SlideShare a Scribd company logo
Solichin Manuri
Subarno
Mapping fire: Can spatially explicit criteria
and indicators be developed
(Session #2)
Background
• In the past four decades, severe wildfires have become common
and repetitive events in the tropical ecosystem of Indonesia
(Goldammer and Seibert, 1990).
• These fires were the result of unsustainable practices of forest and
land management, which coincide with extreme drought attributed
to the El-Niño Southern Oscillation and the Indian Ocean Dipole
Mode (Goldammer etal, 1990; Cochrane etal, 2003).
• Drained peatland during dry season become susceptible to fires.
During prolonged dry season, peat fires contribute huge amount of
GHG emissions (Siegert etal, 2001; Lohbeger etal, 2017).
• The impact of peat fires in Indonesia is limitedly explored, or with
relatively high uncertainty, in particular regarding the size of the
burn areas.
Challenges in fire mapping in the tropics
Mapping of burn areas in tropical region is challenging, not
only because of cloud persistence but also due to smoke or
haze occurrence during the fires and short windows of
opportunity. NASA, MODIS
1982/83 1997/98 2015 20192000
Lennertz and
Panzer, 1984
Siegert and
Hoffm
an, 2000
MODIS Burn Area MCD 45
MODIS Burn Area MCD 64
2006
MoEF
GFED4.0
Lohberger,
etal, 2017 LAPAN
2016
Copernicus
Sub NationalGlobal National
Fire mapping in the tropics and Indonesia
Fire mapping methods in tropics and Indonesia
Burned Year
and location
Scope, resolution,
continuity
Method
Lennertz and
Panzer, 1984
1982/83; East Kalimantan,
discontinued
Visual classification of Landsat MSS images
Siegert and
Hoffman, 2000
1997/98; East Kalimantan; 25
m; discontinued
Object based image analysis of ERS2 SAR data; PCA
method
GFED4.0 1995 –
present;
Global; 27.8 m Digital classification using MODIS MCD64A1, VIIRS, ATRS,
TRMM
MODIS Burn Area
MCD 45
MODIS Burn Area
MCD 64
2000 –
present;
Global; 500 m;
continued
Thresholds of burn index was applied to define burn
areas and filtered with active fire data
Copernicus Burn
Area
2014-present Global; 500 m The annual BA derived from SPOT Vegetation using
supervised classification
Lohberger, etal,
2017
2015; Indonesia; 10 m Object based image analysis of Sentinel 1 backscatters
layers and temporal change metrics, training data from
ground and drone survey
MoEF, 2016 2006 - present Indonesia; ?;
continued
Visual classification of Landsat ETM, OLI images, with
aid of hotspot clusters and verified with ground data or
high resolution images
LAPAN 2015, 2016,
2019,
Indonesia;30-m; most
likely continue during
extreme fire years;
Change detection using dNBR of Landsat ETM/OLI
images and VH polarization of Sentinel 1, hotspot>30%
confidence level, filtering water body
Comparison of 2015 Fires Size
1,8
2,5
4,6
2,6
2,385
0
0,5
1
1,5
2
2,5
3
3,5
4
4,5
5
GFED4.0 MODIS MCD 64 Lohberger etal, 2017 MoEF, 2016 LAPAN, 2016
2015 Burn Area Comparison (in mill ha)
Peat Mineral soil All
Summary of Used Methods
Component
Sensor types Active (optical) and passive (radar) sensors; or hybrid
Spatial resolution 10 m (Sentinel), 30 m (Landsat), 500m (MODIS), 1km (SPOT
Vegetation
Temporal repetition Monthly to annually
Number of image data
or sensors
Single to multiple data sources, including additional GIS
layers, such as water body, active fires/hotspots.
Classification Visual classification: Visually inspect and delineate burn
areas; require prior knowledge or ground thruthing data on
burn area
Pixel based classification: apply threshold for change index,
which defined by analysing training samples
Object based image analysis: based on probabilities of
objects fall into burn category, derived from fuzzy logic
threshold value and training samples
Sensors + -
Passive • Easy to process
• Long history of data
acquisition
• Hindered by cloud, smoke
and haze
Active • Ability to penetrate cloud • Relief displacement effects
Resolution + -
Medium • Better accuracy
• Sufficient for national wall to
wall mapping
• Lower temporal resolution
Low • High temporal resolution, thus
able to get cloud and haze free
image in shorter period
• Lower spatial resolution and
accuracy
Classification + -
Manual • Full control of operators • Time consuming
• Required skilled operators
Automatic • Fast and consistent results • Rely on good training
samples
Pros and Cons
Satellite sensors used for burned area mapping
Satellite (Sensor) Operator
Operational Dates Temporal
Resolution
Spatial Resolution
Launch Date End Operation
Landsat 1-3 (MSS) NASA/USGS July 23, 1972 September 7, 1983 18 days 375-750 m
Landsat 4-5 (TM) NASA/USGS July 16, 1982 June 5, 2013 16 days 30-120 m
Landsat 7 (ETM+) NASA/USGS October 5, 1993 Planned lifespan for 5-21 years or 2022 16 days 15/30-60 m
Landsat 8 (OLI/TIRS)NASA/USGS
February 11,
2013
Planned lifespan for 5 years, but still
operating
16 days OLI: 15/30 m TIRS: 100 m
SPOT 1–7 (HRV) CNES
February 22,
1986
2024* 26 days 2.5 to 20 m
SPOT 4-5 (VGT) CNES March 24, 1998 July 1, 2013 1-2 days 1000 m
NOAA-7-20
(AVHRR)
NOAA
October 19,
1978
Still operating 1-2 days 1100 m
JPSS (VIIRS) NOAA
October 28,
2011
2031 1-2 days 375-750 m
Aqua (MODIS) NASA May 4, 2002 Still operating 1-2 days 250-1000 m
Terra (MODIS) NASA
December 18,
1999
Still operating 1-2 days 250-1000 m
ENVISAT (MERIS) ESA March 1, 2002 May 9, 2012 2-3 days 300-1200 m
ERS-2 ESA 1995 2011 35 days 25 m
PROBA V ESA May 7, 2013
Missions duration 2-5 years, but will be end
in 2020
1-2 days 300 m
Sentinel 1A ESA April 3, 2014 7-12 years or until 2021-2026 6 days 5-20 m
Sentinel 2A ESA June 23, 2015 7.25 years or until 2022 5 days 10-20-60 m
Sentinel 1B ESA April 25, 2016 7-12 years or until 2023-2028 6 days 5-20 m
Sentinel 3A ESA
February 16,
2016
7.5 years or until 2023 1-2 days 500 SLSTR m
Sentinel 2B ESA March 7, 2017 7.25 years or until 2024 5 days 10-20-60 m
Sentinel 3B ESA April 25, 2018 7 years or until 2025 1-2 days 300 OLCI mChuevieco, et al (2019)
2018 7 years or until 2025
2024*
Satellite Lifespan
Sentinel 1B
2016
Landsat 1-3
(MSS)
1972 1983
Landsat 4-5 (TM)
1982 2013
SPOT 4-5 (VGT)
1998 2013
EVISAT (MERIS)
2002 2012
ERS-2
1995 2011
1978
NOAA-7-19 (AVHRR)
Still Operating
SPOT 1-7 (HRV)
1986
Landsat 7 (ETM+)
1993 Planned lifespan for 5-21 years or 2022
Terra (MODIS)
1999 Still Operating
JPPSS (VIIRS)
2011 2031
Landsat 8 (OLI/TIRS)
2013 Planned lifespan for 5 year, but still operating
Aqua (MODIS)
2002 Still Operating
PROBA V
2013 Missions duration 2-5 years, but will be end in 2020
Sentinel 1A
2014 7-12 years or until 2021-2026
Sentinel 2A
2015 7.25 years or until 2022
7-12 years or until 2023-2028
Sentinel 3A
2016 7.5 years or until 2023
Sentinel 2B
2017 7.25 years or until 2024
Sentinel 3A
Giglio etal, 2018
Siegert and Hoffman (2000) conducted an
accuracy assessment using aerial survey for the
25-m resolution ERS SAR BA. While Giglio et al
(2018) carried out uncertainty analysis for the
500 m MODIS BA using higher resolution
images, i.e. 30-m Landsat
Accuracy Assessment
Siegert and Hoffman, 2000
Burn Peat Depth Mapping
• Accurate information on burn peat depth is crucial for estimating emissions from
peat fires.
• Yet limited studies related to burn peat depth mapping in Indonesia, involving
manual measurement and lidar application
• Manual measurement poses potential biases due to the difficult accessibility of
remote areas and time consuming
• On the other hand, airborne lidar has been used for various height-related studies
with high precision (sub meter).
Balhorn etal, 2009
Study using Lidar
Data
Burnt Peat
Depth (m)
SE (m)
Konecny et al, 2016 0.13 0.16
Simpson et al, 2016 0.23 0.19
Ballhorn et al, 2009 0.33 0.18
• Several initiatives on fire mapping are available globally and
nationally using different satellite images and different
classification method.
• Spatially explicit criteria of fire mapping should be developed
specifically depending on the method and data used, combined
with knowledge from ground or aerial surveys.
• Validation of the burn area using ground thruthing data or high-
resolution images is required to understand the uncertainty of
the data
• Selection of method will rely on the need of fire mapping, i.e.
mapping coverage, reporting interval, technical capacity and
funding availability.
• It is important to select the remote sensing data based on the
spatial resolution, technical and funding capacity as well as the
lifespan and the continuity of the satellite program.
• Apart from mapping the size of fires, it is also important to
estimate the depth of peat fires
Main messages
Thank you

More Related Content

PDF
Chronological Calibration Methods for Landsat Satellite Images
PPT
WE2.L10.1: LANDSAT DATA PRODUCTS, FREE AND CLEAR
PPT
Remote Sensing of Urban Heat Islands
PPTX
Remote Sensing and its Applications in Agriculture
PPTX
WETLAND MAPPING USING RS AND GIS
PDF
Deriving environmental indicators from massive spatial time series using open...
PDF
Soil mapping , remote sensing and use of sensors in precision farming
PPSX
Sentinel 2
Chronological Calibration Methods for Landsat Satellite Images
WE2.L10.1: LANDSAT DATA PRODUCTS, FREE AND CLEAR
Remote Sensing of Urban Heat Islands
Remote Sensing and its Applications in Agriculture
WETLAND MAPPING USING RS AND GIS
Deriving environmental indicators from massive spatial time series using open...
Soil mapping , remote sensing and use of sensors in precision farming
Sentinel 2

What's hot (19)

PPTX
Application of remote sensing in agriculture
PPTX
Data collection
PPTX
Aerospace and remote sensing
PDF
Wandera_et_al_HESS_2017
PPTX
Introduction to GPS/GNSS Presentation
PDF
Modelling and remote sensing of land surface
PPTX
A PHYSICAL METHOD TO COMPUTE SURFACE RADIATION FROM GEOSTATIONARY SATELLITES
PPTX
Remote sensing for change detection (presentation) - Prepared by A F M Fakhru...
PPTX
Remote Sensing ppt
PDF
Use of UAV for Hydrological Monitoring
PPTX
Remote Sensing of Aerosols
ODP
Free GIS Software meets zoonotic diseases: From raw data to ecological indica...
PDF
PPTX
Band Combination of Landsat 8 Earth-observing Satellite Images
PPTX
Remote Sensing - A tool of plant disease management
PPT
Kush Defense
PPTX
PERSISTENT SCATTERER SAR INTERFEROMETRY APPLICATION.pptx
PDF
Bergström hans
PPTX
GENERATING FINE RESOLUTION LEAF AREA INDEX MAPS FOR BOREAL FORESTS OF FINLAND...
Application of remote sensing in agriculture
Data collection
Aerospace and remote sensing
Wandera_et_al_HESS_2017
Introduction to GPS/GNSS Presentation
Modelling and remote sensing of land surface
A PHYSICAL METHOD TO COMPUTE SURFACE RADIATION FROM GEOSTATIONARY SATELLITES
Remote sensing for change detection (presentation) - Prepared by A F M Fakhru...
Remote Sensing ppt
Use of UAV for Hydrological Monitoring
Remote Sensing of Aerosols
Free GIS Software meets zoonotic diseases: From raw data to ecological indica...
Band Combination of Landsat 8 Earth-observing Satellite Images
Remote Sensing - A tool of plant disease management
Kush Defense
PERSISTENT SCATTERER SAR INTERFEROMETRY APPLICATION.pptx
Bergström hans
GENERATING FINE RESOLUTION LEAF AREA INDEX MAPS FOR BOREAL FORESTS OF FINLAND...
Ad

Similar to Mapping fire: Can spatially explicit criteria and indicators be developed? (20)

PPTX
Land use cover pptx.
PDF
Advances in Agricultural remote sensings
PPTX
Using SAR Intensity and Coherence to Detect A Moorland Wildfire Scar
PPTX
Tasseled Cap transformation Technique in ArcGIS
PDF
ICCC MRV Cluster Activities on Methodology Development
PPTX
Remote sensing ang GIS
PPT
GIS & History of Mapping in Malaya (lecture notes circa 2009)
PDF
Contribution of Satellite Remote Sensing in Environmental Monitoring at Regio...
PDF
DUAL-CHANNEL MODEL FOR SHALLOW WATER DEPTH RETRIEVAL FROM WORLDVIEW-3 IMAGERY...
PPT
WE4.L10.5: ADVANCES IN NIGHTTIME SATELLITE REMOTE SENSING CAPABILITIES VIA TH...
PDF
Application of Ground Penetrating Radar (GPR) In Detecting Target of Interest
PPTX
Buni zum Glacier
PDF
Mangrove Vegetation Mapping Using Sentinel-2A Imagery Based on Google Earth E...
PDF
CL#21-0488.pdf
PPTX
1 remote sensing
PDF
Supervised classification and improved filtering method for shoreline detection.
PDF
Land Use/Land Cover Mapping Of Allahabad City by Using Remote Sensing & GIS
PDF
Deep Learning Methods for Grassland Activity Monitoring.pdf
PDF
Multi sensor data fusion for change detection
PPTX
Air quality challenges and business opportunities in China: Fusion of environ...
Land use cover pptx.
Advances in Agricultural remote sensings
Using SAR Intensity and Coherence to Detect A Moorland Wildfire Scar
Tasseled Cap transformation Technique in ArcGIS
ICCC MRV Cluster Activities on Methodology Development
Remote sensing ang GIS
GIS & History of Mapping in Malaya (lecture notes circa 2009)
Contribution of Satellite Remote Sensing in Environmental Monitoring at Regio...
DUAL-CHANNEL MODEL FOR SHALLOW WATER DEPTH RETRIEVAL FROM WORLDVIEW-3 IMAGERY...
WE4.L10.5: ADVANCES IN NIGHTTIME SATELLITE REMOTE SENSING CAPABILITIES VIA TH...
Application of Ground Penetrating Radar (GPR) In Detecting Target of Interest
Buni zum Glacier
Mangrove Vegetation Mapping Using Sentinel-2A Imagery Based on Google Earth E...
CL#21-0488.pdf
1 remote sensing
Supervised classification and improved filtering method for shoreline detection.
Land Use/Land Cover Mapping Of Allahabad City by Using Remote Sensing & GIS
Deep Learning Methods for Grassland Activity Monitoring.pdf
Multi sensor data fusion for change detection
Air quality challenges and business opportunities in China: Fusion of environ...
Ad

More from CIFOR-ICRAF (20)

PDF
Synthèse des Activités de Promotion du Bois Légal auprès des Entreprises BTP ...
PDF
Compte rendu de l’atelier de rédaction de la Proposition d’Édit Fixant les mo...
PDF
Impact de la campagne médiatique sur l’intérêt des acheteurs pour le bois et ...
PDF
Activités du PROFEAAC pour la Légalité Forestière à Yanonge
PDF
Concevoir et évaluer des pistes de simplification de la procédure de création...
PDF
Appui aux 14 Exploitants artisanaux en RDC
PDF
Elaboration de mesures locales de régénération et de reboisement des espèces ...
PDF
S’inspirer des dynamiques agraires pour adapter la restauration des forêts pa...
PDF
Une revue systématique des initiatives de restauration forestière par les pop...
PDF
Mise en œuvre du cadre logique du projet
PDF
Suivi des marchés urbains de bois à Kisangani en 2024
PDF
Cadre du projet et panorama des activités en 2024 et 2025
PDF
Principaux résultats et leçons apprises du comité de pilotage du projet PROFE...
PDF
Composante 5: Quelles sont les motivations des acheteurs camerounais pour l'a...
PDF
Composante 5: Suivi des marchés urbains du bois à Yaoundé et Douala en 2024
PDF
Composante 4: Présentation des principaux résultats de la composante 4 du pro...
PDF
Composante 3: Contribution et adaptation de l'exploitation artisanale du bois...
PDF
Composante 3: Soutien à l'exploitation artisanale légale et renforcement des ...
PDF
Composante 2: Réhabilitation forestière dans le Sud du Cameroun
PDF
Composante 1: Estimation et suivi de l'impact de l'exploitation artisanale
Synthèse des Activités de Promotion du Bois Légal auprès des Entreprises BTP ...
Compte rendu de l’atelier de rédaction de la Proposition d’Édit Fixant les mo...
Impact de la campagne médiatique sur l’intérêt des acheteurs pour le bois et ...
Activités du PROFEAAC pour la Légalité Forestière à Yanonge
Concevoir et évaluer des pistes de simplification de la procédure de création...
Appui aux 14 Exploitants artisanaux en RDC
Elaboration de mesures locales de régénération et de reboisement des espèces ...
S’inspirer des dynamiques agraires pour adapter la restauration des forêts pa...
Une revue systématique des initiatives de restauration forestière par les pop...
Mise en œuvre du cadre logique du projet
Suivi des marchés urbains de bois à Kisangani en 2024
Cadre du projet et panorama des activités en 2024 et 2025
Principaux résultats et leçons apprises du comité de pilotage du projet PROFE...
Composante 5: Quelles sont les motivations des acheteurs camerounais pour l'a...
Composante 5: Suivi des marchés urbains du bois à Yaoundé et Douala en 2024
Composante 4: Présentation des principaux résultats de la composante 4 du pro...
Composante 3: Contribution et adaptation de l'exploitation artisanale du bois...
Composante 3: Soutien à l'exploitation artisanale légale et renforcement des ...
Composante 2: Réhabilitation forestière dans le Sud du Cameroun
Composante 1: Estimation et suivi de l'impact de l'exploitation artisanale

Recently uploaded (20)

PPTX
Office Hours on Drivers of Tree Cover Loss
PDF
Urban Hub 50: Spirits of Place - & the Souls' of Places
PPTX
NOISE-MITIGATION.-pptxnaksnsbaksjvdksbsksk
PDF
Blue Economy Development Framework for Indonesias Economic Transformation.pdf
PDF
Earthquake, learn from the past and do it now.pdf
DOCX
Epoxy Coated Steel Bolted Tanks for Dairy Farm Water Ensures Clean Water for ...
PPTX
Delivery census may 2025.pptxMNNN HJTDV U
PDF
Effect of anthropisation and revegetation efforts on soil bacterial community...
PPTX
structure and components of Environment.pptx
PDF
Effective factors on adoption of intercropping and it’s role on development o...
DOCX
Epoxy Coated Steel Bolted Tanks for Fish Farm Water Provides Reliable Water f...
PPTX
Arugula. Crop used for medical plant in kurdistant
PPTX
Green and Cream Aesthetic Group Project Presentation.pptx
PPTX
Biodiversity.udfnfndrijfreniufrnsiufnriufrenfuiernfuire
PPTX
Topic Globalisation and Lifelines of National Economy (1).pptx
PPTX
FIRE SAFETY SEMINAR SAMPLE FOR EVERYONE.pptx
PDF
PET Hydrolysis (polyethylene terepthalate Hydrolysis)
PDF
Ornithology-Basic-Concepts.pdf..........
PPTX
ser tico.pptxXYDTRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRY
PPTX
Envrironmental Ethics: issues and possible solution
Office Hours on Drivers of Tree Cover Loss
Urban Hub 50: Spirits of Place - & the Souls' of Places
NOISE-MITIGATION.-pptxnaksnsbaksjvdksbsksk
Blue Economy Development Framework for Indonesias Economic Transformation.pdf
Earthquake, learn from the past and do it now.pdf
Epoxy Coated Steel Bolted Tanks for Dairy Farm Water Ensures Clean Water for ...
Delivery census may 2025.pptxMNNN HJTDV U
Effect of anthropisation and revegetation efforts on soil bacterial community...
structure and components of Environment.pptx
Effective factors on adoption of intercropping and it’s role on development o...
Epoxy Coated Steel Bolted Tanks for Fish Farm Water Provides Reliable Water f...
Arugula. Crop used for medical plant in kurdistant
Green and Cream Aesthetic Group Project Presentation.pptx
Biodiversity.udfnfndrijfreniufrnsiufnriufrenfuiernfuire
Topic Globalisation and Lifelines of National Economy (1).pptx
FIRE SAFETY SEMINAR SAMPLE FOR EVERYONE.pptx
PET Hydrolysis (polyethylene terepthalate Hydrolysis)
Ornithology-Basic-Concepts.pdf..........
ser tico.pptxXYDTRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRY
Envrironmental Ethics: issues and possible solution

Mapping fire: Can spatially explicit criteria and indicators be developed?

  • 1. Solichin Manuri Subarno Mapping fire: Can spatially explicit criteria and indicators be developed (Session #2)
  • 2. Background • In the past four decades, severe wildfires have become common and repetitive events in the tropical ecosystem of Indonesia (Goldammer and Seibert, 1990). • These fires were the result of unsustainable practices of forest and land management, which coincide with extreme drought attributed to the El-Niño Southern Oscillation and the Indian Ocean Dipole Mode (Goldammer etal, 1990; Cochrane etal, 2003). • Drained peatland during dry season become susceptible to fires. During prolonged dry season, peat fires contribute huge amount of GHG emissions (Siegert etal, 2001; Lohbeger etal, 2017). • The impact of peat fires in Indonesia is limitedly explored, or with relatively high uncertainty, in particular regarding the size of the burn areas.
  • 3. Challenges in fire mapping in the tropics Mapping of burn areas in tropical region is challenging, not only because of cloud persistence but also due to smoke or haze occurrence during the fires and short windows of opportunity. NASA, MODIS
  • 4. 1982/83 1997/98 2015 20192000 Lennertz and Panzer, 1984 Siegert and Hoffm an, 2000 MODIS Burn Area MCD 45 MODIS Burn Area MCD 64 2006 MoEF GFED4.0 Lohberger, etal, 2017 LAPAN 2016 Copernicus Sub NationalGlobal National Fire mapping in the tropics and Indonesia
  • 5. Fire mapping methods in tropics and Indonesia Burned Year and location Scope, resolution, continuity Method Lennertz and Panzer, 1984 1982/83; East Kalimantan, discontinued Visual classification of Landsat MSS images Siegert and Hoffman, 2000 1997/98; East Kalimantan; 25 m; discontinued Object based image analysis of ERS2 SAR data; PCA method GFED4.0 1995 – present; Global; 27.8 m Digital classification using MODIS MCD64A1, VIIRS, ATRS, TRMM MODIS Burn Area MCD 45 MODIS Burn Area MCD 64 2000 – present; Global; 500 m; continued Thresholds of burn index was applied to define burn areas and filtered with active fire data Copernicus Burn Area 2014-present Global; 500 m The annual BA derived from SPOT Vegetation using supervised classification Lohberger, etal, 2017 2015; Indonesia; 10 m Object based image analysis of Sentinel 1 backscatters layers and temporal change metrics, training data from ground and drone survey MoEF, 2016 2006 - present Indonesia; ?; continued Visual classification of Landsat ETM, OLI images, with aid of hotspot clusters and verified with ground data or high resolution images LAPAN 2015, 2016, 2019, Indonesia;30-m; most likely continue during extreme fire years; Change detection using dNBR of Landsat ETM/OLI images and VH polarization of Sentinel 1, hotspot>30% confidence level, filtering water body
  • 6. Comparison of 2015 Fires Size 1,8 2,5 4,6 2,6 2,385 0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 GFED4.0 MODIS MCD 64 Lohberger etal, 2017 MoEF, 2016 LAPAN, 2016 2015 Burn Area Comparison (in mill ha) Peat Mineral soil All
  • 7. Summary of Used Methods Component Sensor types Active (optical) and passive (radar) sensors; or hybrid Spatial resolution 10 m (Sentinel), 30 m (Landsat), 500m (MODIS), 1km (SPOT Vegetation Temporal repetition Monthly to annually Number of image data or sensors Single to multiple data sources, including additional GIS layers, such as water body, active fires/hotspots. Classification Visual classification: Visually inspect and delineate burn areas; require prior knowledge or ground thruthing data on burn area Pixel based classification: apply threshold for change index, which defined by analysing training samples Object based image analysis: based on probabilities of objects fall into burn category, derived from fuzzy logic threshold value and training samples
  • 8. Sensors + - Passive • Easy to process • Long history of data acquisition • Hindered by cloud, smoke and haze Active • Ability to penetrate cloud • Relief displacement effects Resolution + - Medium • Better accuracy • Sufficient for national wall to wall mapping • Lower temporal resolution Low • High temporal resolution, thus able to get cloud and haze free image in shorter period • Lower spatial resolution and accuracy Classification + - Manual • Full control of operators • Time consuming • Required skilled operators Automatic • Fast and consistent results • Rely on good training samples Pros and Cons
  • 9. Satellite sensors used for burned area mapping Satellite (Sensor) Operator Operational Dates Temporal Resolution Spatial Resolution Launch Date End Operation Landsat 1-3 (MSS) NASA/USGS July 23, 1972 September 7, 1983 18 days 375-750 m Landsat 4-5 (TM) NASA/USGS July 16, 1982 June 5, 2013 16 days 30-120 m Landsat 7 (ETM+) NASA/USGS October 5, 1993 Planned lifespan for 5-21 years or 2022 16 days 15/30-60 m Landsat 8 (OLI/TIRS)NASA/USGS February 11, 2013 Planned lifespan for 5 years, but still operating 16 days OLI: 15/30 m TIRS: 100 m SPOT 1–7 (HRV) CNES February 22, 1986 2024* 26 days 2.5 to 20 m SPOT 4-5 (VGT) CNES March 24, 1998 July 1, 2013 1-2 days 1000 m NOAA-7-20 (AVHRR) NOAA October 19, 1978 Still operating 1-2 days 1100 m JPSS (VIIRS) NOAA October 28, 2011 2031 1-2 days 375-750 m Aqua (MODIS) NASA May 4, 2002 Still operating 1-2 days 250-1000 m Terra (MODIS) NASA December 18, 1999 Still operating 1-2 days 250-1000 m ENVISAT (MERIS) ESA March 1, 2002 May 9, 2012 2-3 days 300-1200 m ERS-2 ESA 1995 2011 35 days 25 m PROBA V ESA May 7, 2013 Missions duration 2-5 years, but will be end in 2020 1-2 days 300 m Sentinel 1A ESA April 3, 2014 7-12 years or until 2021-2026 6 days 5-20 m Sentinel 2A ESA June 23, 2015 7.25 years or until 2022 5 days 10-20-60 m Sentinel 1B ESA April 25, 2016 7-12 years or until 2023-2028 6 days 5-20 m Sentinel 3A ESA February 16, 2016 7.5 years or until 2023 1-2 days 500 SLSTR m Sentinel 2B ESA March 7, 2017 7.25 years or until 2024 5 days 10-20-60 m Sentinel 3B ESA April 25, 2018 7 years or until 2025 1-2 days 300 OLCI mChuevieco, et al (2019)
  • 10. 2018 7 years or until 2025 2024* Satellite Lifespan Sentinel 1B 2016 Landsat 1-3 (MSS) 1972 1983 Landsat 4-5 (TM) 1982 2013 SPOT 4-5 (VGT) 1998 2013 EVISAT (MERIS) 2002 2012 ERS-2 1995 2011 1978 NOAA-7-19 (AVHRR) Still Operating SPOT 1-7 (HRV) 1986 Landsat 7 (ETM+) 1993 Planned lifespan for 5-21 years or 2022 Terra (MODIS) 1999 Still Operating JPPSS (VIIRS) 2011 2031 Landsat 8 (OLI/TIRS) 2013 Planned lifespan for 5 year, but still operating Aqua (MODIS) 2002 Still Operating PROBA V 2013 Missions duration 2-5 years, but will be end in 2020 Sentinel 1A 2014 7-12 years or until 2021-2026 Sentinel 2A 2015 7.25 years or until 2022 7-12 years or until 2023-2028 Sentinel 3A 2016 7.5 years or until 2023 Sentinel 2B 2017 7.25 years or until 2024 Sentinel 3A
  • 11. Giglio etal, 2018 Siegert and Hoffman (2000) conducted an accuracy assessment using aerial survey for the 25-m resolution ERS SAR BA. While Giglio et al (2018) carried out uncertainty analysis for the 500 m MODIS BA using higher resolution images, i.e. 30-m Landsat Accuracy Assessment Siegert and Hoffman, 2000
  • 12. Burn Peat Depth Mapping • Accurate information on burn peat depth is crucial for estimating emissions from peat fires. • Yet limited studies related to burn peat depth mapping in Indonesia, involving manual measurement and lidar application • Manual measurement poses potential biases due to the difficult accessibility of remote areas and time consuming • On the other hand, airborne lidar has been used for various height-related studies with high precision (sub meter). Balhorn etal, 2009 Study using Lidar Data Burnt Peat Depth (m) SE (m) Konecny et al, 2016 0.13 0.16 Simpson et al, 2016 0.23 0.19 Ballhorn et al, 2009 0.33 0.18
  • 13. • Several initiatives on fire mapping are available globally and nationally using different satellite images and different classification method. • Spatially explicit criteria of fire mapping should be developed specifically depending on the method and data used, combined with knowledge from ground or aerial surveys. • Validation of the burn area using ground thruthing data or high- resolution images is required to understand the uncertainty of the data • Selection of method will rely on the need of fire mapping, i.e. mapping coverage, reporting interval, technical capacity and funding availability. • It is important to select the remote sensing data based on the spatial resolution, technical and funding capacity as well as the lifespan and the continuity of the satellite program. • Apart from mapping the size of fires, it is also important to estimate the depth of peat fires Main messages