha significado quando os alunos têm situações desafiadoras para resolver e trabalham para desenvolver estratégias de resolução. A opção pela resolução de problemas significativos que norteia as matrizes de referência de matemática não exclui a possibilidade de proposição de alguns itens com o objetivo de avaliar se o aluno domina determinadas técnicas. Importa lembrar que os conhecimentos e competências indicados nos descritores das matrizes de referência de matemática estão presentes nos currícu- los das unidades da Federação e nos Parâmetros Curriculares Nacionais. Desta- camos, ainda, que os descritores da 4ª série/5º ano do Ensino Fundamental estão contemplados, de forma mais abrangente, nos descritores da 8ª série/9º ano, da mesma forma que estes estão incluídos nos descritores da 3ª série do Ensino Médio, apresentando, evidentemente, graus de complexidade diferenciados.
  • 130. ReferencialBibliográfico 130 6. REFERENCIAL BIBLIOGRÁFICO ANDRADE, D. F., TAVARES, H. R., VALLE, R. C. Teoria de Resposta ao Item: conceitos e aplicações. São Paulo: Associação Brasileira de Estatística, 2000. ANTUNES, I. Guia de Estudos 3: Avaliação e Aprendizagem de Língua Portuguesa. ed. mimeo. Belo Horizonte: 2007. BAGNO, M. Gramática da Língua Portuguesa – Tradição gramatical, exclusão so- cial, mídia e exclusão social. São Paulo: Edições Loyola, 2000. BAKHTIN, M. Estética da criação verbal. São Paulo: Martins Fontes, 1992. BONINI, A. Reflexões em torno de um conceito psicolingüístico de tipo de texto. DELTA, V. 15, Nº 2, 1999. p. 301-318. ISSN 0162-4450 BORTONI-RICARDO, S. M. Educação em língua materna – A sociolingüística na sala de aula. São Paulo: Parábola, 2004. BRASIL. Ministério da Educação; Instituto Nacional de Estudos e Pesquisas Educa- cionais Anísio Teixeira. Qualidade da educação: uma nova leitura do desempenho dos estudantes da 4ª série do ensino fundamental, Brasília: Inep, 2003. BRASIL. Ministério da Educação; Secretaria de Educação Fundamental. Parâme- tros Curriculares Nacionais: terceiro e quarto ciclos do ensino fundamental: língua portuguesa. Brasília: MEC/SEF, 1998. BRASIL. Instituto Nacional de Estudos e Pesquisas Educacionais. Item 2001: novas perspectivas. Brasília: Inep, 2002. BRASIL. Ministério da Educação; Instituto Nacional de Estudos e Pesquisas Educa- cionais; Diretoria de Avaliação da Educação Básica. Guia para elaboração de itens de Língua Portuguesa. Brasília: MEC/Inep/Daeb, 2004. BRASIL. Ministério da Educação; Instituto Nacional de Estudos e Pesquisas Edu- cacionais Anísio Teixeira; Diretoria de Avaliação para Certificação de Competên- cias. Relatório Pedagógico – Exame Nacional do Ensino Médio. Brasília: MEC/Inep/ DAAC, 2002.
  • 131. ReferencialBibliográfico 131 BRASIL. Ministério da Educação; Instituto Nacional de Estudos e Pesquisas Edu- cacionais Anísio Teixeira; Diretoria de Avaliação para Certificação de Competên- cias. Livro Introdutório – Documento Básico – Exame Nacional para Certificação de Competências de Jovens e Adultos. Brasília: MEC/inep/dacc, 2003. BRASIL. Ministério da Educação; Instituto Nacional de Estudos e Pesquisas Anísio Teixeira; Diretoria de Avaliação para Certificação de Competências. Matrizes Cur- riculares de Referência para o SAEB. (1997). Brasília: MEC/Inep/Daeb, 2000. CEREJA, W. R.; MAGALHÃES, T. C. Gramática reflexiva: texto, semântica e interação. São Paulo: Atual, 1999. FIORIN, J. L.; PLATÃO, F. Lições de texto: leitura e redação. São Paulo: Ática, 1998. KOCK, I. G. V. Desvendando os segredos do texto. São Paulo: Cortez, 2005. MAINGUENEAU, D. Análise de textos de comunicação. Tradução de Cecília P. de Sousa e Silva, Décio Rocha. 4. ed. São Paulo: Cortez, 2005, p.57. NERY, A. Parecer sobre a Matriz Curricular de Língua Portuguesa. 3. ed. mimeo Brasília: 2000. RIBEIRO, R. J. O sentido democrático da avaliação. In: Revista Ciência e Universi- dade. São Paulo: 2004.