SlideShare a Scribd company logo
Notes are adapted from D. R. Wilton, Dept. of ECE
ECE 6382
Introduction to Complex Variables
David R. Jackson
1
Fall 2022
Notes 1
Some Applications of Complex Variables
2
 Phasor-domain analysis in physics and engineering
 Laplace and Fourier transforms
 Series expansions (Taylor, Laurent)
 Evaluation of integrals
 Asymptotics (method of steepest descent)
 Conformal Mapping (solution of Laplace’s equation)
 Radiation physics (branch cuts, poles)
Complex Arithmetic and Algebra
A complex number z may be thought of simply as an ordered pair
of real numbers (x, y) with rules for addition, multiplication, etc.
   
 
R ,
( ) 1, e , Im
cos sin
i
z x iy i j y z x
x z z
r i
y
re
 
      
 

 
(from figure)
(Euler formula (not yet proven!))
3
Note: In Euler's formula, the
angle  must be in radians.
Note: Usually we will use i to denote the square root of -1.
However, we will often switch to using j when we are doing an engineering example.
Argand diagram
(polar form)
Note:
We can say that
1
i  
But we need to be careful to properly interpret
the square root (using the principal branch). This
is what the radical sign usually denotes.
  
  
x
y
r

z
z plane
 
arg
z r
z 


Complex Arithmetic and Algebra
4
x
y
r

z
z plane
Note on phase angle (argument):
The phase angle  is non-unique. We
can add any multiple of 2 (360o) to it.
This does not change x and y.
Principal branch:
  
  
The most common choice
for the “principal branch” is*:
Note:
Adding multiples of 2 to  will affect
some functions, but not others.
Examples:    
f z z
 noeffect
   
1/2
f z z
 willeffect
2
p n
  
 
p
  
  
*e.g., the one that Matlab uses
Complex Arithmetic and Algebra (cont.)
   
   
1 2 1 1 2 2
1 2 1 2
z z x iy x iy
x x i y y
    
   
Addition / subtraction:
5
Geometrically, this works the same way and adding and subtracting two-dimensional vectors:
“tip-to-tail rule”
x
y
1
z
2
z
1 2
z z

x
y
1
z
2
z
1 2
z z

2
z

Complex Arithmetic and Algebra (cont.)
  
   
  
    
1 2
1 2
2 2
2 2
1 2 1 2 1
1
1 2 1 1 2 2
1 2 1 2 1 2 2 1
2
2
1 2 1 2 1 2
1 1
1 2
2 2
1 2 1 2 1 2 2 1
2 2
2
2 2
2 2
2
1
0 1 0 1 1
/
/
(
,
)
i
i i
z z x iy x iy
y
x x y y i x y x y
i i i
z z re r e rr
x iy
x iy
x x y
x y
e
x iy
z z
x iy
x x y y i y y x
x y
z z
x y
 
  

  
   
     

 





 



 


Multiplication:
Division:
     
1 2
1 2
2 2 1
2 2
1
1 2 1 2
2
2 2
/ /
i
i i r
z z re
x
r e e
r
y x
x y
 
  
 

 

 
 






6
Multiplication and division are easier in polar form!
1/ i i
 
Example :
Complex Arithmetic and Algebra (cont.)
7
 We can multiply and divide complex numbers. We cannot
divide two-dimensional vectors.
Important point:
(We can, however, multiply two-dimensional vectors in two different
ways, using the dot product and the cross product.)
Complex Arithmetic and Algebra (cont.)
 
  
  
*
*
2 2 *
*
i i
z x iy
z z z
z r x y x iy x iy z z
z r re re z z
 

 

      
  
To see this :
Conjugation:
Magnitude :
8



y
x
r
z
r
*
z
Euler’s Formula
 
2 3
0
2 3
0
2 4 3 5
0
1
2! 3! !
1
2! 3! !
1
! 2! 4! 3! 5!
cos sin
n
x
n
n
z
n
n
i
n
i
x x x
e x
n
x z x iy
z z z
e z
n
i
e i
n
i
e
z


    

 






     
  
     
 
         
 
 
 




Recall:
Define extension to a complex variable ( ):
(converges for all )
cos sin cos sin
cos sin cos sin
cos sin
2 2
i
iz iz
iz iz iz iz
i e i
e z i z e z i z
e e e e
z z
i

   


 



  
  
 
 
More generally,
9
   
cos cosh , sin sinh
2 2 2
z z z z z z
e e e e e e
iz z iz i i z
i
  
  
     

Note: The variable  here
is usually taken to be real,
but it does not have to be.
Leonhard Euler
Application to Trigonometric Identities
     
2
2 2
2 2 2
cos2 sin 2
cos sin cos sin 2cos sin
i
i i
e i
e e i i

 
 
     
 
     
Many trigonometric identities follow from a simple application of Euler's formula :
On the other hand,
Equatingreal andimaginary parts of t
 
   
 
  
 
1 2
1 2 1 2
2 2
1 2 1 2
1 1 2 2
1 2 1 2 1 2 1
cos2 cos sin
sin 2 2cos sin
cos sin
cos sin cos sin
cos cos sin sin sin cos cos
i
i i i
e i
e e e
i i
i
 
   
  
  
   
   
      

 
 

   

  
  
he two expressions yields identities:
On the other hand,
two
 
 
 
2
1 2 1 2 1 2
1 2 1 2 1 2
sin
cos cos cos sin sin
sin sin cos cos sin

     
     
 
  
Equatingreal andimaginary parts yields:
10
DeMoivre’s Theorem
11

2
 

2
 

x
y
z
z
   
   
   
2 2
cos sin
cos 2 sin 2
p p
p p
n
n i n in n
n
i k i n kn
n n
z re r e r n i n
n
re r e r n kn i n kn k
 
   
 

   
 
   
   
    
   
 

(DeMoivre's Theorem)
Note that for aninteger, the result is of how is measured
( anint ge
e r)
independent
 
cos sin
p p
n
n
r n i n
z
 


Abraham de Moivre
Roots of a Complex Number
 
   
2
2
1
1 1 1
2 2
cos sin , 0,1,2, 1
p
p p
k
n n
i
i
n
k n
n n n k k
n n n n
z re r e r i k n


   
 
 
 
 


   
    
   
   
  
roots
12
1
n
w z

     
1
3
0: 8 2 cos sin 2 cos 30 sin 30 2
6 6
k i i i
 
 
   
            
 
   
   
   
 
3
2
1
2
i

     
     
1
3
1
3
3 ,
2 2
1: 8 2 cos sin 2 cos 90 sin 90 2 ,
6 3 6 3
4 4
2 : 8 2 cos sin 2 cos 210 sin 210 3 ,
6 3 6 3
i
k i i i i
k i i i i
   
   
 
 
 
 
 
   
            
 
   
   
   
 
 
   
              
 
   
   
   
 
 
2
2
6 3
2
1
3
1
3
2 2
8 8 2 2 cos sin , 0,1,2
6 3 6 3
k
i i
i i k k k
i e e i k
 
     
 
 
   
   
       
     
 
   
 
 
 
E l
xamp e:
 In this case the results depend on how  is measured.
Roots of a Complex Number (cont.)
 
 
1
3
2
2 2
1
1 1 1
3 ,
8 2 ,
3
p
p
p
k
n n k
n
n
i
i k i
n
i
n
n n n
i
i i
i
n
n
z re r e r e
e
z



  
 
 
 


 

  

 

 
 
 
 

"principal throot
o
branch"
Note that the throot of can also be expressedin terms
of the :
th root of unity
   
1
1 2
2 2 2
1 cos sin , 0,1, , 1
k
n
n
n i k
n
i k k
e
e i k n
n n
   
     
f unity
throot
of unity
where
z
x
y
8i

u
v
w
 
1/3
1/3
8
w z i
  
Re
Im
1 0
 
1 120
 
1 240
 
Cube root
of unity
(n = 3)
13
w u iv
 
Example (cont.)

More Related Content

PPTX
M.sheela complex ppt
PPTX
Matrices Engineering maths anna University
PPT
Complex Variables SOLO HERMELIN 222222222222222222222222
PDF
Solutions for Exercises in Quantum Mechanics for Scientists and Engineers by ...
PDF
PPTX
Lecture 23 loop transfer function
PDF
Solucao_Marion_Thornton_Dinamica_Classic (1).pdf
PPT
High Order Numerical Methodes for the Riesz Derivatives
M.sheela complex ppt
Matrices Engineering maths anna University
Complex Variables SOLO HERMELIN 222222222222222222222222
Solutions for Exercises in Quantum Mechanics for Scientists and Engineers by ...
Lecture 23 loop transfer function
Solucao_Marion_Thornton_Dinamica_Classic (1).pdf
High Order Numerical Methodes for the Riesz Derivatives

Similar to presentation.pptx (20)

PPT
high order numerical methodes for the Riesz derivatives
PDF
D41024030
PDF
The Bifurcation of Stage Structured Prey-Predator Food Chain Model with Refuge
PDF
ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
PPT
17330361.ppt
PDF
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاول
PDF
PDF
Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...
PPTX
Waveguiding Structures Part 4 (Rectangular and Circular Waveguide).pptx
PDF
Semana 29 sucesiones reales álgebra uni ccesa007
PDF
Engineering Maths Chapter 2 - Partial Derivatives.pdf
PDF
Multiple_view_geometry - Mechatronics and Robotics
PDF
Engineering Mathematics Multiple Integral.pdf
PDF
Summation Series
PDF
Complex Numbers
PPTX
Notes 7 6382 Power Series.pptx
PDF
Integrability and weak diffraction in a two-particle Bose-Hubbard model
PPT
three dimensionall Object Representation.ppt
PDF
1. introduction to complex numbers
PDF
Arts revealed in calculus and its extension
high order numerical methodes for the Riesz derivatives
D41024030
The Bifurcation of Stage Structured Prey-Predator Food Chain Model with Refuge
ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
17330361.ppt
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاول
Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...
Waveguiding Structures Part 4 (Rectangular and Circular Waveguide).pptx
Semana 29 sucesiones reales álgebra uni ccesa007
Engineering Maths Chapter 2 - Partial Derivatives.pdf
Multiple_view_geometry - Mechatronics and Robotics
Engineering Mathematics Multiple Integral.pdf
Summation Series
Complex Numbers
Notes 7 6382 Power Series.pptx
Integrability and weak diffraction in a two-particle Bose-Hubbard model
three dimensionall Object Representation.ppt
1. introduction to complex numbers
Arts revealed in calculus and its extension
Ad

Recently uploaded (20)

PPTX
water for all cao bang - a charity project
PDF
Unnecessary information is required for the
PPTX
Anesthesia and it's stage with mnemonic and images
PPTX
Module_4_Updated_Presentation CORRUPTION AND GRAFT IN THE PHILIPPINES.pptx
PPTX
ANICK 6 BIRTHDAY....................................................
PPTX
Intro to ISO 9001 2015.pptx wareness raising
PPTX
3RD-Q 2022_EMPLOYEE RELATION - Copy.pptx
PPTX
BIOLOGY TISSUE PPT CLASS 9 PROJECT PUBLIC
PPTX
Research Process - Research Methods course
PDF
Module 7 guard mounting of security pers
PPTX
Tablets And Capsule Preformulation Of Paracetamol
PDF
_Nature and dynamics of communities and community development .pdf
PPTX
Impressionism_PostImpressionism_Presentation.pptx
PPTX
Lesson-7-Gas. -Exchange_074636.pptx
PDF
Tunisia's Founding Father(s) Pitch-Deck 2022.pdf
PPTX
An Unlikely Response 08 10 2025.pptx
PDF
6.-propertise of noble gases, uses and isolation in noble gases
PPTX
PurpoaiveCommunication for students 02.pptx
PDF
PM Narendra Modi's speech from Red Fort on 79th Independence Day.pdf
PPTX
Hydrogel Based delivery Cancer Treatment
water for all cao bang - a charity project
Unnecessary information is required for the
Anesthesia and it's stage with mnemonic and images
Module_4_Updated_Presentation CORRUPTION AND GRAFT IN THE PHILIPPINES.pptx
ANICK 6 BIRTHDAY....................................................
Intro to ISO 9001 2015.pptx wareness raising
3RD-Q 2022_EMPLOYEE RELATION - Copy.pptx
BIOLOGY TISSUE PPT CLASS 9 PROJECT PUBLIC
Research Process - Research Methods course
Module 7 guard mounting of security pers
Tablets And Capsule Preformulation Of Paracetamol
_Nature and dynamics of communities and community development .pdf
Impressionism_PostImpressionism_Presentation.pptx
Lesson-7-Gas. -Exchange_074636.pptx
Tunisia's Founding Father(s) Pitch-Deck 2022.pdf
An Unlikely Response 08 10 2025.pptx
6.-propertise of noble gases, uses and isolation in noble gases
PurpoaiveCommunication for students 02.pptx
PM Narendra Modi's speech from Red Fort on 79th Independence Day.pdf
Hydrogel Based delivery Cancer Treatment
Ad

presentation.pptx

  • 1. Notes are adapted from D. R. Wilton, Dept. of ECE ECE 6382 Introduction to Complex Variables David R. Jackson 1 Fall 2022 Notes 1
  • 2. Some Applications of Complex Variables 2  Phasor-domain analysis in physics and engineering  Laplace and Fourier transforms  Series expansions (Taylor, Laurent)  Evaluation of integrals  Asymptotics (method of steepest descent)  Conformal Mapping (solution of Laplace’s equation)  Radiation physics (branch cuts, poles)
  • 3. Complex Arithmetic and Algebra A complex number z may be thought of simply as an ordered pair of real numbers (x, y) with rules for addition, multiplication, etc.       R , ( ) 1, e , Im cos sin i z x iy i j y z x x z z r i y re               (from figure) (Euler formula (not yet proven!)) 3 Note: In Euler's formula, the angle  must be in radians. Note: Usually we will use i to denote the square root of -1. However, we will often switch to using j when we are doing an engineering example. Argand diagram (polar form) Note: We can say that 1 i   But we need to be careful to properly interpret the square root (using the principal branch). This is what the radical sign usually denotes.       x y r  z z plane   arg z r z   
  • 4. Complex Arithmetic and Algebra 4 x y r  z z plane Note on phase angle (argument): The phase angle  is non-unique. We can add any multiple of 2 (360o) to it. This does not change x and y. Principal branch:       The most common choice for the “principal branch” is*: Note: Adding multiples of 2 to  will affect some functions, but not others. Examples:     f z z  noeffect     1/2 f z z  willeffect 2 p n      p       *e.g., the one that Matlab uses
  • 5. Complex Arithmetic and Algebra (cont.)         1 2 1 1 2 2 1 2 1 2 z z x iy x iy x x i y y          Addition / subtraction: 5 Geometrically, this works the same way and adding and subtracting two-dimensional vectors: “tip-to-tail rule” x y 1 z 2 z 1 2 z z  x y 1 z 2 z 1 2 z z  2 z 
  • 6. Complex Arithmetic and Algebra (cont.)                1 2 1 2 2 2 2 2 1 2 1 2 1 1 1 2 1 1 2 2 1 2 1 2 1 2 2 1 2 2 1 2 1 2 1 2 1 1 1 2 2 2 1 2 1 2 1 2 2 1 2 2 2 2 2 2 2 2 1 0 1 0 1 1 / / ( , ) i i i z z x iy x iy y x x y y i x y x y i i i z z re r e rr x iy x iy x x y x y e x iy z z x iy x x y y i y y x x y z z x y                                     Multiplication: Division:       1 2 1 2 2 2 1 2 2 1 1 2 1 2 2 2 2 / / i i i r z z re x r e e r y x x y                      6 Multiplication and division are easier in polar form! 1/ i i   Example :
  • 7. Complex Arithmetic and Algebra (cont.) 7  We can multiply and divide complex numbers. We cannot divide two-dimensional vectors. Important point: (We can, however, multiply two-dimensional vectors in two different ways, using the dot product and the cross product.)
  • 8. Complex Arithmetic and Algebra (cont.)         * * 2 2 * * i i z x iy z z z z r x y x iy x iy z z z r re re z z                 To see this : Conjugation: Magnitude : 8    y x r z r * z
  • 9. Euler’s Formula   2 3 0 2 3 0 2 4 3 5 0 1 2! 3! ! 1 2! 3! ! 1 ! 2! 4! 3! 5! cos sin n x n n z n n i n i x x x e x n x z x iy z z z e z n i e i n i e z                                                      Recall: Define extension to a complex variable ( ): (converges for all ) cos sin cos sin cos sin cos sin cos sin 2 2 i iz iz iz iz iz iz i e i e z i z e z i z e e e e z z i                       More generally, 9     cos cosh , sin sinh 2 2 2 z z z z z z e e e e e e iz z iz i i z i              Note: The variable  here is usually taken to be real, but it does not have to be. Leonhard Euler
  • 10. Application to Trigonometric Identities       2 2 2 2 2 2 cos2 sin 2 cos sin cos sin 2cos sin i i i e i e e i i                    Many trigonometric identities follow from a simple application of Euler's formula : On the other hand, Equatingreal andimaginary parts of t              1 2 1 2 1 2 2 2 1 2 1 2 1 1 2 2 1 2 1 2 1 2 1 cos2 cos sin sin 2 2cos sin cos sin cos sin cos sin cos cos sin sin sin cos cos i i i i e i e e e i i i                                             he two expressions yields identities: On the other hand, two       2 1 2 1 2 1 2 1 2 1 2 1 2 sin cos cos cos sin sin sin sin cos cos sin                   Equatingreal andimaginary parts yields: 10
  • 11. DeMoivre’s Theorem 11  2    2    x y z z             2 2 cos sin cos 2 sin 2 p p p p n n i n in n n i k i n kn n n z re r e r n i n n re r e r n kn i n kn k                                    (DeMoivre's Theorem) Note that for aninteger, the result is of how is measured ( anint ge e r) independent   cos sin p p n n r n i n z     Abraham de Moivre
  • 12. Roots of a Complex Number       2 2 1 1 1 1 2 2 cos sin , 0,1,2, 1 p p p k n n i i n k n n n n k k n n n n z re r e r i k n                                     roots 12 1 n w z        1 3 0: 8 2 cos sin 2 cos 30 sin 30 2 6 6 k i i i                                      3 2 1 2 i              1 3 1 3 3 , 2 2 1: 8 2 cos sin 2 cos 90 sin 90 2 , 6 3 6 3 4 4 2 : 8 2 cos sin 2 cos 210 sin 210 3 , 6 3 6 3 i k i i i i k i i i i                                                                                           2 2 6 3 2 1 3 1 3 2 2 8 8 2 2 cos sin , 0,1,2 6 3 6 3 k i i i i k k k i e e i k                                               E l xamp e:  In this case the results depend on how  is measured.
  • 13. Roots of a Complex Number (cont.)     1 3 2 2 2 1 1 1 1 3 , 8 2 , 3 p p p k n n k n n i i k i n i n n n n i i i i n n z re r e r e e z                                  "principal throot o branch" Note that the throot of can also be expressedin terms of the : th root of unity     1 1 2 2 2 2 1 cos sin , 0,1, , 1 k n n n i k n i k k e e i k n n n           f unity throot of unity where z x y 8i  u v w   1/3 1/3 8 w z i    Re Im 1 0   1 120   1 240   Cube root of unity (n = 3) 13 w u iv   Example (cont.)