DX2000 from NEC lets you put big data to work	 April 2016
DX2000 from NEC lets you put big data to work
with quick analysis in a robust, space-efficient, and
scalable solution, powered by Intel®
Modern businesses generate and collect data at an
incredible rate. The data sets are sometimes too large for
traditional processing, and the emergence of big data fuels
the need to process and analyze data differently than we
have in the past. Analyzing and understanding big data
is vital to the success of most businesses as it can lead to
improvements in:
Cut analysis
time in half
by adding
server nodes
~2minutes
•  Customer experience
•  New products or services
•  Revenue generation
•  Customer base growth
•  Market reach
•  Customization of existing
products or services
Just collecting data is not enough; to get these
improvements you have to identify data patterns
through processing and analysis, which requires
a speedy, scalable, and flexible hardware and
software solution.
We set up a new Scalable Modular Server DX2000
from NEC, powered by the Intel Xeon®
processor
D product family. We then configured a Red Hat®
Enterprise Linux®
OpenStack®
cloud environment
with Apache Spark™, an industry-leading big-data
analytics engine, to put the DX2000 through its
paces. The solution analyzed a big data sample
set not only quickly and efficiently, but most
importantly – in a predictable, scalable fashion.
When we added more server nodes, it processed
the big data more quickly.
Find
patterns in
100GB
of data in
A Principled Technologies report: Hands-on testing. Real-world results.
8nodes
12nodes
16nodes
19nodes
247.4
seconds
179.1
seconds
139.6
seconds 122.0
seconds
DX2000 from NEC lets you put big data to work	 April 2016  |  2
Drive your business on facts, not speculation
Money-making facts live in your business data, but it’s up to you
to find them efficiently. Whether you want to run a targeted email
advertising campaign to drive sales or analyze customer feedback
to improve product quality, big data can help you spot patterns that
predict probability based on key data points. Taking the guesswork out
of vital decision-making processes can have a positive impact on your
bottom line.
Processing large volumes of data in a timely manner requires compute
power. The DX2000 brings that power to your big data initiatives by
providing up to 44 single-processor server modules per 3U enclosure.
Apache Spark, the analytics tool we used in testing, uses in-memory
processing to give you data analysis results as fast as possible.
Combining Apache Spark with the memory resources of DX2000 server
nodes allows you to get results more quickly than traditional disk-based
approaches in many applications.
Combat datacenter sprawl and meet big
data challenges
Just because your data is big doesn’t mean your hardware infrastructure
has to be. While managing a big data environment can be challenging,
as over 90% of respondents to a recent survey agree,1
your business can
help contain datacenter sprawl by selecting a dense, scalable modular
server platform.
A scalable modular server platform, like the DX2000 by NEC, is a rack-
mounted chassis holding multiple server units, often called server nodes,
which commonly work together as a cluster. These compact server
nodes pack compute, storage, and networking resources into a small
space. You can configure the nodes to provide ample memory resources
as well.
In our tests, the DX2000 from NEC quickly analyzed our sample data set
and combated datacenter sprawl by doing it in only 3U of rackspace.
While traditional servers can run big data analytics, they take up a lot of
valuable datacenter space.
The Scalable Modular Server DX2000
from NEC has 44 customizable slots
available to create a number of
configurations. Each DX2000 could hold
up to the following:
•  44 server nodes featuring Intel
Xeon D processors for compute
density, 2.75TB DDR4 memory
(64GB per server node), and 22TB
of flash-based storage (512GB per
server node)
•  22 dual 10Gb Ethernet links for
additional networking (up to 22
slots for server nodes)
•  8 PCIe card modules for
expanding resources available to
specific server nodes (up to 36
slots for server nodes)
Clustering nodes of necessary resources
in a small space makes sense for big
data initiatives, particularly because
big data requires so much processing
power. Each of the 22 server nodes
in our DX2000 enclosure featured
the following:
•  8-core Intel Xeon processor
D-1541
•  64GB memory
•  256GB flash-based storage
•  Dual 10Gb Ethernet links
DX2000 from NEC lets you put big data to work	 April 2016  |  3
How can big data analysis help
boost business?
When a business can analyze big data quickly, multiple
departments have the ability to reap business benefits. Consider
the following scenarios:
Serve customers better
Sandy is a marketing department head for a retail-
clothing manufacturer. Keeping track of customer
purchases – for example, the type of jackets that
customers of a certain age or region have bought
in the past week – can inform targeted, predictive
advertisements and communications for these
customers in the future. The faster the company’s
servers analyze this data, the sooner Sandy gets the
reports she needs in order to send out customized
emails telling customers about other products that may
interest them. She’ll also use those reports to send offers
to buyers that fit those demographics, but have not made
purchases yet. This successful campaign will ultimately lead
to more business from new and existing
customers. Using the Scalable Modular
Server DX2000 from NEC and Apache Spark
for her data analysis, Sandy can quickly get the
valuable information that helps her make informed
business decisions.
Improve product quality
Devon, an inventory manager for a distribution center, oversees the returns
department. Devon and his team must track why customers return
items, and they rely on rapid big data analysis to identify patterns
in the returned items. They need to ensure that product quality is
good and address customer satisfaction issues with specific items.
His team works closely with the product development team and
manufacturing leaders to guarantee that their products live up
to customer needs and expectations. The Scalable Modular
Server DX2000 from NEC and Apache Spark can help Devon
and his team quickly identify quality control issues and provide
the necessary feedback to the leaders responsible for correcting
the problem.
Speed big data processing
with Apache Spark
Apache Spark is an industry-standard
framework that processes big data
in-memory. In-memory processing
keeps data in RAM to shorten response
times. Companies like Amazon, eBay, NASA
Jet Propulsion Laboratories, TripAdvisor,
and Yahoo use this tool to help them get
real-time bid optimization, machine learning-
based user data modeling, forecasting, and other
predictive analytics.2
Your business can use robust hardware platforms
like the DX2000 from NEC in conjunction with
machine learning functionality – among
other valuable kinds of data processing
in Apache Spark – to make better use
of your growing data and achieve fast
analysis turnaround times.
Find what
you’re looking for
In our datacenter,
we used the clustering
algorithm k-means. k-means
takes large data sets and
identifies patterns in them.
Companies often use it in
predictive analysis for cost
modeling, market research,
price forecasting, and
customer-retention
applications.
DX2000 from NEC lets you put big data to work	 April 2016  |  4
100 million people
We chose a sample data set big enough to store the demographic
data for 6.75 billion people.3
=
Grow your revenue
Chris, a regional sales manager for a retail chain, relies on sales, marketing, and advertising
data analysis from the retailer’s IT department to drive decisions on in-store sales and marketing
campaigns. He needs fast and reliable data to help his team identify which of his advertising drives
are most effective, whether the time of year affects sales numbers, and what incentives are likely to
be most effective on first-time customers. Apache Spark and the Scalable Modular Server DX2000
from NEC provide a powerful platform for valuable big data analysis that can help Chris bring in new
customers and grow his company’s revenue.
Facts from our datacenter
Find patterns
We put the DX2000 solution through its paces
with a k-means data cluster analysis test from the
HiBench benchmark suite. The results from this
performance evaluation show you the benefits
of combining the Apache Spark in-memory
engine with the Scalable Modular Server DX2000
from NEC. When all available compute nodes
in our configuration were running the k-means
analysis, the NEC solution took just over 2
minutes, or 122 seconds, to process 100GB of
data. Even though the data set we used is small
by some big data standards, a few hundred
GB is representative of some publicly available
applications and use cases, and it could reflect
scenarios that you can relate to. For example,
100GB is large enough to store demographic
data for the world’s population in 20093
or three
months of Wikipedia’s page traffic statistics.4
Cut analysis time in half
We also compared throughput, a measure of
how quickly a solution can process data, at
several different server node counts. We did this
to demonstrate how increasing the number of
server nodes can improve the throughput of the
DX2000, thus cutting down on processing time.
We began our scaling comparison with eight
server nodes. We tested fewer nodes than eight,
but using so few nodes for a data set of this size
yielded less than optimal results. This was due to
the application and data set footprint exceeding
the memory resources available to Apache Spark
in those low node counts. As we added additional
server nodes to our DX2000, the solution scaled
nearly linearly in throughput. Ultimately, 19 nodes
delivered over twice the throughput of eight,
cutting analysis time of our 100GB data set in
half compared to our initial eight-server-node
count. At our maximum 22-server configuration,
we used 19 server nodes for data processing and
three nodes for management services. Based on
the results we got from eight to 19 nodes, we
expect your big data throughput would scale
up as your business grows and you continue to
populate your DX2000 enclosure with additional
server nodes.
DX2000 from NEC lets you put big data to work	 April 2016  |  5
Big data analytics with private cloud flexibility
We deployed and tested a Red Hat OpenStack Platform environment in the Principled Technologies
datacenter. In this OpenStack environment, we used two OpenStack controller servers for high
availability, one server for management tasks and Red Hat OpenStack Platform Director services,
and the DX2000 from NEC with 22 server nodes. This deployment provided the flexible
private cloud environment we needed for our Apache Spark VMs.
When you use Red Hat Enterprise Linux OpenStack Platform 7 in
conjunction with Apache Spark and the DX2000 environment, your
team can dedicate as much or as little space to big data analysis as
you need. The flexibility of this platform means you can spin up
application instances to meet changing IT demands.
Cloud platforms such as Red Hat Enterprise Linux OpenStack
Platform help increase your flexibility by adapting your
hardware environment without having to rebuild your
infrastructure from the ground up. For more information,
please visit Red Hat’s website.5
Conclusion
The data that your business collects is constantly growing, making it increasingly difficult for traditional
systems to keep up with resource demands. Understanding your big data can help you serve your
customers better, improve product quality, and grow your revenue, but you need a platform that can
handle the strain.
In hands-on tests in our datacenter, the Scalable Modular Server DX2000 from NEC processed big data
quickly and scaled nearly linearly as we added server nodes. In our k-means data cluster analysis test,
a DX2000 solution running Apache Spark and Red Hat Enterprise Linux OpenStack Platform processed
100GB in approximately 2 minutes. We also saw that as we doubled the number of server nodes, the
DX2000 solution cut analysis time in half when processing the same amount of data, producing excellent
scalability.
The Scalable Modular Server DX2000 by NEC is a good choice when you’re ready to put big data to
work for you.
Red Hat Enterprise
Linux OpenStack Platform 7
is an Infrastructure-as-a-Service (IaaS)
private cloud solution. It allows you
to build a cloud platform on your
hardware and use resources efficiently.
1	 http://www.ca.com/us/~/media/Files/infographics/bright-lights-big-data.PDF
2	 https://cwiki.apache.org/confluence/display/SPARK/Powered+By+Spark
3	 Basic demographic data refers to age, sex, income, ethnicity, language, religion, housing status, and location.
Read a more detailed explanation and review at http://dl.acm.org/citation.cfm?id=1536632.
4	 https://aws.amazon.com/datasets/wikipedia-page-traffic-statistic-v3/
5	 https://access.redhat.com/documentation/en/red-hat-enterprise-linux-openstack-platform/version-7/red-hat-en-
terprise-linux-openstack-platform-7-architecture-guide/preface
DX2000 from NEC lets you put big data to work	 April 2016  |  6
Server configuration information NEC Scalable Modular Server DX2000
BIOS name and version MM60-B30, BIOS 5.0.0005
Non-default BIOS settings Changed from UEFI to Legacy BIOS
Operating system name and version/build number Red Hat Enterprise Linux 7.2 3.10.0-327.10.1.el7.x86_64
Date of last OS updates/patches applied 02/12/2016
Power management policy Default
Processor
Number of processors 1
Vendor and model Intel Xeon CPU D-1541
Core count (per processor) 8
Core frequency (GHz) 2.10
Stepping V2
Memory module(s)
Total memory in system (GB) 64
Number of memory modules 4
Vendor and model Hynix HMA82GS7MFR8N-TF
Size (GB) 16
Type PC4-17000
Speed (MHz) 2133
Speed running in the server (MHz) 2133
Storage controller
Vendor and model Intel 82801JI
Cache size N/A
Driver version 2.13
Local storage
Number of drives 1
Drive vendor and model Toshiba THNSNJ256G8NU
Drive size (GB) 256
Drive information (speed, interface, type) 6Gb/s, M.2, SSD
Network adapter
Vendor and model Intel X552
Number and type of ports 2 x 10GbE
Driver version 4.3.13
Appendix A – Inside the server we tested
Figure 1 provides detailed configuration information for each of the 22 server nodes we tested.
Figure 1: Detailed configuration information for each of the 22 server nodes we tested.
DX2000 from NEC lets you put big data to work	 April 2016  |  7
Server enclosure configuration information NEC Scalable Modular Server DX2000
Number of management modules 2
Management module firmware revision 00.19
I/O module
Vendor and model number NEC Micro Modular Server DX2000 LAN Switch
I/O module firmware revision ZebOS-XP version 1.2.0.5
Number of modules 2
Occupied bay(s) 1, 2
Power supplies
Vendor and model number Delta Electronics DPS-1600FB
Number of power supplies 3
Wattage of each (W) 1600
Cooling fans
Dimensions in millimeters 80x80x30
Number of fans 8
Figure 2 provides detailed configuration information for the server enclosure we used in
our tests.
Figure 2: Configuration information for the server enclosure.
DX2000 from NEC lets you put big data to work	 April 2016  |  8
Appendix B – Inside our testing
Detailed information on the results of our testing
Figure 3 shows our median throughput results from eight server nodes to 19. The red dotted linear
regression trend line illustrates the even scaling of throughput as we added server nodes, with the green
dots demonstrating the median throughput at each server node count.
Figure 4: k-means median time.
Figure 3: k-means median throughput.
400
8 10 12
# of Nodes
14 16 18
450
500
550
600
650
700
750
800
850
100
8 10 12
# of Nodes
14 16 18
120
140
160
180
200
220
240
250
400
8 10 12
# of Nodes
14 16 18
450
500
550
600
650
700
750
800
850
100
8 10 12
# of Nodes
14 16 18
120
140
160
180
200
220
240
250
Server nodes
Median
throughput
(MB/s)
19 840.0
18 803.8
17 770.7
16 734.1
15 703.3
14 667.0
13 586.5
12 572.0
11 522.3
10 490.5
9 456.3
8 414.2
Server nodes
Median time
(seconds)
19 122.0
18 127.5
17 132.9
16 139.6
15 145.7
14 153.6
13 174.7
12 179.1
11 196.2
10 208.9
9 224.6
8 247.4
Figure 4 shows the median times to process the sample data set from eight server nodes to 19. The red
dotted linear regression trend line illustrates how evenly adding server nodes decreased time to process
the sample data set, and the green dots are the actual median times at each server node count.
DX2000 from NEC lets you put big data to work	 April 2016  |  9
Detailed information on how we tested the DX2000
Complete the steps in the following link for UEFI deployment: http://docs.openstack.org/developer/ironic/deploy/install-guide.html#ipxe-setup
Configuring Red Hat Enterprise Linux OpenStack Platform Director
1.	 Create a Director user:
useradd stack
passwd stack
echo “stack ALL=(root) NOPASSWD:ALL” | tee -a /etc/sudoers.d/stack
chmod 0440 /etc/sudoers.d/stack
su - stack
2.	 Create directories for templates and images:
mkdir ~/images
mkdir ~/templates
3.	 Set the hostname of the system:
sudo hostnamectl set-hostname director.test.lan
sudo hostnamectl set-hostname --transient director.test.lan
sudo vi /etc/hosts
An example of the content in the host file:
127.0.0.1 director.test.lan director localhost localhost.localdomain localhost4 localhost4.localdomain4
::1 director.test.lan director localhost localhost.localdomain localhost6 localhost6.localdomain6
4.	 Register the system:
sudo subscription-manager register
sudo subscription-manager list --available --all
5.	 Locate the OpenStack pool ID in output, and replace it with the following:
sudo subscription-manager attach --pool=8a85f9814ff0134a014ff710053466b7
sudo subscription-manager repos --disable=*
sudo subscription-manager repos --enable=rhel-7-server-rpms --enable=rhel-7-server-optional-rpms --en-
able=rhel-7-server-extras-rpms --enable=rhel-7-server-openstack-7.0-rpms --enable=rhel-7-server-openstack-
7.0-director-rpms
sudo yum install -y yum-utils yum-plugin-priorities
sudo yum-config-manager --enable rhel-7-server-openstack-7.0-rpms --setopt=”rhel-7-server-openstack-7.0-
rpms.priority=1”
sudo yum-config-manager --enable rhel-7-server-rpms --setopt=”rhel-7-server-rpms.priority=1”
sudo yum-config-manager --enable rhel-7-server-optional-rpms --setopt=”rhel-7-server-optional-rpms.priori-
ty=1”
sudo yum-config-manager --enable rhel-7-server-extras-rpms --setopt=”rhel-7-server-extras-rpms.priority=1”
sudo yum-config-manager --enable rhel-7-server-openstack-7.0-director-rpms --setopt=”rhel-7-server-open-
stack-7.0-director-rpms.priority=1”
sudo yum update -y
sudo reboot
6.	 Install the Director packages and additional widgets:
su - stack
sudo yum install -y python-rdomanager-oscplugin
sudo reboot
yum install -y wget vim sysstat
DX2000 from NEC lets you put big data to work	 April 2016  |  10
7.	 Complete SSL certificate configuration:
su - stack
cp /etc/pki/tls/openssl.cnf .
vim ~/openssl.cnf
a.	 Modify the following lines in the SSL certificate:
[ req_distinguished_name ]
countryName_default = US
stateOrProvinceName_default = Default State
localityName_default = Default City
organizationalUnitName_default = TestOrg
commonName_default = 192.0.2.2
[ v3_req ]
basicConstraints = CA:FALSE
keyUsage = nonRepudiation, digitalSignature, keyEncipherment
subjectAltName = IP:192.0.2.2
openssl genrsa -out privkey.pem 2048
openssl req -new -x509 -key privkey.pem -out cacert.pem -days 365 -config ~/openssl.cnf
cat cacert.pem privkey.pem > undercloud.pem
sudo mkdir /etc/pki/instack-certs
sudo cp ~/undercloud.pem /etc/pki/instack-certs/.
sudo semanage fcontext -a -t etc_t “/etc/pki/instack-certs(/.*)?”
sudo restorecon -R /etc/pki/instack-certs
8.	 To configure the Director file, modify the dchp_end and discovery_iprange as indicated below, and leave the remaining default options:
cp /usr/share/instack-undercloud/undercloud.conf.sample ~/undercloud.conf
vim ~/undercloud.conf
[DEFAULT]
image_path = .
local_ip = 192.0.2.1/24
undercloud_public_vip = 192.0.2.2
undercloud_admin_vip = 192.0.2.3
undercloud_service_certificate =
local_interface = eth1
masquerade_network = 192.0.2.0/24
dhcp_start = 192.0.2.5
dhcp_end = 192.0.2.99
network_cidr = 192.0.2.0/24
network_gateway = 192.0.2.1
discovery_interface = br-ctlplane
discovery_iprange = 192.0.2.100,192.0.2.199
discovery_runbench = false
undercloud_debug = true
[auth]
9.	 Complete installation of the Undercloud:
openstack undercloud install
source ~/stackrc
10.	 Log in to the Red Hat Network, and get the most recent URLs from the Red Hat OpenStack documentation for images of the Overcloud nodes:
cd ~/images
wget ‘https://access.cdn.redhat.com/…/overcloud-full-7.3.0-56.tar’
wget ‘https://access.cdn.redhat.com/…/deploy-ramdisk-ironic-7.3.0-39.tar’
wget ‘https://access.cdn.redhat.com/…/discovery-ramdisk-7.3.0-56.tar’
for tarfile in *.tar*; do tar -xf $tarfile; done
openstack overcloud image upload --image-path /home/stack/images/
openstack image list
DX2000 from NEC lets you put big data to work	 April 2016  |  11
Sample output:
+--------------------------------------+------------------------+
| ID | Name |
+--------------------------------------+------------------------+
| b10a15d7-d558-4d39-89a1-824e2e39c5f3 | bm-deploy-kernel |
| 214f9cbf-a935-4d40-84fe-22e1d3764a51 | bm-deploy-ramdisk |
| 7529fd44-84d4-4db2-8d82-36997d570a0e | overcloud-full |
| b429415d-15d3-4911-a326-73c2cdf1c16d | overcloud-full-initrd |
| dced3b92-fbae-4bd6-a0bb-795971b7ce77 | overcloud-full-vmlinuz |
+--------------------------------------+------------------------+
ls /httpboot –l
Sample output:
total 155504
-rw-r--r--. 1 ironic ironic 240 Feb 16 02:48 discoverd.ipxe
-rwxr-xr-x. 1 root root 5152928 Feb 16 03:00 discovery.kernel
-rw-r--r--. 1 root root 154075101 Feb 16 03:00 discovery.ramdisk
11.	 Enter a nameserver for the Overcloud:
neutron subnet-list
Sample output:
+--------------------------------------+------+--------------+---------------------------------------------+
| id | name | cidr | allocation_pools |
+--------------------------------------+------+--------------+---------------------------------------------+
| 58cb5657-53a6-45c9-aedc-5f04a6bd6793 | | 192.0.2.0/24 | {“start”: “192.0.2.5”, “end”: “192.0.2.99”} |
+--------------------------------------+------+--------------+---------------------------------------------+
neutron subnet-update 58cb5657-53a6-45c9-aedc-5f04a6bd6793 --dns-nameserver 192.0.2.254
Updated subnet: 58cb5657-53a6-45c9-aedc-5f04a6bd6793
neutron subnet-show 58cb5657-53a6-45c9-aedc-5f04a6bd6793
+-------------------+---------------------------------------------------------------+
| Field | Value |
+-------------------+---------------------------------------------------------------+
| allocation_pools | {“start”: “192.0.2.5”, “end”: “192.0.2.99”} |
| cidr | 192.0.2.0/24 |
| dns_nameservers | 192.0.2.254 |
| enable_dhcp | True |
| gateway_ip | 192.0.2.1 |
| host_routes | {“destination”: “169.254.169.254/32”, “nexthop”: “192.0.2.1”} |
| id | 58cb5657-53a6-45c9-aedc-5f04a6bd6793 |
| ip_version | 4 |
| ipv6_address_mode | |
| ipv6_ra_mode | |
| name | |
| network_id | 660174c5-5300-4efd-a6ca-227effbd7b2b |
| subnetpool_id | |
| tenant_id | 9a658b9fea5641c38a5a052e4e0d5a3d |
+-------------------+---------------------------------------------------------------+
12.	 Install the Overcloud:
source ~/stackrc
openstack baremetal import --json ~/chassis1.json
openstack baremetal configure boot
openstack baremetal list
DX2000 from NEC lets you put big data to work	 April 2016  |  12
Sample output:
+--------------------------------------+------+---------------+-------------+-----------------+-------------+
| UUID | Name | Instance UUID | Power State | Provision State | Maintenance |
+--------------------------------------+------+---------------+-------------+-----------------+-------------+
| 28eb4296-a646-4162-8fce-4d619c7e37ae | None | None | power off | available | False |
| 5ecd4490-5c46-4016-8a5d-864725169915 | None | None | power off | available | False |
| 486900d0-5e16-4dc6-8f3c-22875624d1fa | None | None | power off | available | False |
| a46b6781-ddcb-4da8-87b2-818b761c489e | None | None | power off | available | False |
| adc866a1-6c3c-4918-aaf9-bcdd1a853bdc | None | None | power off | available | False |
| 7a14db26-9a70-45ec-b382-f0db0a20a11b | None | None | power off | available | False |
| 2c7480ab-afbf-460d-8cc3-472029401e42 | None | None | power off | available | False |
| 695a0c67-cb6c-4dc7-a868-c2ce8b337f09 | None | None | power off | available | False |
| d76790c2-5037-432f-a022-b5286f140f3c | None | None | power off | available | False |
| 3d38354e-f44f-47ae-9e39-dd6d656b2f95 | None | None | power off | available | False |
| b57b78a3-4315-4249-bc4f-f31d8f39d8e1 | None | None | power off | available | False |
| d99e9cd7-7386-4fc4-a7dc-4a83d4083064 | None | None | power off | available | False |
| fd0cf747-3362-4a8d-a9f4-ee3fcb5f9b15 | None | None | power off | available | False |
| 42cb3836-f295-4ceb-bfb5-a47f5bc0cc61 | None | None | power off | available | False |
| 427dd24d-74e1-4ca5-930a-3eb37803d282 | None | None | power off | available | False |
| fdc6bc25-848f-453c-a1ff-a948132909b7 | None | None | power off | available | False |
| b1b4af72-d1d7-4dda-90a8-910bbaefbed0 | None | None | power off | available | False |
| fbd82a87-fd4c-4e27-97ed-a30aad2b2ea5 | None | None | power off | available | False |
| c93bedd4-f51f-453b-b7e4-4935fc1d9925 | None | None | power off | available | False |
| 2da31b69-83a7-4a76-8283-23fd3a83a958 | None | None | power off | available | False |
| ce8e6efc-2f4b-413a-b018-1ec9e704bb1b | None | None | power off | available | False |
| 8a1475f5-df75-44fa-ace6-07175a6e205c | None | None | power off | available | False |
+--------------------------------------+------+---------------+-------------+-----------------+-------------+
ironic chassis-create -d “Chassis1 - 22 server modules @ 8 cores”
Sample output:
+-------------+----------------------------------------+
| Property | Value |
+-------------+----------------------------------------+
| uuid | 7a041d99-36f3-47f1-a5d7-879a83f2dc5b |
| description | Chassis1 - 22 server modules @ 8 cores |
| extra | {} |
+-------------+----------------------------------------+
openstack baremetal list | awk ‘/power off/{print $2}’ > ~/chassis1.txt
for i in `cat ~/chassis1.txt`; do ironic node-update $i replace chassis_uuid=7a041d99-36f3-47f1-a5d7-879a83f-
2dc5b ; done
openstack baremetal import --json ~/controller.json
openstack baremetal configure boot
openstack baremetal list
DX2000 from NEC lets you put big data to work	 April 2016  |  13
Sample output:
+--------------------------------------+------+---------------+-------------+-----------------+-------------+
| UUID | Name | Instance UUID | Power State | Provision State | Maintenance |
+--------------------------------------+------+---------------+-------------+-----------------+-------------+
| 28eb4296-a646-4162-8fce-4d619c7e37ae | None | None | power off | available | False |
| 5ecd4490-5c46-4016-8a5d-864725169915 | None | None | power off | available | False |
| 486900d0-5e16-4dc6-8f3c-22875624d1fa | None | None | power off | available | False |
| a46b6781-ddcb-4da8-87b2-818b761c489e | None | None | power off | available | False |
| adc866a1-6c3c-4918-aaf9-bcdd1a853bdc | None | None | power off | available | False |
| 7a14db26-9a70-45ec-b382-f0db0a20a11b | None | None | power off | available | False |
| 2c7480ab-afbf-460d-8cc3-472029401e42 | None | None | power off | available | False |
| 695a0c67-cb6c-4dc7-a868-c2ce8b337f09 | None | None | power off | available | False |
| d76790c2-5037-432f-a022-b5286f140f3c | None | None | power off | available | False |
| 3d38354e-f44f-47ae-9e39-dd6d656b2f95 | None | None | power off | available | False |
| b57b78a3-4315-4249-bc4f-f31d8f39d8e1 | None | None | power off | available | False |
| d99e9cd7-7386-4fc4-a7dc-4a83d4083064 | None | None | power off | available | False |
| fd0cf747-3362-4a8d-a9f4-ee3fcb5f9b15 | None | None | power off | available | False |
| 42cb3836-f295-4ceb-bfb5-a47f5bc0cc61 | None | None | power off | available | False |
| 427dd24d-74e1-4ca5-930a-3eb37803d282 | None | None | power off | available | False |
| fdc6bc25-848f-453c-a1ff-a948132909b7 | None | None | power off | available | False |
| b1b4af72-d1d7-4dda-90a8-910bbaefbed0 | None | None | power off | available | False |
| fbd82a87-fd4c-4e27-97ed-a30aad2b2ea5 | None | None | power off | available | False |
| c93bedd4-f51f-453b-b7e4-4935fc1d9925 | None | None | power off | available | False |
| 2da31b69-83a7-4a76-8283-23fd3a83a958 | None | None | power off | available | False |
| ce8e6efc-2f4b-413a-b018-1ec9e704bb1b | None | None | power off | available | False |
| 8a1475f5-df75-44fa-ace6-07175a6e205c | None | None | power off | available | False |
| 1c8e5593-c504-487e-b407-5e29e0e3899e | None | None | power off | available | False |
+--------------------------------------+------+---------------+-------------+-----------------+-------------+
openstack baremetal introspection bulk start
sudo journalctl -l -u openstack-ironic-discoverd -u openstack-ironic-discoverd-dnsmasq -u openstack-iron-
ic-conductor -f
watch -n 60 -d ‘openstack baremetal list | grep -v COMPLETE’
openstack baremetal list | awk ‘/None/{print “ironic node-update “$2” add properties/capabilities=’’’pro-
file:compute,boot_option:local’’’”}’ > baremetal_assign.sh
13.	 Modify the last two lines in baremetal_assign.sh:
vim baremetal_assign.sh
Sample output:
ironic node-update 28eb4296-a646-4162-8fce-4d619c7e37ae add properties/capabilities=’profile:compute,boot_op-
tion:local’
ironic node-update 5ecd4490-5c46-4016-8a5d-864725169915 add properties/capabilities=’profile:compute,boot_op-
tion:local’
ironic node-update 486900d0-5e16-4dc6-8f3c-22875624d1fa add properties/capabilities=’profile:compute,boot_op-
tion:local’
ironic node-update a46b6781-ddcb-4da8-87b2-818b761c489e add properties/capabilities=’profile:compute,boot_op-
tion:local’
ironic node-update adc866a1-6c3c-4918-aaf9-bcdd1a853bdc add properties/capabilities=’profile:compute,boot_op-
tion:local’
ironic node-update 7a14db26-9a70-45ec-b382-f0db0a20a11b add properties/capabilities=’profile:compute,boot_op-
tion:local’
ironic node-update 2c7480ab-afbf-460d-8cc3-472029401e42 add properties/capabilities=’profile:compute,boot_op-
tion:local’
ironic node-update 695a0c67-cb6c-4dc7-a868-c2ce8b337f09 add properties/capabilities=’profile:compute,boot_op-
tion:local’
ironic node-update d76790c2-5037-432f-a022-b5286f140f3c add properties/capabilities=’profile:compute,boot_op-
tion:local’
ironic node-update 3d38354e-f44f-47ae-9e39-dd6d656b2f95 add properties/capabilities=’profile:compute,boot_op-
tion:local’
ironic node-update b57b78a3-4315-4249-bc4f-f31d8f39d8e1 add properties/capabilities=’profile:compute,boot_op-
tion:local’
DX2000 from NEC lets you put big data to work	 April 2016  |  14
ironic node-update d99e9cd7-7386-4fc4-a7dc-4a83d4083064 add properties/capabilities=’profile:compute,boot_
option:local’
ironic node-update fd0cf747-3362-4a8d-a9f4-ee3fcb5f9b15 add properties/capabilities=’profile:compute,boot_
option:local’
ironic node-update 42cb3836-f295-4ceb-bfb5-a47f5bc0cc61 add properties/capabilities=’profile:compute,boot_
option:local’
ironic node-update 427dd24d-74e1-4ca5-930a-3eb37803d282 add properties/capabilities=’profile:compute,boot_
option:local’
ironic node-update fdc6bc25-848f-453c-a1ff-a948132909b7 add properties/capabilities=’profile:compute,boot_op-
tion:local’
ironic node-update b1b4af72-d1d7-4dda-90a8-910bbaefbed0 add properties/capabilities=’profile:compute,boot_
option:local’
ironic node-update fbd82a87-fd4c-4e27-97ed-a30aad2b2ea5 add properties/capabilities=’profile:compute,boot_
option:local’
ironic node-update c93bedd4-f51f-453b-b7e4-4935fc1d9925 add properties/capabilities=’profile:compute,boot_
option:local’
ironic node-update 2da31b69-83a7-4a76-8283-23fd3a83a958 add properties/capabilities=’profile:compute,boot_
option:local’
ironic node-update ce8e6efc-2f4b-413a-b018-1ec9e704bb1b add properties/capabilities=’profile:compute,boot_
option:local’
ironic node-update 8a1475f5-df75-44fa-ace6-07175a6e205c add properties/capabilities=’profile:compute,boot_
option:local’
Modify the following lines:
ironic node-update 778afb64-972c-4eff-b817-b4231c004599 add properties/capabilities=’profile:control,boot_op-
tion:local’
ironic node-update 6f0537ff-1d42-45a8-af72-13147fab2d33 add properties/capabilities=’profile:control,boot_op-
tion:local’
openstack flavor create --id auto --ram 98304 --disk 54 --vcpus 24 control
openstack flavor create --id auto --ram 65536 --disk 237 --vcpus 16 compute
openstack flavor create --id auto --ram 4096 --disk 40 --vcpus 1 baremetal
cp -r /usr/share/openstack-tripleo-heat-templates/network/config/bond-with-vlans ~/templates/nic-configs
14.	 Edit control-scale and compute-scale to match the environment:
openstack overcloud deploy --templates -e /usr/share/openstack-tripleo-heat-templates/environments/net-
work-isolation.yaml -e ~/templates/network-environment.yaml -e ~/templates/storage-environment.yaml --con-
trol-scale 2 --compute-scale 22 --control-flavor control --compute-flavor compute --ntp-server 192.0.2.254
--neutron-network-type vxlan --neutron-tunnel-types vxlan
heat stack-list --show-nested | grep -v COMPLETE
watch -n 60 -d ‘heat stack-list --show-nested | grep -v COMPLETE’
15.	 Build the most recent Intel NIC drivers:
rpmbuild -tb ixgbe-4.3.13.tar.gz
cp ~/rpmbuild/RPMS/x86_64/*.rpm ~
scp *.rpm heat-admin@192.0.2.XXX:/home/heat-admin/
ssh heat-admin@192.0.2.XX “sudo yum localinstall -y i*.rpm ; sudo dracut --force”
16.	 Reboot the nodes:
nova list
nova reboot NODE_INSTANCE_ID
17.	 Use the CLI to create an advanced Overcloud with Ceph nodes:
ssh heat-admin@192.0.2.XX
Replace XX with the IP address of a controller node Note: ipaddr is the IP address of your controller servers’ IPMI interface.
sudo pcs stonith create my-ipmilan-for-controller01 fence_ipmilan pcmk_host_list=overcloud-controller-0 ip-
addr=192.168.0.251 login=Administrator passwd=Administrator lanplus=1 cipher=1 op monitor interval=60s
sudo pcs constraint location my-ipmilan-for-controller01 avoids overcloud-controller-0
DX2000 from NEC lets you put big data to work	 April 2016  |  15
sudo pcs stonith create my-ipmilan-for-controller02 fence_ipmilan pcmk_host_list=overcloud-controller-1 ip-
addr=192.168.0.252 login=Administrator passwd=Administrator lanplus=1 cipher=1 op monitor interval=60s
sudo pcs constraint location my-ipmilan-for-controller02 avoids overcloud-controller-1
sudo pcs stonith show
sudo pcs property set stonith-enabled=true
sudo pcs property show
sudo pcs status
18.	 Create the Overcloud tenant network:
source ~/overcloudrc
neutron net-create default --shared
neutron subnet-create --name default --gateway 172.20.1.1 default 172.20.0.0/16
neutron net-list
19.	 Create the Overcloud external network (using a non-native VLAN):
source ~/overcloudrc
neutron net-create nova --router:external --provider:network_type vlan --provider:physical_network datacen-
tre --provider:segmentation_id 1200
neutron subnet-create --name nova --enable_dhcp=False --allocation-pool=start=10.1.1.51,end=10.1.1.250
--gateway=10.1.1.1 nova 10.1.1.0/24
20.	 Validate your Overcloud:
openstack role list
keystone role-create --name heat_stack_owner
mkdir ~/tempest
cd ~/tempest
/usr/share/openstack-tempest-kilo/tools/configure-tempest-directory
tools/config_tempest.py --deployer-input ~/tempest-deployer-input.conf --debug --create identity.uri $OS_
AUTH_URL identity.admin_password $OS_PASSWORD
21.	 Configure the router:
neutron router-create default-router
neutron router-interface-add default-router default
neutron router-gateway-set default-router nova
22.	 Run the following commands on both controller nodes to complete the DHCP/DNSMASQ fix for DSN forwarding:
sudo openstack-config --set /etc/neutron/dhcp_agent.ini DEFAULT dnsmasq_dns_servers 10.1.1.1
sudo systemctl restart neutron-dhcp-agent
Configuring Red Hat Enterprise Linux OpenStack Platform Manager
1.	 Install Red Hat Enterprise Linux 7.2 Server with GUI, DNS Server, and all virtualization groups:
setenforce 0
sed -i ‘s/SELINUX=enforcing/SELINUX=disabled/’ /etc/selinux/config
firewall-cmd --permanent --direct --add-rule ipv4 nat POSTROUTING 0 -o enp3s0f0 -j MASQUERADE
firewall-cmd --permanent --direct --add-rule ipv4 filter FORWARD 0 -i br1 -o enp3s0f0 -j ACCEPT
firewall-cmd --permanent --direct --add-rule ipv4 filter FORWARD 0 -i enp3s0f0 -o br1 -m state --state RELAT-
ED,ESTABLISHED -j ACCEPT
firewall-cmd --permanent --direct --add-rule ipv4 filter FORWARD 0 -i br2 -o enp3s0f0 -j ACCEPT
firewall-cmd --permanent --direct --add-rule ipv4 filter FORWARD 0 -i enp3s0f0 -o br2 -m state --state RELAT-
ED,ESTABLISHED -j ACCEPT
firewall-cmd --permanent --direct --add-rule ipv4 filter FORWARD 0 -i br3 -o enp3s0f0 -j ACCEPT
firewall-cmd --permanent --direct --add-rule ipv4 filter FORWARD 0 -i enp3s0f0 -o br3 -m state --state RELAT-
ED,ESTABLISHED -j ACCEPT
firewall-cmd --reload
hostnamectl set-hostname manager.test.lan
hostnamectl set-hostname --transient manager.test.lan
sudo subscription-manager register
sudo subscription-manager list --available –all
DX2000 from NEC lets you put big data to work	 April 2016  |  16
2.	 Locate the OpenStack pool_id in output, and replace it with the following ID in the next command:
sudo subscription-manager attach --pool=<pool_id>
sudo subscription-manager repos --disable=*
sudo subscription-manager repos --enable=rhel-7-server-rpms --enable=rhel-7-server-optional-rpms --en-
able=rhel-7-server-extras-rpms
yum update -y
reboot
3.	 Install Tiger VNC server:
yum install -y tigervnc-server
cp /usr/lib/systemd/system/vncserver@.service /etc/systemd/system/vncserver@.service
vim /etc/systemd/system/vncserver@.service
4.	 Modify the following lines from USER to root:
ExecStart=/usr/sbin/runuser -l root -c “/usr/bin/vncserver %i”
PIDFile=/root/.vnc/%H%i.pid
systemctl daemon-reload
su - root
vncpasswd
firewall-cmd --permanent --add-port=5901/tcp
firewall-cmd --reload
systemctl start vncserver@:1.service
systemctl enable vncserver@:1.service
5.	 Use Virtual Machine Manager to create two bridge interfaces:
br1: enp3s0f1: 192.168.0.1/24
br2: ens1: 192.0.2.254/24
6.	 Configure the DHCP server:
yum install -y dhcp
vim /etc/dhcp/dhcpd.conf
subnet 192.168.0.0 netmask 255.255.255.0 {
option routers 192.168.0.1;
option subnet-mask 255.255.255.0;
option domain-search “test.lan”;
option domain-name-servers 192.168.0.1;
option time-offset -18000; # Eastern Standard Time
range 192.168.0.51 192.168.0.99;
include “/etc/dhcp/mms-static.conf”;
}
echo > /etc/dhcp/mms-static.conf
systemctl enable dhcpd
systemctl start dhcpd
7.	 Configure DNS:
yum install -y bind
firewall-cmd --permanent --add-service=dns
firewall-cmd --reload
vim /etc/named.conf
a.	 Modify the following entries:
listen-on port 53 { 127.0.0.1; };
DX2000 from NEC lets you put big data to work	 April 2016  |  17
		 allow-query		 { localhost; };
dnssec-validation yes;
		 listen-on port 53 { any; };
		 allow-query		 { any; };
dnssec-validation no;
b.	 Append these lines to the end of the file:
zone “test.lan” {
	 type master;
	 file “test.lan.zone”;
	 allow-update { none; };
};
zone “0.168.192.in-addr.arpa” {
	 type master;
	 file “external.zone”;
	 allow-update { none; };
};
zone “2.0.192.in-addr.arpa” {
	 type master;
	 file “deployment.zone”;
	 allow-update { none; };
};
8.	 Configure the NTP time server:
yum install -y ntp
sed -i ‘/^server [^ ]* iburst/d’ /etc/ntp.conf
echo “server 10.41.0.5 iburst” >> /etc/ntp.conf
systemctl start ntpd
systemctl enable ntpd
9.	 Configure the DX2000 Management tool:
yum install -y ipmitool OpenIPMI
systemctl enable ipmi
systemctl enable ipmievd
systemctl start ipmi
systemctl start ipmievd
cd /opt/mng/
./mng_util
Sample output:
mng_util version 01.03
> search 192.168.0.51-192.168.0.99
Sample output:
Chassis serial : GFH9PA312A0006
Board ManagementLAN MAC IP DataLAN1 MAC DataLAN2 MAC
----------- ----------------- --------------- ----------------- -----------------
CSC 40:8d:5c:17:3c:71 192.168.0.51
LAN-SW1 40:8d:5c:57:94:a0 192.168.0.53
LAN-SW2 40:8d:5c:57:a2:10 192.168.0.52
CPU Board1 40:8d:5c:5e:ad:9a 192.168.0.69 40:8d:5c:5e:ad:98 40:8d:5c:5e:ad:99
CPU Board3 40:8d:5c:5e:ae:0c 192.168.0.63 40:8d:5c:5e:ae:0a 40:8d:5c:5e:ae:0b
CPU Board5 40:8d:5c:5e:ae:cc 192.168.0.72 40:8d:5c:5e:ae:ca 40:8d:5c:5e:ae:cb
CPU Board7 40:8d:5c:5e:af:4a 192.168.0.66 40:8d:5c:5e:af:48 40:8d:5c:5e:af:49
CPU Board9 40:8d:5c:5e:ac:ce 192.168.0.73 40:8d:5c:5e:ac:cc 40:8d:5c:5e:ac:cd
CPU Board11 40:8d:5c:5e:ab:e1 192.168.0.64 40:8d:5c:5e:ab:df 40:8d:5c:5e:ab:e0
CPU Board13 40:8d:5c:5e:ae:77 192.168.0.68 40:8d:5c:5e:ae:75 40:8d:5c:5e:ae:76
CPU Board15 40:8d:5c:5e:ad:b5 192.168.0.61 40:8d:5c:5e:ad:b3 40:8d:5c:5e:ad:b4
CPU Board17 40:8d:5c:5e:ab:b4 192.168.0.55 40:8d:5c:5e:ab:b2 40:8d:5c:5e:ab:b3
DX2000 from NEC lets you put big data to work	 April 2016  |  18
CPU Board19 40:8d:5c:5e:af:4d 192.168.0.74 40:8d:5c:5e:af:4b 40:8d:5c:5e:af:4c
CPU Board20 40:8d:5c:5e:ac:c5 192.168.0.62 40:8d:5c:5e:ac:c3 40:8d:5c:5e:ac:c4
CPU Board21 40:8d:5c:5e:ac:26 192.168.0.57 40:8d:5c:5e:ac:24 40:8d:5c:5e:ac:25
CPU Board22 40:8d:5c:5e:ab:78 192.168.0.59 40:8d:5c:5e:ab:76 40:8d:5c:5e:ab:77
CPU Board23 40:8d:5c:5e:ad:c1 192.168.0.75 40:8d:5c:5e:ad:bf 40:8d:5c:5e:ad:c0
CPU Board24 40:8d:5c:5e:ab:fc 192.168.0.60 40:8d:5c:5e:ab:fa 40:8d:5c:5e:ab:fb
CPU Board25 40:8d:5c:5e:ad:a0 192.168.0.56 40:8d:5c:5e:ad:9e 40:8d:5c:5e:ad:9f
CPU Board26 40:8d:5c:5e:ae:3f 192.168.0.67 40:8d:5c:5e:ae:3d 40:8d:5c:5e:ae:3e
CPU Board27 40:8d:5c:5e:ac:a4 192.168.0.58 40:8d:5c:5e:ac:a2 40:8d:5c:5e:ac:a3
CPU Board29 40:8d:5c:5e:ac:7a 192.168.0.71 40:8d:5c:5e:ac:78 40:8d:5c:5e:ac:79
CPU Board31 40:8d:5c:5e:af:41 192.168.0.70 40:8d:5c:5e:af:3f 40:8d:5c:5e:af:40
CPU Board33 40:8d:5c:5e:ab:d8 192.168.0.65 40:8d:5c:5e:ab:d6 40:8d:5c:5e:ab:d7
CPU Board35 40:8d:5c:5e:ae:3c 192.168.0.54 40:8d:5c:5e:ae:3a 40:8d:5c:5e:ae:3b
> savelist -I all -f /root/maclist.csv
> quit
cat /root/maclist.csv | awk -F’,’ ‘/CSC|LAN-|CPU/{print $2”,”$3”,”$5”,”$6}’ | sed -e ‘s/CPU Board/srv/’ -e
‘s/LAN-SW/switch/’ -e ‘s/CSC/csc/’ > /root/mms1.csv
MMS=1; cat /root/mms${MMS}.csv | awk -F’,’ ‘{printf “host mms-%s { hardware ethernet %s; fixed-address
192.168.0.%d; }n”,$1,$2,$1}’ | sed -e “s/mms-/mms${MMS}-/” -e “s/.csc/.${MMS}0/” -e “s/.switch/.${MMS}/”
-e “s/.srv/.${MMS}/” > /etc/dhcp/mms-static.conf
Note: If the scrips fail to execute correctly, edit the /etc/dhcp/mms-static.conf file to match the following:
vim /etc/dhcp/mms-static.conf
host controller-ipmi { hardware ethernet 78:e7:d1:91:30:4e; fixed-address 192.168.0.252; }
host mms1-csc { hardware ethernet 40:8d:5c:17:3c:71; fixed-address 192.168.0.10; }
host mms1-switch1 { hardware ethernet 40:8d:5c:57:94:a0; fixed-address 192.168.0.11; }
host mms1-switch2 { hardware ethernet 40:8d:5c:57:a2:10; fixed-address 192.168.0.12; }
host mms1-srv1 { hardware ethernet 40:8d:5c:5e:ad:9a; fixed-address 192.168.0.101; }
host mms1-srv3 { hardware ethernet 40:8d:5c:5e:ae:0c; fixed-address 192.168.0.103; }
host mms1-srv5 { hardware ethernet 40:8d:5c:5e:ae:cc; fixed-address 192.168.0.105; }
host mms1-srv7 { hardware ethernet 40:8d:5c:5e:af:4a; fixed-address 192.168.0.107; }
host mms1-srv9 { hardware ethernet 40:8d:5c:5e:ac:ce; fixed-address 192.168.0.109; }
host mms1-srv11 { hardware ethernet 40:8d:5c:5e:ab:e1; fixed-address 192.168.0.111; }
host mms1-srv13 { hardware ethernet 40:8d:5c:5e:ae:77; fixed-address 192.168.0.113; }
host mms1-srv15 { hardware ethernet 40:8d:5c:5e:ad:b5; fixed-address 192.168.0.115; }
host mms1-srv17 { hardware ethernet 40:8d:5c:5e:ab:b4; fixed-address 192.168.0.117; }
host mms1-srv19 { hardware ethernet 40:8d:5c:5e:af:4d; fixed-address 192.168.0.119; }
host mms1-srv20 { hardware ethernet 40:8d:5c:5e:ac:c5; fixed-address 192.168.0.120; }
host mms1-srv21 { hardware ethernet 40:8d:5c:5e:ac:26; fixed-address 192.168.0.121; }
host mms1-srv22 { hardware ethernet 40:8d:5c:5e:ab:78; fixed-address 192.168.0.122; }
host mms1-srv23 { hardware ethernet 40:8d:5c:5e:ad:c1; fixed-address 192.168.0.123; }
host mms1-srv24 { hardware ethernet 40:8d:5c:5e:ab:fc; fixed-address 192.168.0.124; }
host mms1-srv25 { hardware ethernet 40:8d:5c:5e:ad:a0; fixed-address 192.168.0.125; }
host mms1-srv26 { hardware ethernet 40:8d:5c:5e:ae:3f; fixed-address 192.168.0.126; }
host mms1-srv27 { hardware ethernet 40:8d:5c:5e:ac:a4; fixed-address 192.168.0.127; }
host mms1-srv29 { hardware ethernet 40:8d:5c:5e:ac:7a; fixed-address 192.168.0.129; }
host mms1-srv31 { hardware ethernet 40:8d:5c:5e:af:41; fixed-address 192.168.0.131; }
host mms1-srv33 { hardware ethernet 40:8d:5c:5e:ab:d8; fixed-address 192.168.0.133; }
host mms1-srv35 { hardware ethernet 40:8d:5c:5e:ae:3c; fixed-address 192.168.0.135; }
10.	 Enable the NFS server:
mkdir -p /export/cinder
mkdir -p /export/glance
chmod 777 /export/*
vim /etc/exports
a.	 Append the following to the file:
/export/cinder 172.18.0.0/24(rw,no_root_squash)
/export/glance 172.18.0.0/24(rw,no_root_squash)
firewall-cmd --permanent --zone public --add-service mountd
firewall-cmd --permanent --zone public --add-service rpc-bind
firewall-cmd --permanent --zone public --add-service nfs
firewall-cmd --permanent --zone public --add-service ntp
firewall-cmd --reload
DX2000 from NEC lets you put big data to work	 April 2016  |  19
systemctl enable rpcbind
systemctl enable nfs-server
systemctl enable nfs-lock
systemctl enable nfs-idmap
systemctl restart rpcbind
systemctl restart nfs-server
systemctl restart nfs-lock
systemctl restart nfs-idmap
11.	 Configure Red Hat Enterprise Linux 7 and the HDP 2.4 mirror:
yum install -y yum-utils createrepo httpd
systemctl enable httpd
systemctl restart httpd
firewall-cmd --permanent --zone public --add-service http
firewall-cmd --reload
wget -nv http://public-repo-1.hortonworks.com/ambari/centos7/2.x/updates/2.2.1.0/ambari.repo -O /etc/yum.
repos.d/ambari.repo
wget -nv http://public-repo-1.hortonworks.com/HDP/centos7/2.x/updates/2.4.0.0/hdp.repo -O /etc/yum.repos.d/
hdp.repo
mkdir -p /var/www/html/repos
cd /var/www/html/repos
reposync -l
for repo in `ls`; do createrepo $repo ; done
wget http://public-repo-1.hortonworks.com/ambari/centos6/RPM-GPG-KEY/RPM-GPG-KEY-Jenkins
12.	 Edit the Red Hat Enterprise Linux guest KVM image.
cd /var/lib/libvirt/images
mkdir /mnt/guest
guestmount --rw -i -a rhel-guest-image-7.2-20160301.0.x86_64_hdp.img /mnt/guest
cd /mnt/guest
a.	 Disable SELinux in the guest KVM image:
sed -i ‘s/SELINUX=enforcing/SELINUX=disabled/’ /mnt/guest/etc/selinux/config
b.	 Update the repository in guest image to point to the local repository:
vi /mnt/guest/etc/yum.repos.d/ambari.repo
#VERSION_NUMBER=2.2.1.1-70
[Updates-ambari-2.2.1.1]
name=ambari-2.2.1.1 - Updates
baseurl=http://10.1.1.1/repos/Updates-ambari-2.2.1.1
gpgcheck=1
gpgkey=http://10.1.1.1/repos/RPM-GPG-KEY-Jenkins
enabled=1
priority=1
vi /mnt/guest/etc/yum.repos.d/hdp.repo
#VERSION_NUMBER=2.4.0.0-169
[HDP-2.4.0.0]
name=HDP Version - HDP-2.4.0.0
baseurl=http://10.1.1.1/repos/HDP-2.4.0.0
gpgcheck=1
gpgkey=http://10.1.1.1/repos/HDP-2.4.0.0/RPM-GPG-KEY-Jenkins
enabled=1
priority=1
[HDP-UTILS-1.1.0.20]
name=HDP Utils Version - HDP-UTILS-1.1.0.20
baseurl=http://10.1.1.1/repos/HDP-UTILS-1.1.0.20
gpgcheck=1
gpgkey=http://10.1.1.1/repos/HDP-2.4.0.0/RPM-GPG-KEY-Jenkins
enabled=1
priority=1
DX2000 from NEC lets you put big data to work	 April 2016  |  20
vi /mnt/guest/etc/yum.repos.d/rh.repo
[rhel-7-server-rpms]
baseurl = http://10.1.1.1/repos/rhel-7-server-rpms
ui_repoid_vars = releasever basearch
name = Red Hat Enterprise Linux 7 Server (RPMs)
gpgkey = file:///etc/pki/rpm-gpg/RPM-GPG-KEY-redhat-release
enabled = 1
gpgcheck = 1
[rhel-7-server-extras-rpms]
baseurl = http://10.1.1.1/repos/rhel-7-server-extras-rpms
ui_repoid_vars = basearch
name = Red Hat Enterprise Linux 7 Server - Extras (RPMs)
gpgkey = file:///etc/pki/rpm-gpg/RPM-GPG-KEY-redhat-release
enabled = 1
gpgcheck = 1
[rhel-7-server-optional-rpms]
baseurl = http://10.1.1.1/repos/rhel-7-server-optional-rpms
ui_repoid_vars = releasever basearch
name = Red Hat Enterprise Linux 7 Server - Optional (RPMs)
gpgkey = file:///etc/pki/rpm-gpg/RPM-GPG-KEY-redhat-release
enabled = 1
gpgcheck = 1
[rhel-7-server-rh-common-rpms]
baseurl = http://10.1.1.1/repos/rhel-7-server-rh-common-rpms
ui_repoid_vars = releasever basearch
name = Red Hat Enterprise Linux 7 Server - RH Common (RPMs)
gpgkey = file:///etc/pki/rpm-gpg/RPM-GPG-KEY-redhat-release
enabled = 1
gpgcheck = 1
13.	 Install the priorities plugin on the image and enable it:
yum --installroot=/mnt/guest install -y yum-plugin-priorities
vi /mnt/guest/etc/yum/pluginconf.d/priorities.conf
[main]
enabled = 1
gpgcheck = 0
vi /etc/yum/pluginconf.d/priorities.conf
[main]
enabled = 1
gpgcheck = 0
14.	 Install updates:
yum --installroot=/mnt/guest update -y
15.	 Install Ambari required packages and remove chrony:
yum --installroot=/mnt/guest remove -y chrony
yum --installroot=/mnt/guest install -y openssh-clients curl unzip tar wget openssl python ntp ja-
va-1.8.0-openjdk-devel postgresql-jdbc postgresql-odbc sysstat numpy
16.	 Clean up installers in the guest image:
yum --installroot=/mnt/guest clean all
17.	 Enable NTP in guest:
ln -s /usr/lib/systemd/system/ntpd.service /mnt/guest/etc/systemd/system/multi-user.target.wants/ntpd.ser-
vice
sed -i ‘/^server [^ ]* iburst/d’ /mnt/guest/etc/ntp.conf
echo “server 10.1.1.1 iburst” >> /mnt/guest/etc/ntp.conf
DX2000 from NEC lets you put big data to work	 April 2016  |  21
18.	 Zero fill the guest image, convert the file, and compress it:
dd if=/dev/zero of=/mnt/guest/tmp.bin bs=1M ; sync ; sleep 1 ; sync ; rm -f /mnt/guest/tmp.bin ; sync
cd /var/lib/libvirt/images
umount /mnt/guest
qemu-img convert -c -O qcow2 rhel-guest-image-7.2-20160301.0.x86_64_hdp.img rhel-guest-image-7.2-
20160301.0.x86_64_hdp.qcow2
19.	 Install Ambari server:
ssh -i hdpkey cloud-user@10.1.1.185
sudo su
yum install -y ambari-server
ambari-server setup --jdbc-db=postgres --jdbc-driver=/usr/share/java/postgresql-jdbc.jar --java-home=/usr/
lib/jvm/java-1.8.0-openjdk
Sample output:
Using python /usr/bin/python
Setup ambari-server
Copying /usr/share/java/postgresql-jdbc.jar to /var/lib/ambari-server/resources
JDBC driver was successfully initialized.
Ambari Server ‘setup’ completed successfully.
ambari-server setup --java-home=/usr/lib/jvm/java-1.8.0-openjdk
Sample output:
Using python /usr/bin/python
Setup ambari-server
Checking SELinux...
SELinux status is ‘disabled’
Customize user account for ambari-server daemon [y/n] (n)?
Adjusting ambari-server permissions and ownership...
Checking firewall status...
Redirecting to /bin/systemctl status iptables.service
Checking JDK...
WARNING: JAVA_HOME /usr/lib/jvm/java-1.8.0-openjdk must be valid on ALL hosts
WARNING: JCE Policy files are required for configuring Kerberos security. If you plan to use Kerberos,please
make sure JCE Unlimited Strength Jurisdiction Policy Files are valid on all hosts.
Completing setup...
Configuring database...
Enter advanced database configuration [y/n] (n)?
Configuring database...
Default properties detected. Using built-in database.
Configuring ambari database...
Checking PostgreSQL...
Running initdb: This may take upto a minute.
Initializing database ... OK
About to start PostgreSQL
Configuring local database...
Connecting to local database...done.
Configuring PostgreSQL...
Restarting PostgreSQL
Extracting system views...
ambari-admin-2.2.1.1.70.jar
......
Adjusting ambari-server permissions and ownership...
Ambari Server ‘setup’ completed successfully.
ambari-server start
DX2000 from NEC lets you put big data to work	 April 2016  |  22
Sample output:
Using python /usr/bin/python
Starting ambari-server
Ambari Server running with administrator privileges.
Organizing resource files at /var/lib/ambari-server/resources...
Server PID at: /var/run/ambari-server/ambari-server.pid
Server out at: /var/log/ambari-server/ambari-server.out
Server log at: /var/log/ambari-server/ambari-server.log
Waiting for server start....................
Ambari Server ‘start’ completed successfully.
ambari-server status
Sample output:
http://10.1.1.185:8080
admin/admin
20.	 To complete Ambari web setup, open the URL from the server setup in step 19, log in with the appropriate credentials, and create a cluster:
a.	 Type cluster1 for the cluster name.
b.	 Type host-172-21-0-[66-88].openstacklocal for the target host information. Browse to hdpkey SSH key, and type cloud-user for the
SSH User Account.
c.	 Uncheck the following options:
Sqoop
Oozie
Falcon
Flume
Accumulo
Atlas
Knox
Slider
SmartSense
d.	 Distribute all services across the first three nodes or your three master instances with the exception of Metric Collector, which should be
assigned to a client.
e.	 Type Password1 for the Hive database password.
f.		 Set a password on the Hive database: Password1
g.	 Accept defaults and continue.
h.	 Accept defaults and continue.
i.		 Complete web setup.
Configuring the HiBench client instance
From the Ambari GUI, add another client instance, add the Apache Kafka broker role, and complete the following steps:
1.	 Set the maximum number of client connections to 60:
maxClientCnxns=60
2.	 Install HiBench.
a.	 Add a floating IP to the client instance:
ssh -i hdpkey cloud-user@10.1.1.186
sudo su - hdfs
hdfs dfs -mkdir /HiBench
DX2000 from NEC lets you put big data to work	 April 2016  |  23
hdfs dfs -chown -R cloud-user:hadoop /HiBench
hdfs dfs -mkdir /home/cloud-user
hdfs dfs -chown cloud-user /user/cloud-user
exit
yum install -y maven git vim numpy blas64 lapack64
git clone https://github.com/intel-hadoop/HiBench.git
cd HiBench/src
b.	 Open the datagen pom XML file. Replace the following:
vim streambench/datagen/pom.xml
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka-clients</artifactId>
<version>0.8.1</version>
<scope>system</scope>
<systemPath>${basedir}/lib/kafka-clients-0.8.1.jar</systemPath>
</dependency>
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka-clients</artifactId>
<version>0.8.1</version>
</dependency>
c.	 Open the following XML file, and replace the following:
vim streambench/sparkbench/pom.xml
	 <exclusion>
<groupId>org.sonatype.sisu.inject</groupId>
<artifactId>*</artifactId>
</exclusion>
<exclusion>
<groupId>org.xerial.snappy</groupId>
<artifactId>*</artifactId>
</exclusion>
<exclusion>
<groupId>org.sonatype.sisu.inject</groupId>
<artifactId>inject</artifactId>
</exclusion>
<exclusion>
<groupId>org.xerial.snappy</groupId>
<artifactId>snappy</artifactId>
</exclusion>
d.	 Complete the HiBench installation:
mvn install:install-file -Dfile=streambench/datagen/lib/kafka-clients-0.8.1.jar -DgroupId=org.apache.kafka
-DartifactId=kafka-clients -Dversion=0.8.1 -Dpackaging=jar
mvn clean package -D spark1.6 -D MR2
cd ..
cp conf/99-user_defined_properties.conf.template conf/99-user_defined_properties.conf
grep -v “^#” conf/99-user_defined_properties.conf | grep -v “^$”
Sample output:
hibench.hadoop.home /usr/hdp/current/hadoop-client
hibench.spark.home /usr/hdp/current/spark-client
hibench.hadoop.mapreduce.home /usr/hdp/current/hadoop-mapreduce-client
hibench.hdfs.master hdfs://host-172-21-0-66.openstacklocal:8020
hibench.spark.master yarn-client
hibench.hadoop.release hdp
hibench.hadoop.version		 hadoop2
hibench.spark.version spark1.6
hibench.default.map.parallelism		 76
hibench.default.shuffle.parallelism	 76
DX2000 from NEC lets you put big data to work	 April 2016  |  24
Principled Technologies is a registered trademark of Principled Technologies, Inc.
All other product names are the trademarks of their respective owners.
DISCLAIMER OF WARRANTIES; LIMITATION OF LIABILITY:
Principled Technologies, Inc. has made reasonable efforts to ensure the accuracy and validity of its testing, however, Principled Technologies, Inc.
specifically disclaims any warranty, expressed or implied, relating to the test results and analysis, their accuracy, completeness or quality, including any
implied warranty of fitness for any particular purpose. All persons or entities relying on the results of any testing do so at their own risk, and agree that
Principled Technologies, Inc., its employees and its subcontractors shall have no liability whatsoever from any claim of loss or damage on account of any
alleged error or defect in any testing procedure or result.
In no event shall Principled Technologies, Inc. be liable for indirect, special, incidental, or consequential damages in connection with its testing, even if
advised of the possibility of such damages. In no event shall Principled Technologies, Inc.’s liability, including for direct damages, exceed the amounts paid in
connection with Principled Technologies, Inc.’s testing. Customer’s sole and exclusive remedies are as set forth herein.
This project was commissioned by NEC Corp.
Principled
Technologies®
Facts matter.®Principled
Technologies®
Facts matter.®
hibench.yarn.executor.num	19
hibench.yarn.executor.cores	16
spark.executor.memory	 50G
spark.driver.memory	 8G
spark.rdd.compress false
spark.shuffle.compress		 false
spark.broadcast.compress	false
spark.io.compression.codec org.apache.spark.io.SnappyCompressionCodec
spark.akka.frameSize 1000
spark.akka.timeout 600
spark.kryoserializer.buffer	 2000mb
hibench.scale.profile 	 	 census
hibench.compress.profile		 disable
hibench.compress.codec.profile		 snappy
hibench.streamingbench.benchname	identity
hibench.streamingbench.scale.profile ${hibench.scale.profile}
hibench.streamingbench.zookeeper.host host-172-21-0-66.openstacklocal:2181
hibench.streamingbench.brokerList host-172-21-0-89.openstacklocal:9021
hibench.streamingbench.storm.home /usr/hdp/current/storm-client
hibench.streamingbench.kafka.home /usr/hdp/current/kafka-broker
hibench.streamingbench.storm.nimbus host-172-21-0-66.openstacklocal
hibench.streamingbench.partitions	1

More Related Content

PDF
Deploying OpenStack Private Cloud on NEC DX1000 MicroServer Chassis
PDF
Final White Paper_
PDF
Run compute-intensive Apache Hadoop big data workloads faster with Dell EMC P...
PPT
Deploying Big-Data-as-a-Service (BDaaS) in the Enterprise
PDF
Get insight from document-based distributed MongoDB databases sooner and have...
PDF
Scalability: Lenovo ThinkServer RD540 system and Lenovo ThinkServer SA120 sto...
PDF
Cloudwatt pioneers big_data
PPTX
Building the Perfect SharePoint 2010 Farm - SPS Sacramento
Deploying OpenStack Private Cloud on NEC DX1000 MicroServer Chassis
Final White Paper_
Run compute-intensive Apache Hadoop big data workloads faster with Dell EMC P...
Deploying Big-Data-as-a-Service (BDaaS) in the Enterprise
Get insight from document-based distributed MongoDB databases sooner and have...
Scalability: Lenovo ThinkServer RD540 system and Lenovo ThinkServer SA120 sto...
Cloudwatt pioneers big_data
Building the Perfect SharePoint 2010 Farm - SPS Sacramento

What's hot (20)

PDF
Make sense of important data faster with AWS EC2 M6i instances
PDF
Run more applications without expanding your datacenter
PDF
Dell PowerEdge M820 blades: Balancing performance, density, and high availabi...
PDF
Consolidating Oracle database servers onto Dell PowerEdge R920 running Oracle...
PPTX
Realizing the Promise of Big Data with Hadoop - Cloudera Summer Webinar Serie...
PPTX
Building the Perfect SharePoint 2010 Farm - SharePoint Saturday NYC 2011
PDF
SOLUTION BUNDLES
PDF
Workstation heat and power usage: Lenovo ThinkStation P500 vs. HP Z440 Workst...
PPTX
IBM Pure Data System for Analytics (Netezza)
PDF
cisco_bigdata_case_study_1
PDF
Cisco Big Data Use Case
PDF
OUTBOARD SERVERS
PDF
Big Data SSD Architecture: Digging Deep to Discover Where SSD Performance Pay...
PDF
Back up deduplicated data in less time with the Dell DR6000 Disk Backup Appli...
PPTX
The Importance of Fast, Scalable Storage for Today’s HPC
PPTX
Nordic infrastructure Conference 2017 - SQL Server on Linux Overview
PPTX
A Mayo Clinic Big Data Implementation
PDF
A Tour of Azure SQL Databases (NOVA SQL UG 2020)
PPTX
Introduction to Windows Azure and Windows Azure SQL Database
PDF
Seneca, Pittsburgh Supercomputer, and LSI
Make sense of important data faster with AWS EC2 M6i instances
Run more applications without expanding your datacenter
Dell PowerEdge M820 blades: Balancing performance, density, and high availabi...
Consolidating Oracle database servers onto Dell PowerEdge R920 running Oracle...
Realizing the Promise of Big Data with Hadoop - Cloudera Summer Webinar Serie...
Building the Perfect SharePoint 2010 Farm - SharePoint Saturday NYC 2011
SOLUTION BUNDLES
Workstation heat and power usage: Lenovo ThinkStation P500 vs. HP Z440 Workst...
IBM Pure Data System for Analytics (Netezza)
cisco_bigdata_case_study_1
Cisco Big Data Use Case
OUTBOARD SERVERS
Big Data SSD Architecture: Digging Deep to Discover Where SSD Performance Pay...
Back up deduplicated data in less time with the Dell DR6000 Disk Backup Appli...
The Importance of Fast, Scalable Storage for Today’s HPC
Nordic infrastructure Conference 2017 - SQL Server on Linux Overview
A Mayo Clinic Big Data Implementation
A Tour of Azure SQL Databases (NOVA SQL UG 2020)
Introduction to Windows Azure and Windows Azure SQL Database
Seneca, Pittsburgh Supercomputer, and LSI
Ad

Similar to DX2000 from NEC lets you put big data to work (20)

PDF
Unlock the value of big data with the DX2000 from NEC
PPT
AWS Summit Berlin 2013 - Big Data Analytics
PPT
Hadoop Demo eConvergence
PDF
Bridging the Last Mile: Getting Data to the People Who Need It (APAC)
PDF
Big Data Companies and Apache Software
PDF
WP_Impetus_2016_Guide_to_Modernize_Your_Enterprise_Data_Warehouse_JRoberts
PDF
When and How Data Lakes Fit into a Modern Data Architecture
PDF
The new EDW
PPTX
Databricks on AWS.pptx
PPT
Migration services (DB2 to Teradata)
PPTX
IBM Relay 2015: Open for Data
 
PDF
ADV Slides: When and How Data Lakes Fit into a Modern Data Architecture
PDF
Webinar: Faster Big Data Analytics with MongoDB
PDF
Paraccel/Database Architechs Press Release
PPTX
Data Warehouse Modernization: Accelerating Time-To-Action
PDF
Slides: Success Stories for Data-to-Cloud
PDF
Big Data, Big Thinking: Simplified Architecture Webinar Fact Sheet
PDF
Analyst View of Data Virtualization: Conversations with Boulder Business Inte...
PPTX
Big Data Solutions on Cloud – The Way Forward by Kiththi Perera SLT
PPTX
Big data solutions on cloud – the way forward
Unlock the value of big data with the DX2000 from NEC
AWS Summit Berlin 2013 - Big Data Analytics
Hadoop Demo eConvergence
Bridging the Last Mile: Getting Data to the People Who Need It (APAC)
Big Data Companies and Apache Software
WP_Impetus_2016_Guide_to_Modernize_Your_Enterprise_Data_Warehouse_JRoberts
When and How Data Lakes Fit into a Modern Data Architecture
The new EDW
Databricks on AWS.pptx
Migration services (DB2 to Teradata)
IBM Relay 2015: Open for Data
 
ADV Slides: When and How Data Lakes Fit into a Modern Data Architecture
Webinar: Faster Big Data Analytics with MongoDB
Paraccel/Database Architechs Press Release
Data Warehouse Modernization: Accelerating Time-To-Action
Slides: Success Stories for Data-to-Cloud
Big Data, Big Thinking: Simplified Architecture Webinar Fact Sheet
Analyst View of Data Virtualization: Conversations with Boulder Business Inte...
Big Data Solutions on Cloud – The Way Forward by Kiththi Perera SLT
Big data solutions on cloud – the way forward
Ad

More from Principled Technologies (20)

PDF
Unlocking hybrid cloud efficiency: Dell AX System for Azure Local with PowerFlex
PDF
Energize your business strategy with the new Dell Pro 14 Plus
PDF
Unlock faster data-driven business decisions with Azure Databricks - Infographic
PDF
Supercharge AI performance and enhance productivity with the HP EliteBook X G...
PDF
Supercharge AI performance and enhance productivity with the HP EliteBook X G...
PDF
Equal time, equal tools: Measuring PC deployment time in multi-vendor environ...
PDF
Modernizing your data center with Dell and AMD
PDF
Dell Pro 14 Plus: Be better prepared for what’s coming
PDF
Security features in Dell, HP, and Lenovo PC systems: A research-based compar...
PDF
Make GenAI investments go further with the Dell AI Factory - Infographic
PDF
Make GenAI investments go further with the Dell AI Factory
PDF
Unlock faster insights with Azure Databricks
PDF
Speed up your transactions and save with new Dell PowerEdge R7725 servers pow...
PDF
The case for on-premises AI
PDF
Dell PowerEdge server cooling: Choose the cooling options that match the need...
PDF
Speed up your transactions and save with new Dell PowerEdge R7725 servers pow...
PDF
Propel your business into the future by refreshing with new one-socket Dell P...
PDF
Propel your business into the future by refreshing with new one-socket Dell P...
PDF
Unlock flexibility, security, and scalability by migrating MySQL databases to...
PDF
Migrate your PostgreSQL databases to Microsoft Azure for plug‑and‑play simpli...
Unlocking hybrid cloud efficiency: Dell AX System for Azure Local with PowerFlex
Energize your business strategy with the new Dell Pro 14 Plus
Unlock faster data-driven business decisions with Azure Databricks - Infographic
Supercharge AI performance and enhance productivity with the HP EliteBook X G...
Supercharge AI performance and enhance productivity with the HP EliteBook X G...
Equal time, equal tools: Measuring PC deployment time in multi-vendor environ...
Modernizing your data center with Dell and AMD
Dell Pro 14 Plus: Be better prepared for what’s coming
Security features in Dell, HP, and Lenovo PC systems: A research-based compar...
Make GenAI investments go further with the Dell AI Factory - Infographic
Make GenAI investments go further with the Dell AI Factory
Unlock faster insights with Azure Databricks
Speed up your transactions and save with new Dell PowerEdge R7725 servers pow...
The case for on-premises AI
Dell PowerEdge server cooling: Choose the cooling options that match the need...
Speed up your transactions and save with new Dell PowerEdge R7725 servers pow...
Propel your business into the future by refreshing with new one-socket Dell P...
Propel your business into the future by refreshing with new one-socket Dell P...
Unlock flexibility, security, and scalability by migrating MySQL databases to...
Migrate your PostgreSQL databases to Microsoft Azure for plug‑and‑play simpli...

Recently uploaded (20)

PPTX
Chapter 5: Probability Theory and Statistics
PDF
A contest of sentiment analysis: k-nearest neighbor versus neural network
PDF
A Late Bloomer's Guide to GenAI: Ethics, Bias, and Effective Prompting - Boha...
PPT
Module 1.ppt Iot fundamentals and Architecture
PDF
Univ-Connecticut-ChatGPT-Presentaion.pdf
PDF
Hindi spoken digit analysis for native and non-native speakers
PDF
Enhancing emotion recognition model for a student engagement use case through...
PDF
Developing a website for English-speaking practice to English as a foreign la...
PDF
From MVP to Full-Scale Product A Startup’s Software Journey.pdf
PDF
Five Habits of High-Impact Board Members
PPTX
Group 1 Presentation -Planning and Decision Making .pptx
PDF
STKI Israel Market Study 2025 version august
PDF
Assigned Numbers - 2025 - Bluetooth® Document
PDF
August Patch Tuesday
PPT
What is a Computer? Input Devices /output devices
PDF
DASA ADMISSION 2024_FirstRound_FirstRank_LastRank.pdf
PPTX
O2C Customer Invoices to Receipt V15A.pptx
PDF
A comparative study of natural language inference in Swahili using monolingua...
PDF
Unlock new opportunities with location data.pdf
PPTX
MicrosoftCybserSecurityReferenceArchitecture-April-2025.pptx
Chapter 5: Probability Theory and Statistics
A contest of sentiment analysis: k-nearest neighbor versus neural network
A Late Bloomer's Guide to GenAI: Ethics, Bias, and Effective Prompting - Boha...
Module 1.ppt Iot fundamentals and Architecture
Univ-Connecticut-ChatGPT-Presentaion.pdf
Hindi spoken digit analysis for native and non-native speakers
Enhancing emotion recognition model for a student engagement use case through...
Developing a website for English-speaking practice to English as a foreign la...
From MVP to Full-Scale Product A Startup’s Software Journey.pdf
Five Habits of High-Impact Board Members
Group 1 Presentation -Planning and Decision Making .pptx
STKI Israel Market Study 2025 version august
Assigned Numbers - 2025 - Bluetooth® Document
August Patch Tuesday
What is a Computer? Input Devices /output devices
DASA ADMISSION 2024_FirstRound_FirstRank_LastRank.pdf
O2C Customer Invoices to Receipt V15A.pptx
A comparative study of natural language inference in Swahili using monolingua...
Unlock new opportunities with location data.pdf
MicrosoftCybserSecurityReferenceArchitecture-April-2025.pptx

DX2000 from NEC lets you put big data to work

  • 1. DX2000 from NEC lets you put big data to work April 2016 DX2000 from NEC lets you put big data to work with quick analysis in a robust, space-efficient, and scalable solution, powered by Intel® Modern businesses generate and collect data at an incredible rate. The data sets are sometimes too large for traditional processing, and the emergence of big data fuels the need to process and analyze data differently than we have in the past. Analyzing and understanding big data is vital to the success of most businesses as it can lead to improvements in: Cut analysis time in half by adding server nodes ~2minutes •  Customer experience •  New products or services •  Revenue generation •  Customer base growth •  Market reach •  Customization of existing products or services Just collecting data is not enough; to get these improvements you have to identify data patterns through processing and analysis, which requires a speedy, scalable, and flexible hardware and software solution. We set up a new Scalable Modular Server DX2000 from NEC, powered by the Intel Xeon® processor D product family. We then configured a Red Hat® Enterprise Linux® OpenStack® cloud environment with Apache Spark™, an industry-leading big-data analytics engine, to put the DX2000 through its paces. The solution analyzed a big data sample set not only quickly and efficiently, but most importantly – in a predictable, scalable fashion. When we added more server nodes, it processed the big data more quickly. Find patterns in 100GB of data in A Principled Technologies report: Hands-on testing. Real-world results. 8nodes 12nodes 16nodes 19nodes 247.4 seconds 179.1 seconds 139.6 seconds 122.0 seconds
  • 2. DX2000 from NEC lets you put big data to work April 2016  |  2 Drive your business on facts, not speculation Money-making facts live in your business data, but it’s up to you to find them efficiently. Whether you want to run a targeted email advertising campaign to drive sales or analyze customer feedback to improve product quality, big data can help you spot patterns that predict probability based on key data points. Taking the guesswork out of vital decision-making processes can have a positive impact on your bottom line. Processing large volumes of data in a timely manner requires compute power. The DX2000 brings that power to your big data initiatives by providing up to 44 single-processor server modules per 3U enclosure. Apache Spark, the analytics tool we used in testing, uses in-memory processing to give you data analysis results as fast as possible. Combining Apache Spark with the memory resources of DX2000 server nodes allows you to get results more quickly than traditional disk-based approaches in many applications. Combat datacenter sprawl and meet big data challenges Just because your data is big doesn’t mean your hardware infrastructure has to be. While managing a big data environment can be challenging, as over 90% of respondents to a recent survey agree,1 your business can help contain datacenter sprawl by selecting a dense, scalable modular server platform. A scalable modular server platform, like the DX2000 by NEC, is a rack- mounted chassis holding multiple server units, often called server nodes, which commonly work together as a cluster. These compact server nodes pack compute, storage, and networking resources into a small space. You can configure the nodes to provide ample memory resources as well. In our tests, the DX2000 from NEC quickly analyzed our sample data set and combated datacenter sprawl by doing it in only 3U of rackspace. While traditional servers can run big data analytics, they take up a lot of valuable datacenter space. The Scalable Modular Server DX2000 from NEC has 44 customizable slots available to create a number of configurations. Each DX2000 could hold up to the following: •  44 server nodes featuring Intel Xeon D processors for compute density, 2.75TB DDR4 memory (64GB per server node), and 22TB of flash-based storage (512GB per server node) •  22 dual 10Gb Ethernet links for additional networking (up to 22 slots for server nodes) •  8 PCIe card modules for expanding resources available to specific server nodes (up to 36 slots for server nodes) Clustering nodes of necessary resources in a small space makes sense for big data initiatives, particularly because big data requires so much processing power. Each of the 22 server nodes in our DX2000 enclosure featured the following: •  8-core Intel Xeon processor D-1541 •  64GB memory •  256GB flash-based storage •  Dual 10Gb Ethernet links
  • 3. DX2000 from NEC lets you put big data to work April 2016  |  3 How can big data analysis help boost business? When a business can analyze big data quickly, multiple departments have the ability to reap business benefits. Consider the following scenarios: Serve customers better Sandy is a marketing department head for a retail- clothing manufacturer. Keeping track of customer purchases – for example, the type of jackets that customers of a certain age or region have bought in the past week – can inform targeted, predictive advertisements and communications for these customers in the future. The faster the company’s servers analyze this data, the sooner Sandy gets the reports she needs in order to send out customized emails telling customers about other products that may interest them. She’ll also use those reports to send offers to buyers that fit those demographics, but have not made purchases yet. This successful campaign will ultimately lead to more business from new and existing customers. Using the Scalable Modular Server DX2000 from NEC and Apache Spark for her data analysis, Sandy can quickly get the valuable information that helps her make informed business decisions. Improve product quality Devon, an inventory manager for a distribution center, oversees the returns department. Devon and his team must track why customers return items, and they rely on rapid big data analysis to identify patterns in the returned items. They need to ensure that product quality is good and address customer satisfaction issues with specific items. His team works closely with the product development team and manufacturing leaders to guarantee that their products live up to customer needs and expectations. The Scalable Modular Server DX2000 from NEC and Apache Spark can help Devon and his team quickly identify quality control issues and provide the necessary feedback to the leaders responsible for correcting the problem. Speed big data processing with Apache Spark Apache Spark is an industry-standard framework that processes big data in-memory. In-memory processing keeps data in RAM to shorten response times. Companies like Amazon, eBay, NASA Jet Propulsion Laboratories, TripAdvisor, and Yahoo use this tool to help them get real-time bid optimization, machine learning- based user data modeling, forecasting, and other predictive analytics.2 Your business can use robust hardware platforms like the DX2000 from NEC in conjunction with machine learning functionality – among other valuable kinds of data processing in Apache Spark – to make better use of your growing data and achieve fast analysis turnaround times. Find what you’re looking for In our datacenter, we used the clustering algorithm k-means. k-means takes large data sets and identifies patterns in them. Companies often use it in predictive analysis for cost modeling, market research, price forecasting, and customer-retention applications.
  • 4. DX2000 from NEC lets you put big data to work April 2016  |  4 100 million people We chose a sample data set big enough to store the demographic data for 6.75 billion people.3 = Grow your revenue Chris, a regional sales manager for a retail chain, relies on sales, marketing, and advertising data analysis from the retailer’s IT department to drive decisions on in-store sales and marketing campaigns. He needs fast and reliable data to help his team identify which of his advertising drives are most effective, whether the time of year affects sales numbers, and what incentives are likely to be most effective on first-time customers. Apache Spark and the Scalable Modular Server DX2000 from NEC provide a powerful platform for valuable big data analysis that can help Chris bring in new customers and grow his company’s revenue. Facts from our datacenter Find patterns We put the DX2000 solution through its paces with a k-means data cluster analysis test from the HiBench benchmark suite. The results from this performance evaluation show you the benefits of combining the Apache Spark in-memory engine with the Scalable Modular Server DX2000 from NEC. When all available compute nodes in our configuration were running the k-means analysis, the NEC solution took just over 2 minutes, or 122 seconds, to process 100GB of data. Even though the data set we used is small by some big data standards, a few hundred GB is representative of some publicly available applications and use cases, and it could reflect scenarios that you can relate to. For example, 100GB is large enough to store demographic data for the world’s population in 20093 or three months of Wikipedia’s page traffic statistics.4 Cut analysis time in half We also compared throughput, a measure of how quickly a solution can process data, at several different server node counts. We did this to demonstrate how increasing the number of server nodes can improve the throughput of the DX2000, thus cutting down on processing time. We began our scaling comparison with eight server nodes. We tested fewer nodes than eight, but using so few nodes for a data set of this size yielded less than optimal results. This was due to the application and data set footprint exceeding the memory resources available to Apache Spark in those low node counts. As we added additional server nodes to our DX2000, the solution scaled nearly linearly in throughput. Ultimately, 19 nodes delivered over twice the throughput of eight, cutting analysis time of our 100GB data set in half compared to our initial eight-server-node count. At our maximum 22-server configuration, we used 19 server nodes for data processing and three nodes for management services. Based on the results we got from eight to 19 nodes, we expect your big data throughput would scale up as your business grows and you continue to populate your DX2000 enclosure with additional server nodes.
  • 5. DX2000 from NEC lets you put big data to work April 2016  |  5 Big data analytics with private cloud flexibility We deployed and tested a Red Hat OpenStack Platform environment in the Principled Technologies datacenter. In this OpenStack environment, we used two OpenStack controller servers for high availability, one server for management tasks and Red Hat OpenStack Platform Director services, and the DX2000 from NEC with 22 server nodes. This deployment provided the flexible private cloud environment we needed for our Apache Spark VMs. When you use Red Hat Enterprise Linux OpenStack Platform 7 in conjunction with Apache Spark and the DX2000 environment, your team can dedicate as much or as little space to big data analysis as you need. The flexibility of this platform means you can spin up application instances to meet changing IT demands. Cloud platforms such as Red Hat Enterprise Linux OpenStack Platform help increase your flexibility by adapting your hardware environment without having to rebuild your infrastructure from the ground up. For more information, please visit Red Hat’s website.5 Conclusion The data that your business collects is constantly growing, making it increasingly difficult for traditional systems to keep up with resource demands. Understanding your big data can help you serve your customers better, improve product quality, and grow your revenue, but you need a platform that can handle the strain. In hands-on tests in our datacenter, the Scalable Modular Server DX2000 from NEC processed big data quickly and scaled nearly linearly as we added server nodes. In our k-means data cluster analysis test, a DX2000 solution running Apache Spark and Red Hat Enterprise Linux OpenStack Platform processed 100GB in approximately 2 minutes. We also saw that as we doubled the number of server nodes, the DX2000 solution cut analysis time in half when processing the same amount of data, producing excellent scalability. The Scalable Modular Server DX2000 by NEC is a good choice when you’re ready to put big data to work for you. Red Hat Enterprise Linux OpenStack Platform 7 is an Infrastructure-as-a-Service (IaaS) private cloud solution. It allows you to build a cloud platform on your hardware and use resources efficiently. 1 http://www.ca.com/us/~/media/Files/infographics/bright-lights-big-data.PDF 2 https://cwiki.apache.org/confluence/display/SPARK/Powered+By+Spark 3 Basic demographic data refers to age, sex, income, ethnicity, language, religion, housing status, and location. Read a more detailed explanation and review at http://dl.acm.org/citation.cfm?id=1536632. 4 https://aws.amazon.com/datasets/wikipedia-page-traffic-statistic-v3/ 5 https://access.redhat.com/documentation/en/red-hat-enterprise-linux-openstack-platform/version-7/red-hat-en- terprise-linux-openstack-platform-7-architecture-guide/preface
  • 6. DX2000 from NEC lets you put big data to work April 2016  |  6 Server configuration information NEC Scalable Modular Server DX2000 BIOS name and version MM60-B30, BIOS 5.0.0005 Non-default BIOS settings Changed from UEFI to Legacy BIOS Operating system name and version/build number Red Hat Enterprise Linux 7.2 3.10.0-327.10.1.el7.x86_64 Date of last OS updates/patches applied 02/12/2016 Power management policy Default Processor Number of processors 1 Vendor and model Intel Xeon CPU D-1541 Core count (per processor) 8 Core frequency (GHz) 2.10 Stepping V2 Memory module(s) Total memory in system (GB) 64 Number of memory modules 4 Vendor and model Hynix HMA82GS7MFR8N-TF Size (GB) 16 Type PC4-17000 Speed (MHz) 2133 Speed running in the server (MHz) 2133 Storage controller Vendor and model Intel 82801JI Cache size N/A Driver version 2.13 Local storage Number of drives 1 Drive vendor and model Toshiba THNSNJ256G8NU Drive size (GB) 256 Drive information (speed, interface, type) 6Gb/s, M.2, SSD Network adapter Vendor and model Intel X552 Number and type of ports 2 x 10GbE Driver version 4.3.13 Appendix A – Inside the server we tested Figure 1 provides detailed configuration information for each of the 22 server nodes we tested. Figure 1: Detailed configuration information for each of the 22 server nodes we tested.
  • 7. DX2000 from NEC lets you put big data to work April 2016  |  7 Server enclosure configuration information NEC Scalable Modular Server DX2000 Number of management modules 2 Management module firmware revision 00.19 I/O module Vendor and model number NEC Micro Modular Server DX2000 LAN Switch I/O module firmware revision ZebOS-XP version 1.2.0.5 Number of modules 2 Occupied bay(s) 1, 2 Power supplies Vendor and model number Delta Electronics DPS-1600FB Number of power supplies 3 Wattage of each (W) 1600 Cooling fans Dimensions in millimeters 80x80x30 Number of fans 8 Figure 2 provides detailed configuration information for the server enclosure we used in our tests. Figure 2: Configuration information for the server enclosure.
  • 8. DX2000 from NEC lets you put big data to work April 2016  |  8 Appendix B – Inside our testing Detailed information on the results of our testing Figure 3 shows our median throughput results from eight server nodes to 19. The red dotted linear regression trend line illustrates the even scaling of throughput as we added server nodes, with the green dots demonstrating the median throughput at each server node count. Figure 4: k-means median time. Figure 3: k-means median throughput. 400 8 10 12 # of Nodes 14 16 18 450 500 550 600 650 700 750 800 850 100 8 10 12 # of Nodes 14 16 18 120 140 160 180 200 220 240 250 400 8 10 12 # of Nodes 14 16 18 450 500 550 600 650 700 750 800 850 100 8 10 12 # of Nodes 14 16 18 120 140 160 180 200 220 240 250 Server nodes Median throughput (MB/s) 19 840.0 18 803.8 17 770.7 16 734.1 15 703.3 14 667.0 13 586.5 12 572.0 11 522.3 10 490.5 9 456.3 8 414.2 Server nodes Median time (seconds) 19 122.0 18 127.5 17 132.9 16 139.6 15 145.7 14 153.6 13 174.7 12 179.1 11 196.2 10 208.9 9 224.6 8 247.4 Figure 4 shows the median times to process the sample data set from eight server nodes to 19. The red dotted linear regression trend line illustrates how evenly adding server nodes decreased time to process the sample data set, and the green dots are the actual median times at each server node count.
  • 9. DX2000 from NEC lets you put big data to work April 2016  |  9 Detailed information on how we tested the DX2000 Complete the steps in the following link for UEFI deployment: http://docs.openstack.org/developer/ironic/deploy/install-guide.html#ipxe-setup Configuring Red Hat Enterprise Linux OpenStack Platform Director 1. Create a Director user: useradd stack passwd stack echo “stack ALL=(root) NOPASSWD:ALL” | tee -a /etc/sudoers.d/stack chmod 0440 /etc/sudoers.d/stack su - stack 2. Create directories for templates and images: mkdir ~/images mkdir ~/templates 3. Set the hostname of the system: sudo hostnamectl set-hostname director.test.lan sudo hostnamectl set-hostname --transient director.test.lan sudo vi /etc/hosts An example of the content in the host file: 127.0.0.1 director.test.lan director localhost localhost.localdomain localhost4 localhost4.localdomain4 ::1 director.test.lan director localhost localhost.localdomain localhost6 localhost6.localdomain6 4. Register the system: sudo subscription-manager register sudo subscription-manager list --available --all 5. Locate the OpenStack pool ID in output, and replace it with the following: sudo subscription-manager attach --pool=8a85f9814ff0134a014ff710053466b7 sudo subscription-manager repos --disable=* sudo subscription-manager repos --enable=rhel-7-server-rpms --enable=rhel-7-server-optional-rpms --en- able=rhel-7-server-extras-rpms --enable=rhel-7-server-openstack-7.0-rpms --enable=rhel-7-server-openstack- 7.0-director-rpms sudo yum install -y yum-utils yum-plugin-priorities sudo yum-config-manager --enable rhel-7-server-openstack-7.0-rpms --setopt=”rhel-7-server-openstack-7.0- rpms.priority=1” sudo yum-config-manager --enable rhel-7-server-rpms --setopt=”rhel-7-server-rpms.priority=1” sudo yum-config-manager --enable rhel-7-server-optional-rpms --setopt=”rhel-7-server-optional-rpms.priori- ty=1” sudo yum-config-manager --enable rhel-7-server-extras-rpms --setopt=”rhel-7-server-extras-rpms.priority=1” sudo yum-config-manager --enable rhel-7-server-openstack-7.0-director-rpms --setopt=”rhel-7-server-open- stack-7.0-director-rpms.priority=1” sudo yum update -y sudo reboot 6. Install the Director packages and additional widgets: su - stack sudo yum install -y python-rdomanager-oscplugin sudo reboot yum install -y wget vim sysstat
  • 10. DX2000 from NEC lets you put big data to work April 2016  |  10 7. Complete SSL certificate configuration: su - stack cp /etc/pki/tls/openssl.cnf . vim ~/openssl.cnf a. Modify the following lines in the SSL certificate: [ req_distinguished_name ] countryName_default = US stateOrProvinceName_default = Default State localityName_default = Default City organizationalUnitName_default = TestOrg commonName_default = 192.0.2.2 [ v3_req ] basicConstraints = CA:FALSE keyUsage = nonRepudiation, digitalSignature, keyEncipherment subjectAltName = IP:192.0.2.2 openssl genrsa -out privkey.pem 2048 openssl req -new -x509 -key privkey.pem -out cacert.pem -days 365 -config ~/openssl.cnf cat cacert.pem privkey.pem > undercloud.pem sudo mkdir /etc/pki/instack-certs sudo cp ~/undercloud.pem /etc/pki/instack-certs/. sudo semanage fcontext -a -t etc_t “/etc/pki/instack-certs(/.*)?” sudo restorecon -R /etc/pki/instack-certs 8. To configure the Director file, modify the dchp_end and discovery_iprange as indicated below, and leave the remaining default options: cp /usr/share/instack-undercloud/undercloud.conf.sample ~/undercloud.conf vim ~/undercloud.conf [DEFAULT] image_path = . local_ip = 192.0.2.1/24 undercloud_public_vip = 192.0.2.2 undercloud_admin_vip = 192.0.2.3 undercloud_service_certificate = local_interface = eth1 masquerade_network = 192.0.2.0/24 dhcp_start = 192.0.2.5 dhcp_end = 192.0.2.99 network_cidr = 192.0.2.0/24 network_gateway = 192.0.2.1 discovery_interface = br-ctlplane discovery_iprange = 192.0.2.100,192.0.2.199 discovery_runbench = false undercloud_debug = true [auth] 9. Complete installation of the Undercloud: openstack undercloud install source ~/stackrc 10. Log in to the Red Hat Network, and get the most recent URLs from the Red Hat OpenStack documentation for images of the Overcloud nodes: cd ~/images wget ‘https://access.cdn.redhat.com/…/overcloud-full-7.3.0-56.tar’ wget ‘https://access.cdn.redhat.com/…/deploy-ramdisk-ironic-7.3.0-39.tar’ wget ‘https://access.cdn.redhat.com/…/discovery-ramdisk-7.3.0-56.tar’ for tarfile in *.tar*; do tar -xf $tarfile; done openstack overcloud image upload --image-path /home/stack/images/ openstack image list
  • 11. DX2000 from NEC lets you put big data to work April 2016  |  11 Sample output: +--------------------------------------+------------------------+ | ID | Name | +--------------------------------------+------------------------+ | b10a15d7-d558-4d39-89a1-824e2e39c5f3 | bm-deploy-kernel | | 214f9cbf-a935-4d40-84fe-22e1d3764a51 | bm-deploy-ramdisk | | 7529fd44-84d4-4db2-8d82-36997d570a0e | overcloud-full | | b429415d-15d3-4911-a326-73c2cdf1c16d | overcloud-full-initrd | | dced3b92-fbae-4bd6-a0bb-795971b7ce77 | overcloud-full-vmlinuz | +--------------------------------------+------------------------+ ls /httpboot –l Sample output: total 155504 -rw-r--r--. 1 ironic ironic 240 Feb 16 02:48 discoverd.ipxe -rwxr-xr-x. 1 root root 5152928 Feb 16 03:00 discovery.kernel -rw-r--r--. 1 root root 154075101 Feb 16 03:00 discovery.ramdisk 11. Enter a nameserver for the Overcloud: neutron subnet-list Sample output: +--------------------------------------+------+--------------+---------------------------------------------+ | id | name | cidr | allocation_pools | +--------------------------------------+------+--------------+---------------------------------------------+ | 58cb5657-53a6-45c9-aedc-5f04a6bd6793 | | 192.0.2.0/24 | {“start”: “192.0.2.5”, “end”: “192.0.2.99”} | +--------------------------------------+------+--------------+---------------------------------------------+ neutron subnet-update 58cb5657-53a6-45c9-aedc-5f04a6bd6793 --dns-nameserver 192.0.2.254 Updated subnet: 58cb5657-53a6-45c9-aedc-5f04a6bd6793 neutron subnet-show 58cb5657-53a6-45c9-aedc-5f04a6bd6793 +-------------------+---------------------------------------------------------------+ | Field | Value | +-------------------+---------------------------------------------------------------+ | allocation_pools | {“start”: “192.0.2.5”, “end”: “192.0.2.99”} | | cidr | 192.0.2.0/24 | | dns_nameservers | 192.0.2.254 | | enable_dhcp | True | | gateway_ip | 192.0.2.1 | | host_routes | {“destination”: “169.254.169.254/32”, “nexthop”: “192.0.2.1”} | | id | 58cb5657-53a6-45c9-aedc-5f04a6bd6793 | | ip_version | 4 | | ipv6_address_mode | | | ipv6_ra_mode | | | name | | | network_id | 660174c5-5300-4efd-a6ca-227effbd7b2b | | subnetpool_id | | | tenant_id | 9a658b9fea5641c38a5a052e4e0d5a3d | +-------------------+---------------------------------------------------------------+ 12. Install the Overcloud: source ~/stackrc openstack baremetal import --json ~/chassis1.json openstack baremetal configure boot openstack baremetal list
  • 12. DX2000 from NEC lets you put big data to work April 2016  |  12 Sample output: +--------------------------------------+------+---------------+-------------+-----------------+-------------+ | UUID | Name | Instance UUID | Power State | Provision State | Maintenance | +--------------------------------------+------+---------------+-------------+-----------------+-------------+ | 28eb4296-a646-4162-8fce-4d619c7e37ae | None | None | power off | available | False | | 5ecd4490-5c46-4016-8a5d-864725169915 | None | None | power off | available | False | | 486900d0-5e16-4dc6-8f3c-22875624d1fa | None | None | power off | available | False | | a46b6781-ddcb-4da8-87b2-818b761c489e | None | None | power off | available | False | | adc866a1-6c3c-4918-aaf9-bcdd1a853bdc | None | None | power off | available | False | | 7a14db26-9a70-45ec-b382-f0db0a20a11b | None | None | power off | available | False | | 2c7480ab-afbf-460d-8cc3-472029401e42 | None | None | power off | available | False | | 695a0c67-cb6c-4dc7-a868-c2ce8b337f09 | None | None | power off | available | False | | d76790c2-5037-432f-a022-b5286f140f3c | None | None | power off | available | False | | 3d38354e-f44f-47ae-9e39-dd6d656b2f95 | None | None | power off | available | False | | b57b78a3-4315-4249-bc4f-f31d8f39d8e1 | None | None | power off | available | False | | d99e9cd7-7386-4fc4-a7dc-4a83d4083064 | None | None | power off | available | False | | fd0cf747-3362-4a8d-a9f4-ee3fcb5f9b15 | None | None | power off | available | False | | 42cb3836-f295-4ceb-bfb5-a47f5bc0cc61 | None | None | power off | available | False | | 427dd24d-74e1-4ca5-930a-3eb37803d282 | None | None | power off | available | False | | fdc6bc25-848f-453c-a1ff-a948132909b7 | None | None | power off | available | False | | b1b4af72-d1d7-4dda-90a8-910bbaefbed0 | None | None | power off | available | False | | fbd82a87-fd4c-4e27-97ed-a30aad2b2ea5 | None | None | power off | available | False | | c93bedd4-f51f-453b-b7e4-4935fc1d9925 | None | None | power off | available | False | | 2da31b69-83a7-4a76-8283-23fd3a83a958 | None | None | power off | available | False | | ce8e6efc-2f4b-413a-b018-1ec9e704bb1b | None | None | power off | available | False | | 8a1475f5-df75-44fa-ace6-07175a6e205c | None | None | power off | available | False | +--------------------------------------+------+---------------+-------------+-----------------+-------------+ ironic chassis-create -d “Chassis1 - 22 server modules @ 8 cores” Sample output: +-------------+----------------------------------------+ | Property | Value | +-------------+----------------------------------------+ | uuid | 7a041d99-36f3-47f1-a5d7-879a83f2dc5b | | description | Chassis1 - 22 server modules @ 8 cores | | extra | {} | +-------------+----------------------------------------+ openstack baremetal list | awk ‘/power off/{print $2}’ > ~/chassis1.txt for i in `cat ~/chassis1.txt`; do ironic node-update $i replace chassis_uuid=7a041d99-36f3-47f1-a5d7-879a83f- 2dc5b ; done openstack baremetal import --json ~/controller.json openstack baremetal configure boot openstack baremetal list
  • 13. DX2000 from NEC lets you put big data to work April 2016  |  13 Sample output: +--------------------------------------+------+---------------+-------------+-----------------+-------------+ | UUID | Name | Instance UUID | Power State | Provision State | Maintenance | +--------------------------------------+------+---------------+-------------+-----------------+-------------+ | 28eb4296-a646-4162-8fce-4d619c7e37ae | None | None | power off | available | False | | 5ecd4490-5c46-4016-8a5d-864725169915 | None | None | power off | available | False | | 486900d0-5e16-4dc6-8f3c-22875624d1fa | None | None | power off | available | False | | a46b6781-ddcb-4da8-87b2-818b761c489e | None | None | power off | available | False | | adc866a1-6c3c-4918-aaf9-bcdd1a853bdc | None | None | power off | available | False | | 7a14db26-9a70-45ec-b382-f0db0a20a11b | None | None | power off | available | False | | 2c7480ab-afbf-460d-8cc3-472029401e42 | None | None | power off | available | False | | 695a0c67-cb6c-4dc7-a868-c2ce8b337f09 | None | None | power off | available | False | | d76790c2-5037-432f-a022-b5286f140f3c | None | None | power off | available | False | | 3d38354e-f44f-47ae-9e39-dd6d656b2f95 | None | None | power off | available | False | | b57b78a3-4315-4249-bc4f-f31d8f39d8e1 | None | None | power off | available | False | | d99e9cd7-7386-4fc4-a7dc-4a83d4083064 | None | None | power off | available | False | | fd0cf747-3362-4a8d-a9f4-ee3fcb5f9b15 | None | None | power off | available | False | | 42cb3836-f295-4ceb-bfb5-a47f5bc0cc61 | None | None | power off | available | False | | 427dd24d-74e1-4ca5-930a-3eb37803d282 | None | None | power off | available | False | | fdc6bc25-848f-453c-a1ff-a948132909b7 | None | None | power off | available | False | | b1b4af72-d1d7-4dda-90a8-910bbaefbed0 | None | None | power off | available | False | | fbd82a87-fd4c-4e27-97ed-a30aad2b2ea5 | None | None | power off | available | False | | c93bedd4-f51f-453b-b7e4-4935fc1d9925 | None | None | power off | available | False | | 2da31b69-83a7-4a76-8283-23fd3a83a958 | None | None | power off | available | False | | ce8e6efc-2f4b-413a-b018-1ec9e704bb1b | None | None | power off | available | False | | 8a1475f5-df75-44fa-ace6-07175a6e205c | None | None | power off | available | False | | 1c8e5593-c504-487e-b407-5e29e0e3899e | None | None | power off | available | False | +--------------------------------------+------+---------------+-------------+-----------------+-------------+ openstack baremetal introspection bulk start sudo journalctl -l -u openstack-ironic-discoverd -u openstack-ironic-discoverd-dnsmasq -u openstack-iron- ic-conductor -f watch -n 60 -d ‘openstack baremetal list | grep -v COMPLETE’ openstack baremetal list | awk ‘/None/{print “ironic node-update “$2” add properties/capabilities=’’’pro- file:compute,boot_option:local’’’”}’ > baremetal_assign.sh 13. Modify the last two lines in baremetal_assign.sh: vim baremetal_assign.sh Sample output: ironic node-update 28eb4296-a646-4162-8fce-4d619c7e37ae add properties/capabilities=’profile:compute,boot_op- tion:local’ ironic node-update 5ecd4490-5c46-4016-8a5d-864725169915 add properties/capabilities=’profile:compute,boot_op- tion:local’ ironic node-update 486900d0-5e16-4dc6-8f3c-22875624d1fa add properties/capabilities=’profile:compute,boot_op- tion:local’ ironic node-update a46b6781-ddcb-4da8-87b2-818b761c489e add properties/capabilities=’profile:compute,boot_op- tion:local’ ironic node-update adc866a1-6c3c-4918-aaf9-bcdd1a853bdc add properties/capabilities=’profile:compute,boot_op- tion:local’ ironic node-update 7a14db26-9a70-45ec-b382-f0db0a20a11b add properties/capabilities=’profile:compute,boot_op- tion:local’ ironic node-update 2c7480ab-afbf-460d-8cc3-472029401e42 add properties/capabilities=’profile:compute,boot_op- tion:local’ ironic node-update 695a0c67-cb6c-4dc7-a868-c2ce8b337f09 add properties/capabilities=’profile:compute,boot_op- tion:local’ ironic node-update d76790c2-5037-432f-a022-b5286f140f3c add properties/capabilities=’profile:compute,boot_op- tion:local’ ironic node-update 3d38354e-f44f-47ae-9e39-dd6d656b2f95 add properties/capabilities=’profile:compute,boot_op- tion:local’ ironic node-update b57b78a3-4315-4249-bc4f-f31d8f39d8e1 add properties/capabilities=’profile:compute,boot_op- tion:local’
  • 14. DX2000 from NEC lets you put big data to work April 2016  |  14 ironic node-update d99e9cd7-7386-4fc4-a7dc-4a83d4083064 add properties/capabilities=’profile:compute,boot_ option:local’ ironic node-update fd0cf747-3362-4a8d-a9f4-ee3fcb5f9b15 add properties/capabilities=’profile:compute,boot_ option:local’ ironic node-update 42cb3836-f295-4ceb-bfb5-a47f5bc0cc61 add properties/capabilities=’profile:compute,boot_ option:local’ ironic node-update 427dd24d-74e1-4ca5-930a-3eb37803d282 add properties/capabilities=’profile:compute,boot_ option:local’ ironic node-update fdc6bc25-848f-453c-a1ff-a948132909b7 add properties/capabilities=’profile:compute,boot_op- tion:local’ ironic node-update b1b4af72-d1d7-4dda-90a8-910bbaefbed0 add properties/capabilities=’profile:compute,boot_ option:local’ ironic node-update fbd82a87-fd4c-4e27-97ed-a30aad2b2ea5 add properties/capabilities=’profile:compute,boot_ option:local’ ironic node-update c93bedd4-f51f-453b-b7e4-4935fc1d9925 add properties/capabilities=’profile:compute,boot_ option:local’ ironic node-update 2da31b69-83a7-4a76-8283-23fd3a83a958 add properties/capabilities=’profile:compute,boot_ option:local’ ironic node-update ce8e6efc-2f4b-413a-b018-1ec9e704bb1b add properties/capabilities=’profile:compute,boot_ option:local’ ironic node-update 8a1475f5-df75-44fa-ace6-07175a6e205c add properties/capabilities=’profile:compute,boot_ option:local’ Modify the following lines: ironic node-update 778afb64-972c-4eff-b817-b4231c004599 add properties/capabilities=’profile:control,boot_op- tion:local’ ironic node-update 6f0537ff-1d42-45a8-af72-13147fab2d33 add properties/capabilities=’profile:control,boot_op- tion:local’ openstack flavor create --id auto --ram 98304 --disk 54 --vcpus 24 control openstack flavor create --id auto --ram 65536 --disk 237 --vcpus 16 compute openstack flavor create --id auto --ram 4096 --disk 40 --vcpus 1 baremetal cp -r /usr/share/openstack-tripleo-heat-templates/network/config/bond-with-vlans ~/templates/nic-configs 14. Edit control-scale and compute-scale to match the environment: openstack overcloud deploy --templates -e /usr/share/openstack-tripleo-heat-templates/environments/net- work-isolation.yaml -e ~/templates/network-environment.yaml -e ~/templates/storage-environment.yaml --con- trol-scale 2 --compute-scale 22 --control-flavor control --compute-flavor compute --ntp-server 192.0.2.254 --neutron-network-type vxlan --neutron-tunnel-types vxlan heat stack-list --show-nested | grep -v COMPLETE watch -n 60 -d ‘heat stack-list --show-nested | grep -v COMPLETE’ 15. Build the most recent Intel NIC drivers: rpmbuild -tb ixgbe-4.3.13.tar.gz cp ~/rpmbuild/RPMS/x86_64/*.rpm ~ scp *.rpm heat-admin@192.0.2.XXX:/home/heat-admin/ ssh heat-admin@192.0.2.XX “sudo yum localinstall -y i*.rpm ; sudo dracut --force” 16. Reboot the nodes: nova list nova reboot NODE_INSTANCE_ID 17. Use the CLI to create an advanced Overcloud with Ceph nodes: ssh heat-admin@192.0.2.XX Replace XX with the IP address of a controller node Note: ipaddr is the IP address of your controller servers’ IPMI interface. sudo pcs stonith create my-ipmilan-for-controller01 fence_ipmilan pcmk_host_list=overcloud-controller-0 ip- addr=192.168.0.251 login=Administrator passwd=Administrator lanplus=1 cipher=1 op monitor interval=60s sudo pcs constraint location my-ipmilan-for-controller01 avoids overcloud-controller-0
  • 15. DX2000 from NEC lets you put big data to work April 2016  |  15 sudo pcs stonith create my-ipmilan-for-controller02 fence_ipmilan pcmk_host_list=overcloud-controller-1 ip- addr=192.168.0.252 login=Administrator passwd=Administrator lanplus=1 cipher=1 op monitor interval=60s sudo pcs constraint location my-ipmilan-for-controller02 avoids overcloud-controller-1 sudo pcs stonith show sudo pcs property set stonith-enabled=true sudo pcs property show sudo pcs status 18. Create the Overcloud tenant network: source ~/overcloudrc neutron net-create default --shared neutron subnet-create --name default --gateway 172.20.1.1 default 172.20.0.0/16 neutron net-list 19. Create the Overcloud external network (using a non-native VLAN): source ~/overcloudrc neutron net-create nova --router:external --provider:network_type vlan --provider:physical_network datacen- tre --provider:segmentation_id 1200 neutron subnet-create --name nova --enable_dhcp=False --allocation-pool=start=10.1.1.51,end=10.1.1.250 --gateway=10.1.1.1 nova 10.1.1.0/24 20. Validate your Overcloud: openstack role list keystone role-create --name heat_stack_owner mkdir ~/tempest cd ~/tempest /usr/share/openstack-tempest-kilo/tools/configure-tempest-directory tools/config_tempest.py --deployer-input ~/tempest-deployer-input.conf --debug --create identity.uri $OS_ AUTH_URL identity.admin_password $OS_PASSWORD 21. Configure the router: neutron router-create default-router neutron router-interface-add default-router default neutron router-gateway-set default-router nova 22. Run the following commands on both controller nodes to complete the DHCP/DNSMASQ fix for DSN forwarding: sudo openstack-config --set /etc/neutron/dhcp_agent.ini DEFAULT dnsmasq_dns_servers 10.1.1.1 sudo systemctl restart neutron-dhcp-agent Configuring Red Hat Enterprise Linux OpenStack Platform Manager 1. Install Red Hat Enterprise Linux 7.2 Server with GUI, DNS Server, and all virtualization groups: setenforce 0 sed -i ‘s/SELINUX=enforcing/SELINUX=disabled/’ /etc/selinux/config firewall-cmd --permanent --direct --add-rule ipv4 nat POSTROUTING 0 -o enp3s0f0 -j MASQUERADE firewall-cmd --permanent --direct --add-rule ipv4 filter FORWARD 0 -i br1 -o enp3s0f0 -j ACCEPT firewall-cmd --permanent --direct --add-rule ipv4 filter FORWARD 0 -i enp3s0f0 -o br1 -m state --state RELAT- ED,ESTABLISHED -j ACCEPT firewall-cmd --permanent --direct --add-rule ipv4 filter FORWARD 0 -i br2 -o enp3s0f0 -j ACCEPT firewall-cmd --permanent --direct --add-rule ipv4 filter FORWARD 0 -i enp3s0f0 -o br2 -m state --state RELAT- ED,ESTABLISHED -j ACCEPT firewall-cmd --permanent --direct --add-rule ipv4 filter FORWARD 0 -i br3 -o enp3s0f0 -j ACCEPT firewall-cmd --permanent --direct --add-rule ipv4 filter FORWARD 0 -i enp3s0f0 -o br3 -m state --state RELAT- ED,ESTABLISHED -j ACCEPT firewall-cmd --reload hostnamectl set-hostname manager.test.lan hostnamectl set-hostname --transient manager.test.lan sudo subscription-manager register sudo subscription-manager list --available –all
  • 16. DX2000 from NEC lets you put big data to work April 2016  |  16 2. Locate the OpenStack pool_id in output, and replace it with the following ID in the next command: sudo subscription-manager attach --pool=<pool_id> sudo subscription-manager repos --disable=* sudo subscription-manager repos --enable=rhel-7-server-rpms --enable=rhel-7-server-optional-rpms --en- able=rhel-7-server-extras-rpms yum update -y reboot 3. Install Tiger VNC server: yum install -y tigervnc-server cp /usr/lib/systemd/system/vncserver@.service /etc/systemd/system/vncserver@.service vim /etc/systemd/system/vncserver@.service 4. Modify the following lines from USER to root: ExecStart=/usr/sbin/runuser -l root -c “/usr/bin/vncserver %i” PIDFile=/root/.vnc/%H%i.pid systemctl daemon-reload su - root vncpasswd firewall-cmd --permanent --add-port=5901/tcp firewall-cmd --reload systemctl start vncserver@:1.service systemctl enable vncserver@:1.service 5. Use Virtual Machine Manager to create two bridge interfaces: br1: enp3s0f1: 192.168.0.1/24 br2: ens1: 192.0.2.254/24 6. Configure the DHCP server: yum install -y dhcp vim /etc/dhcp/dhcpd.conf subnet 192.168.0.0 netmask 255.255.255.0 { option routers 192.168.0.1; option subnet-mask 255.255.255.0; option domain-search “test.lan”; option domain-name-servers 192.168.0.1; option time-offset -18000; # Eastern Standard Time range 192.168.0.51 192.168.0.99; include “/etc/dhcp/mms-static.conf”; } echo > /etc/dhcp/mms-static.conf systemctl enable dhcpd systemctl start dhcpd 7. Configure DNS: yum install -y bind firewall-cmd --permanent --add-service=dns firewall-cmd --reload vim /etc/named.conf a. Modify the following entries: listen-on port 53 { 127.0.0.1; };
  • 17. DX2000 from NEC lets you put big data to work April 2016  |  17 allow-query { localhost; }; dnssec-validation yes; listen-on port 53 { any; }; allow-query { any; }; dnssec-validation no; b. Append these lines to the end of the file: zone “test.lan” { type master; file “test.lan.zone”; allow-update { none; }; }; zone “0.168.192.in-addr.arpa” { type master; file “external.zone”; allow-update { none; }; }; zone “2.0.192.in-addr.arpa” { type master; file “deployment.zone”; allow-update { none; }; }; 8. Configure the NTP time server: yum install -y ntp sed -i ‘/^server [^ ]* iburst/d’ /etc/ntp.conf echo “server 10.41.0.5 iburst” >> /etc/ntp.conf systemctl start ntpd systemctl enable ntpd 9. Configure the DX2000 Management tool: yum install -y ipmitool OpenIPMI systemctl enable ipmi systemctl enable ipmievd systemctl start ipmi systemctl start ipmievd cd /opt/mng/ ./mng_util Sample output: mng_util version 01.03 > search 192.168.0.51-192.168.0.99 Sample output: Chassis serial : GFH9PA312A0006 Board ManagementLAN MAC IP DataLAN1 MAC DataLAN2 MAC ----------- ----------------- --------------- ----------------- ----------------- CSC 40:8d:5c:17:3c:71 192.168.0.51 LAN-SW1 40:8d:5c:57:94:a0 192.168.0.53 LAN-SW2 40:8d:5c:57:a2:10 192.168.0.52 CPU Board1 40:8d:5c:5e:ad:9a 192.168.0.69 40:8d:5c:5e:ad:98 40:8d:5c:5e:ad:99 CPU Board3 40:8d:5c:5e:ae:0c 192.168.0.63 40:8d:5c:5e:ae:0a 40:8d:5c:5e:ae:0b CPU Board5 40:8d:5c:5e:ae:cc 192.168.0.72 40:8d:5c:5e:ae:ca 40:8d:5c:5e:ae:cb CPU Board7 40:8d:5c:5e:af:4a 192.168.0.66 40:8d:5c:5e:af:48 40:8d:5c:5e:af:49 CPU Board9 40:8d:5c:5e:ac:ce 192.168.0.73 40:8d:5c:5e:ac:cc 40:8d:5c:5e:ac:cd CPU Board11 40:8d:5c:5e:ab:e1 192.168.0.64 40:8d:5c:5e:ab:df 40:8d:5c:5e:ab:e0 CPU Board13 40:8d:5c:5e:ae:77 192.168.0.68 40:8d:5c:5e:ae:75 40:8d:5c:5e:ae:76 CPU Board15 40:8d:5c:5e:ad:b5 192.168.0.61 40:8d:5c:5e:ad:b3 40:8d:5c:5e:ad:b4 CPU Board17 40:8d:5c:5e:ab:b4 192.168.0.55 40:8d:5c:5e:ab:b2 40:8d:5c:5e:ab:b3
  • 18. DX2000 from NEC lets you put big data to work April 2016  |  18 CPU Board19 40:8d:5c:5e:af:4d 192.168.0.74 40:8d:5c:5e:af:4b 40:8d:5c:5e:af:4c CPU Board20 40:8d:5c:5e:ac:c5 192.168.0.62 40:8d:5c:5e:ac:c3 40:8d:5c:5e:ac:c4 CPU Board21 40:8d:5c:5e:ac:26 192.168.0.57 40:8d:5c:5e:ac:24 40:8d:5c:5e:ac:25 CPU Board22 40:8d:5c:5e:ab:78 192.168.0.59 40:8d:5c:5e:ab:76 40:8d:5c:5e:ab:77 CPU Board23 40:8d:5c:5e:ad:c1 192.168.0.75 40:8d:5c:5e:ad:bf 40:8d:5c:5e:ad:c0 CPU Board24 40:8d:5c:5e:ab:fc 192.168.0.60 40:8d:5c:5e:ab:fa 40:8d:5c:5e:ab:fb CPU Board25 40:8d:5c:5e:ad:a0 192.168.0.56 40:8d:5c:5e:ad:9e 40:8d:5c:5e:ad:9f CPU Board26 40:8d:5c:5e:ae:3f 192.168.0.67 40:8d:5c:5e:ae:3d 40:8d:5c:5e:ae:3e CPU Board27 40:8d:5c:5e:ac:a4 192.168.0.58 40:8d:5c:5e:ac:a2 40:8d:5c:5e:ac:a3 CPU Board29 40:8d:5c:5e:ac:7a 192.168.0.71 40:8d:5c:5e:ac:78 40:8d:5c:5e:ac:79 CPU Board31 40:8d:5c:5e:af:41 192.168.0.70 40:8d:5c:5e:af:3f 40:8d:5c:5e:af:40 CPU Board33 40:8d:5c:5e:ab:d8 192.168.0.65 40:8d:5c:5e:ab:d6 40:8d:5c:5e:ab:d7 CPU Board35 40:8d:5c:5e:ae:3c 192.168.0.54 40:8d:5c:5e:ae:3a 40:8d:5c:5e:ae:3b > savelist -I all -f /root/maclist.csv > quit cat /root/maclist.csv | awk -F’,’ ‘/CSC|LAN-|CPU/{print $2”,”$3”,”$5”,”$6}’ | sed -e ‘s/CPU Board/srv/’ -e ‘s/LAN-SW/switch/’ -e ‘s/CSC/csc/’ > /root/mms1.csv MMS=1; cat /root/mms${MMS}.csv | awk -F’,’ ‘{printf “host mms-%s { hardware ethernet %s; fixed-address 192.168.0.%d; }n”,$1,$2,$1}’ | sed -e “s/mms-/mms${MMS}-/” -e “s/.csc/.${MMS}0/” -e “s/.switch/.${MMS}/” -e “s/.srv/.${MMS}/” > /etc/dhcp/mms-static.conf Note: If the scrips fail to execute correctly, edit the /etc/dhcp/mms-static.conf file to match the following: vim /etc/dhcp/mms-static.conf host controller-ipmi { hardware ethernet 78:e7:d1:91:30:4e; fixed-address 192.168.0.252; } host mms1-csc { hardware ethernet 40:8d:5c:17:3c:71; fixed-address 192.168.0.10; } host mms1-switch1 { hardware ethernet 40:8d:5c:57:94:a0; fixed-address 192.168.0.11; } host mms1-switch2 { hardware ethernet 40:8d:5c:57:a2:10; fixed-address 192.168.0.12; } host mms1-srv1 { hardware ethernet 40:8d:5c:5e:ad:9a; fixed-address 192.168.0.101; } host mms1-srv3 { hardware ethernet 40:8d:5c:5e:ae:0c; fixed-address 192.168.0.103; } host mms1-srv5 { hardware ethernet 40:8d:5c:5e:ae:cc; fixed-address 192.168.0.105; } host mms1-srv7 { hardware ethernet 40:8d:5c:5e:af:4a; fixed-address 192.168.0.107; } host mms1-srv9 { hardware ethernet 40:8d:5c:5e:ac:ce; fixed-address 192.168.0.109; } host mms1-srv11 { hardware ethernet 40:8d:5c:5e:ab:e1; fixed-address 192.168.0.111; } host mms1-srv13 { hardware ethernet 40:8d:5c:5e:ae:77; fixed-address 192.168.0.113; } host mms1-srv15 { hardware ethernet 40:8d:5c:5e:ad:b5; fixed-address 192.168.0.115; } host mms1-srv17 { hardware ethernet 40:8d:5c:5e:ab:b4; fixed-address 192.168.0.117; } host mms1-srv19 { hardware ethernet 40:8d:5c:5e:af:4d; fixed-address 192.168.0.119; } host mms1-srv20 { hardware ethernet 40:8d:5c:5e:ac:c5; fixed-address 192.168.0.120; } host mms1-srv21 { hardware ethernet 40:8d:5c:5e:ac:26; fixed-address 192.168.0.121; } host mms1-srv22 { hardware ethernet 40:8d:5c:5e:ab:78; fixed-address 192.168.0.122; } host mms1-srv23 { hardware ethernet 40:8d:5c:5e:ad:c1; fixed-address 192.168.0.123; } host mms1-srv24 { hardware ethernet 40:8d:5c:5e:ab:fc; fixed-address 192.168.0.124; } host mms1-srv25 { hardware ethernet 40:8d:5c:5e:ad:a0; fixed-address 192.168.0.125; } host mms1-srv26 { hardware ethernet 40:8d:5c:5e:ae:3f; fixed-address 192.168.0.126; } host mms1-srv27 { hardware ethernet 40:8d:5c:5e:ac:a4; fixed-address 192.168.0.127; } host mms1-srv29 { hardware ethernet 40:8d:5c:5e:ac:7a; fixed-address 192.168.0.129; } host mms1-srv31 { hardware ethernet 40:8d:5c:5e:af:41; fixed-address 192.168.0.131; } host mms1-srv33 { hardware ethernet 40:8d:5c:5e:ab:d8; fixed-address 192.168.0.133; } host mms1-srv35 { hardware ethernet 40:8d:5c:5e:ae:3c; fixed-address 192.168.0.135; } 10. Enable the NFS server: mkdir -p /export/cinder mkdir -p /export/glance chmod 777 /export/* vim /etc/exports a. Append the following to the file: /export/cinder 172.18.0.0/24(rw,no_root_squash) /export/glance 172.18.0.0/24(rw,no_root_squash) firewall-cmd --permanent --zone public --add-service mountd firewall-cmd --permanent --zone public --add-service rpc-bind firewall-cmd --permanent --zone public --add-service nfs firewall-cmd --permanent --zone public --add-service ntp firewall-cmd --reload
  • 19. DX2000 from NEC lets you put big data to work April 2016  |  19 systemctl enable rpcbind systemctl enable nfs-server systemctl enable nfs-lock systemctl enable nfs-idmap systemctl restart rpcbind systemctl restart nfs-server systemctl restart nfs-lock systemctl restart nfs-idmap 11. Configure Red Hat Enterprise Linux 7 and the HDP 2.4 mirror: yum install -y yum-utils createrepo httpd systemctl enable httpd systemctl restart httpd firewall-cmd --permanent --zone public --add-service http firewall-cmd --reload wget -nv http://public-repo-1.hortonworks.com/ambari/centos7/2.x/updates/2.2.1.0/ambari.repo -O /etc/yum. repos.d/ambari.repo wget -nv http://public-repo-1.hortonworks.com/HDP/centos7/2.x/updates/2.4.0.0/hdp.repo -O /etc/yum.repos.d/ hdp.repo mkdir -p /var/www/html/repos cd /var/www/html/repos reposync -l for repo in `ls`; do createrepo $repo ; done wget http://public-repo-1.hortonworks.com/ambari/centos6/RPM-GPG-KEY/RPM-GPG-KEY-Jenkins 12. Edit the Red Hat Enterprise Linux guest KVM image. cd /var/lib/libvirt/images mkdir /mnt/guest guestmount --rw -i -a rhel-guest-image-7.2-20160301.0.x86_64_hdp.img /mnt/guest cd /mnt/guest a. Disable SELinux in the guest KVM image: sed -i ‘s/SELINUX=enforcing/SELINUX=disabled/’ /mnt/guest/etc/selinux/config b. Update the repository in guest image to point to the local repository: vi /mnt/guest/etc/yum.repos.d/ambari.repo #VERSION_NUMBER=2.2.1.1-70 [Updates-ambari-2.2.1.1] name=ambari-2.2.1.1 - Updates baseurl=http://10.1.1.1/repos/Updates-ambari-2.2.1.1 gpgcheck=1 gpgkey=http://10.1.1.1/repos/RPM-GPG-KEY-Jenkins enabled=1 priority=1 vi /mnt/guest/etc/yum.repos.d/hdp.repo #VERSION_NUMBER=2.4.0.0-169 [HDP-2.4.0.0] name=HDP Version - HDP-2.4.0.0 baseurl=http://10.1.1.1/repos/HDP-2.4.0.0 gpgcheck=1 gpgkey=http://10.1.1.1/repos/HDP-2.4.0.0/RPM-GPG-KEY-Jenkins enabled=1 priority=1 [HDP-UTILS-1.1.0.20] name=HDP Utils Version - HDP-UTILS-1.1.0.20 baseurl=http://10.1.1.1/repos/HDP-UTILS-1.1.0.20 gpgcheck=1 gpgkey=http://10.1.1.1/repos/HDP-2.4.0.0/RPM-GPG-KEY-Jenkins enabled=1 priority=1
  • 20. DX2000 from NEC lets you put big data to work April 2016  |  20 vi /mnt/guest/etc/yum.repos.d/rh.repo [rhel-7-server-rpms] baseurl = http://10.1.1.1/repos/rhel-7-server-rpms ui_repoid_vars = releasever basearch name = Red Hat Enterprise Linux 7 Server (RPMs) gpgkey = file:///etc/pki/rpm-gpg/RPM-GPG-KEY-redhat-release enabled = 1 gpgcheck = 1 [rhel-7-server-extras-rpms] baseurl = http://10.1.1.1/repos/rhel-7-server-extras-rpms ui_repoid_vars = basearch name = Red Hat Enterprise Linux 7 Server - Extras (RPMs) gpgkey = file:///etc/pki/rpm-gpg/RPM-GPG-KEY-redhat-release enabled = 1 gpgcheck = 1 [rhel-7-server-optional-rpms] baseurl = http://10.1.1.1/repos/rhel-7-server-optional-rpms ui_repoid_vars = releasever basearch name = Red Hat Enterprise Linux 7 Server - Optional (RPMs) gpgkey = file:///etc/pki/rpm-gpg/RPM-GPG-KEY-redhat-release enabled = 1 gpgcheck = 1 [rhel-7-server-rh-common-rpms] baseurl = http://10.1.1.1/repos/rhel-7-server-rh-common-rpms ui_repoid_vars = releasever basearch name = Red Hat Enterprise Linux 7 Server - RH Common (RPMs) gpgkey = file:///etc/pki/rpm-gpg/RPM-GPG-KEY-redhat-release enabled = 1 gpgcheck = 1 13. Install the priorities plugin on the image and enable it: yum --installroot=/mnt/guest install -y yum-plugin-priorities vi /mnt/guest/etc/yum/pluginconf.d/priorities.conf [main] enabled = 1 gpgcheck = 0 vi /etc/yum/pluginconf.d/priorities.conf [main] enabled = 1 gpgcheck = 0 14. Install updates: yum --installroot=/mnt/guest update -y 15. Install Ambari required packages and remove chrony: yum --installroot=/mnt/guest remove -y chrony yum --installroot=/mnt/guest install -y openssh-clients curl unzip tar wget openssl python ntp ja- va-1.8.0-openjdk-devel postgresql-jdbc postgresql-odbc sysstat numpy 16. Clean up installers in the guest image: yum --installroot=/mnt/guest clean all 17. Enable NTP in guest: ln -s /usr/lib/systemd/system/ntpd.service /mnt/guest/etc/systemd/system/multi-user.target.wants/ntpd.ser- vice sed -i ‘/^server [^ ]* iburst/d’ /mnt/guest/etc/ntp.conf echo “server 10.1.1.1 iburst” >> /mnt/guest/etc/ntp.conf
  • 21. DX2000 from NEC lets you put big data to work April 2016  |  21 18. Zero fill the guest image, convert the file, and compress it: dd if=/dev/zero of=/mnt/guest/tmp.bin bs=1M ; sync ; sleep 1 ; sync ; rm -f /mnt/guest/tmp.bin ; sync cd /var/lib/libvirt/images umount /mnt/guest qemu-img convert -c -O qcow2 rhel-guest-image-7.2-20160301.0.x86_64_hdp.img rhel-guest-image-7.2- 20160301.0.x86_64_hdp.qcow2 19. Install Ambari server: ssh -i hdpkey cloud-user@10.1.1.185 sudo su yum install -y ambari-server ambari-server setup --jdbc-db=postgres --jdbc-driver=/usr/share/java/postgresql-jdbc.jar --java-home=/usr/ lib/jvm/java-1.8.0-openjdk Sample output: Using python /usr/bin/python Setup ambari-server Copying /usr/share/java/postgresql-jdbc.jar to /var/lib/ambari-server/resources JDBC driver was successfully initialized. Ambari Server ‘setup’ completed successfully. ambari-server setup --java-home=/usr/lib/jvm/java-1.8.0-openjdk Sample output: Using python /usr/bin/python Setup ambari-server Checking SELinux... SELinux status is ‘disabled’ Customize user account for ambari-server daemon [y/n] (n)? Adjusting ambari-server permissions and ownership... Checking firewall status... Redirecting to /bin/systemctl status iptables.service Checking JDK... WARNING: JAVA_HOME /usr/lib/jvm/java-1.8.0-openjdk must be valid on ALL hosts WARNING: JCE Policy files are required for configuring Kerberos security. If you plan to use Kerberos,please make sure JCE Unlimited Strength Jurisdiction Policy Files are valid on all hosts. Completing setup... Configuring database... Enter advanced database configuration [y/n] (n)? Configuring database... Default properties detected. Using built-in database. Configuring ambari database... Checking PostgreSQL... Running initdb: This may take upto a minute. Initializing database ... OK About to start PostgreSQL Configuring local database... Connecting to local database...done. Configuring PostgreSQL... Restarting PostgreSQL Extracting system views... ambari-admin-2.2.1.1.70.jar ...... Adjusting ambari-server permissions and ownership... Ambari Server ‘setup’ completed successfully. ambari-server start
  • 22. DX2000 from NEC lets you put big data to work April 2016  |  22 Sample output: Using python /usr/bin/python Starting ambari-server Ambari Server running with administrator privileges. Organizing resource files at /var/lib/ambari-server/resources... Server PID at: /var/run/ambari-server/ambari-server.pid Server out at: /var/log/ambari-server/ambari-server.out Server log at: /var/log/ambari-server/ambari-server.log Waiting for server start.................... Ambari Server ‘start’ completed successfully. ambari-server status Sample output: http://10.1.1.185:8080 admin/admin 20. To complete Ambari web setup, open the URL from the server setup in step 19, log in with the appropriate credentials, and create a cluster: a. Type cluster1 for the cluster name. b. Type host-172-21-0-[66-88].openstacklocal for the target host information. Browse to hdpkey SSH key, and type cloud-user for the SSH User Account. c. Uncheck the following options: Sqoop Oozie Falcon Flume Accumulo Atlas Knox Slider SmartSense d. Distribute all services across the first three nodes or your three master instances with the exception of Metric Collector, which should be assigned to a client. e. Type Password1 for the Hive database password. f. Set a password on the Hive database: Password1 g. Accept defaults and continue. h. Accept defaults and continue. i. Complete web setup. Configuring the HiBench client instance From the Ambari GUI, add another client instance, add the Apache Kafka broker role, and complete the following steps: 1. Set the maximum number of client connections to 60: maxClientCnxns=60 2. Install HiBench. a. Add a floating IP to the client instance: ssh -i hdpkey cloud-user@10.1.1.186 sudo su - hdfs hdfs dfs -mkdir /HiBench
  • 23. DX2000 from NEC lets you put big data to work April 2016  |  23 hdfs dfs -chown -R cloud-user:hadoop /HiBench hdfs dfs -mkdir /home/cloud-user hdfs dfs -chown cloud-user /user/cloud-user exit yum install -y maven git vim numpy blas64 lapack64 git clone https://github.com/intel-hadoop/HiBench.git cd HiBench/src b. Open the datagen pom XML file. Replace the following: vim streambench/datagen/pom.xml <dependency> <groupId>org.apache.kafka</groupId> <artifactId>kafka-clients</artifactId> <version>0.8.1</version> <scope>system</scope> <systemPath>${basedir}/lib/kafka-clients-0.8.1.jar</systemPath> </dependency> <dependency> <groupId>org.apache.kafka</groupId> <artifactId>kafka-clients</artifactId> <version>0.8.1</version> </dependency> c. Open the following XML file, and replace the following: vim streambench/sparkbench/pom.xml <exclusion> <groupId>org.sonatype.sisu.inject</groupId> <artifactId>*</artifactId> </exclusion> <exclusion> <groupId>org.xerial.snappy</groupId> <artifactId>*</artifactId> </exclusion> <exclusion> <groupId>org.sonatype.sisu.inject</groupId> <artifactId>inject</artifactId> </exclusion> <exclusion> <groupId>org.xerial.snappy</groupId> <artifactId>snappy</artifactId> </exclusion> d. Complete the HiBench installation: mvn install:install-file -Dfile=streambench/datagen/lib/kafka-clients-0.8.1.jar -DgroupId=org.apache.kafka -DartifactId=kafka-clients -Dversion=0.8.1 -Dpackaging=jar mvn clean package -D spark1.6 -D MR2 cd .. cp conf/99-user_defined_properties.conf.template conf/99-user_defined_properties.conf grep -v “^#” conf/99-user_defined_properties.conf | grep -v “^$” Sample output: hibench.hadoop.home /usr/hdp/current/hadoop-client hibench.spark.home /usr/hdp/current/spark-client hibench.hadoop.mapreduce.home /usr/hdp/current/hadoop-mapreduce-client hibench.hdfs.master hdfs://host-172-21-0-66.openstacklocal:8020 hibench.spark.master yarn-client hibench.hadoop.release hdp hibench.hadoop.version hadoop2 hibench.spark.version spark1.6 hibench.default.map.parallelism 76 hibench.default.shuffle.parallelism 76
  • 24. DX2000 from NEC lets you put big data to work April 2016  |  24 Principled Technologies is a registered trademark of Principled Technologies, Inc. All other product names are the trademarks of their respective owners. DISCLAIMER OF WARRANTIES; LIMITATION OF LIABILITY: Principled Technologies, Inc. has made reasonable efforts to ensure the accuracy and validity of its testing, however, Principled Technologies, Inc. specifically disclaims any warranty, expressed or implied, relating to the test results and analysis, their accuracy, completeness or quality, including any implied warranty of fitness for any particular purpose. All persons or entities relying on the results of any testing do so at their own risk, and agree that Principled Technologies, Inc., its employees and its subcontractors shall have no liability whatsoever from any claim of loss or damage on account of any alleged error or defect in any testing procedure or result. In no event shall Principled Technologies, Inc. be liable for indirect, special, incidental, or consequential damages in connection with its testing, even if advised of the possibility of such damages. In no event shall Principled Technologies, Inc.’s liability, including for direct damages, exceed the amounts paid in connection with Principled Technologies, Inc.’s testing. Customer’s sole and exclusive remedies are as set forth herein. This project was commissioned by NEC Corp. Principled Technologies® Facts matter.®Principled Technologies® Facts matter.® hibench.yarn.executor.num 19 hibench.yarn.executor.cores 16 spark.executor.memory 50G spark.driver.memory 8G spark.rdd.compress false spark.shuffle.compress false spark.broadcast.compress false spark.io.compression.codec org.apache.spark.io.SnappyCompressionCodec spark.akka.frameSize 1000 spark.akka.timeout 600 spark.kryoserializer.buffer 2000mb hibench.scale.profile census hibench.compress.profile disable hibench.compress.codec.profile snappy hibench.streamingbench.benchname identity hibench.streamingbench.scale.profile ${hibench.scale.profile} hibench.streamingbench.zookeeper.host host-172-21-0-66.openstacklocal:2181 hibench.streamingbench.brokerList host-172-21-0-89.openstacklocal:9021 hibench.streamingbench.storm.home /usr/hdp/current/storm-client hibench.streamingbench.kafka.home /usr/hdp/current/kafka-broker hibench.streamingbench.storm.nimbus host-172-21-0-66.openstacklocal hibench.streamingbench.partitions 1