Professor Walter W. Olson
Department of Mechanical, Industrial and Manufacturing Engineering
University of Toledo
Loop Transfer Function
-1
Real
Imaginary
Plane of the Open Loop
Transfer Function
B(0)
B(iw)
( )
B i
-1 is called the
critical point
Stable
Unstable
-B(iw)
Outline of Today’s Lecture
 Review
 Partial Fraction Expansion
 real distinct roots
 repeated roots
 complex conjugate roots
 Open Loop System
 Nyquist Plot
 Simple Nyquist Theorem
 Nyquist Gain Scaling
 Conditional Stability
 Full Nyquist Theorem
Partial Fraction Expansion
 When using Partial Fraction Expansion, our
objective is to turn the Transfer Function
into a sum of fractions where the denominators
are the factors of the denominator of the Transfer
Function:
Then we use the linear property of Laplace
Transforms and the relatively easy form to make
the Inverse Transform.
2
1 1
2
1 1
( ) ( 2 )
( )
( ) ( 2 )
m k
i i ni ni
i i
n q
r
i i ni ni
i i
K s z s s
G s
s s p s s
 w w
 w w
 
 
  

  
 
 
1 2 1
2 2
1 2 1 1 1
( )
( ) ( ) ( ) ( )
( ) ... ...
2 2
q
n
r
n n n q nq nq
B s
K A s A s A s B s
G s
s s p s p s p s s s s
 w w  w w
       
      
Case 1: Real and Distinct Roots
 
1
0 1 2
1 2
0 3 3
0
...
( )
( )
Put the transfer function in the form of
( ) ...
where the are called the residue at the pole
and determined by
( )
n
i
i
n
n
i i
s
G s
s s p
a a a a
G s
s s p s p s p
a p
a sG s a s p




    
  
  

 
       
3
1
2
1 1
2 2
( )
( ) ...
n
s p
s p
n n
s p s p
G s
a s p G s
a s p G s a s p G s


 
 
   
Case 1: Real and Distinct Roots
Example
  
  
         
     
0 1 2
0 1 2
2 2 2 2
0 1 2
0 1 2
1 2 1
0 1 2
1 2 2
0 0
2 4
( )
1 5
( )
1 5
2 4 1 5 5 1
6 8 6 5 5
1
0.6 0.75
6 5 6
5 3.6 0.15
5 8 1.6
1.6 0.75
( )
1
s s
G s
s s s
a a a
G s
s s s
s s a s s a s s a s s
s s a s s a s s a s s
a a a
a a a
a a a
a a a
a a
G s
s s
 

 
  
 
        
        
  

    
 

    
  
   
 
   

  

5
0.15
5
( ) 1.6 0.75 0.15
t t
s
g t e e
 

  
Case 2: Complex Conjugate
Roots
2 2
1
2
1 1 1
...
( )
... ( 2 )
We can either solve this using the method of matching coefficients
which is usually more difficult or by a method similar to that
previously used as follows:
2
q
i i i
i
G s
s s
s s
 w w
 w w


 
 

  
   
   
2
1 1 1 1
2
1 1 1 1
2 2
1 1 1 1 1 1 1 1
1 2
2 2 2 2
1 1 1 1 1 1 1 1
2
1 1 1 1 1 1
2
2 1 1 1 1 1
1 1
( )
then the term
2 1 1
proceeding as before
1
1
i i i
s
s
s s
A s a a
s s s s
a s G s
a s G s
 w w 
 w w 
 w w   w w 
 w w  w w   w w 
 w w 
 w w 
  
  
      
 
       
   
   
Case 3: Repeated Roots
 
 
1 1
1
1
2
2 2
3
3
...
( )
...( ) ...
Form the equation with the repeated terms expanded as
( ) ... ... ...
( ) ( )
( ) ( )
( )
( )
i
n
i
n n
n n
i i i
n
n i s p
n
n i
s p
n
n i
s p
n
G s
s p
a a a
G s
s p s p s p
a s p G s
d
a s p G s
ds
d
a s p G s
ds
d
a
ds










    
  
 
 
 
 
 
 
 
  
 
3
1
1 1
( )
...
( )
n
i
s p
n
n
i
n s p
s p G s
d
a s p G s
ds


 
 

 
 
 
 
Heaviside Expansion
 
 
 
 
1
1
2
Heaviside Expansion Formula: L
where are the distinct roots of ( )
15( 2)
Example: ( )
( 2 25)
Roots of the denominator are 0, 1 4.899, and
i
n
b t
i
i
i
i
A s A b
e
d
B s B b
ds
b n B s
s
G s
s s s
i


 
   

   
 
   
 


 
 

 
 
 
   
   
2 2 2
3
1
2
1
1 4.899 1 4.899
0
1 4.899
15. 73.485i 15. 73.485i
48.0
1 4.899
( 2 25) 2 2 3 4 25
15( 2)
L
3 4 25
30
( )
25
(
0 9.798i 48.00 9.798i
0.6 1.408
) 1. i
2
i
i
s t
i s s
i t i t
t
i
i
d
B s s s s s s s
ds
s
G s e
s s
g t e e e
g t e

 
   
 
 
       

 
 
 


 
 
  
 
  
 

   
1 4.899
0.6 1.408i
t i t
e
 
 

Loop Nomenclature
Reference
Input
R(s)
+-
Output
y(s)
Error
signal
E(s)
Open Loop
Signal
B(s)
Plant
G(s)
Sensor
H(s)
Prefilter
F(s)
Controller
C(s)
+-
Disturbance/Noise
The plant is that which is to be controlled with transfer function G(s)
The prefilter and the controller define the control laws of the system.
The open loop signal is the signal that results from the actions of the
prefilter, the controller, the plant and the sensor and has the transfer function
F(s)C(s)G(s)H(s)
The closed loop signal is the output of the system and has the transfer function
( ) ( ) ( )
1 ( ) ( ) ( )
F s C s G s
C s G s H s

Closed Loop System
++
Output
y(s)
Error
signal
E(s)
Open Loop
Signal
B(s)
Plant
P(s)
Controller
C(s)
Input
r(s)
   
   
 
 
 
 
 
 
 
 
   
       
           
The closed loop transfer function is
( )
( )
( ) 1
1
The characteristic polynomial is
( ) 1
For stability, the roots of ( ) m
p
c
c p c p
yr
p
c c p c p
c p
c p c p
n s
n s
d s d s n s n s
C s P s
y s
G s
n s
n s
r s C s P s d s d s n s n s
d s d s
s C s P s d s d s n s n s
s


   
 

   
ust have negative real parts
While we can check for stability, it does not give us design guidance
-1
Open Loop System
++
Output
y(s)
Error
signal
E(s)
Open Loop
Signal
B(s)
Plant
P(s)
Controller
C(s)
Input
r(s)
   
 
 
 
 
( )
The open loop transfer function is ( )
( )
p
c
c p
n s
n s
b s
B s C s P s
r s d s d s
  
Note: Your book uses L(s) rather than B(s)
To avoid confusion with the Laplace transform, I will use B(s)
Sensor
-1
If in the closed loop, the input r(s) were sinusoidal and if the signal were
to continue in the same form and magnitude after the signal were disconnected,
it would be necessary for
 
 
 
 
0
( ) 1
p
c
c p
n s
n s
B i
d s d s
w   
Open Loop System
Nyquist Plot Error
signal
E(s)
++
Output
y(s)
Open Loop
Signal
B(s)
Plant
P(s)
Controller
C(s)
Input
r(s)
Sensor
-1
 
 
 
 
0
( ) 1
p
c
c p
n s
n s
B i
d s d s
w   
-1
Real
Imaginary
Plane of the Open Loop
Transfer Function
B(0)
B(iw)
( )
B i
-1 is called the
critical point
B(-iw)
Simple Nyquist TheoremError
signal
E(s)
++
Output
y(s)
Open Loop
Signal
B(s)
Plant
P(s)
Controller
C(s)
Input
r(s)
Sensor
-1
Simple Nyquist Theorem:
For the loop transfer function, B(iw), if B(iw) has no poles in the right
hand side, expect for simple poles on the imaginary axis, then the
system is stable if there are no encirclements of the critical point -1.
-1
Real
Imaginary
Plane of the Open Loop
Transfer Function
B(0)
B(iw)
( )
B i
-1 is called the
critical point
Stable
Unstable
-B(iw)
Example
 Plot the Nyquist plot for  
1
( )
2 2
B s
s s s

 
 
 
 
4
2
2 2
1
( )
4
2 2
(0)
(1 ) 0.4 0.2
( 1 ) 0.4 0.2
(2 ) 0.1 0.05
( 2 ) 0.1 0.05
i
B i
i i i
B i
B i i
B i i
B i i
B i i
w
w
w
w w w
 
  

 
 
  
   
  
   
-1
Im
Re
Stable
Example
 Plot the Nyquist plot for  
10
( )
2 2
B s
s s s

 
 
 
 
4
2
20 20 10
10
( )
4
2 2
(0)
(1 ) 4 2
( 1 ) 4 2
(2 ) 1 0.5
( 2 ) 1 0.5
(4 ) 0.077 0.135
( 4 ) 0.077 135
i
B i
i i i
B i
B i i
B i i
B i i
B i i
B i i
B i i
w
w
w
w w w
 
  

 
 
  
   
  
   
  
  
-1
Im
Re
Unstable
Nyquist Gain Scaling
 The form of the Nyquist plot is scaled by the
system gain
 Show with Sisotool
 
( )
2 2
K
B s
s s s

 
Conditional Stabilty
 Whlie most system increase stability by
decreasing gain, some can be stabilized by
increasing gain
 Show with Sisotool
 
2
2
(0.25 0.12 1)
( )
1.69 1.09 1
K s s
B s
s s s
 

 
Full Nyquist Theorem
 Assume that the transfer function B(iw) with P
poles has been plotted as a Nyquist plot. Let N be
the number of clockwise encirclements of -1 by
B(iw) minus the counterclockwise encirclements
of -1 by B(iw)Then the closed loop system has
Z=N+P poles in the right half plane.
 Show with Sisotool
    
( 5 2 )( 5 2 )
( )
.5 2 .5 2 2 6 2 6
K s i s i
B s
s s i s i s i s i
   

       
Summary
 Open Loop System
 Nyquist Plot
 Simple Nyquist Theorem
 Nyquist Gain Scaling
 Conditional Stability
 Full Nyquist Theorem
Next Class: Stability Margins
-1
Im
Re
Unstable

More Related Content

PPTX
Lecture 23 loop transfer function
PDF
Clase 02-modelado-de-sistemas-de-control (1)
PPT
7-2.Nyquist Stability Criterion.ppt
PPT
Geohydrology ii (3)
PPT
1619494.ppt
PPTX
An introduction to impluse response.pptx
PPTX
State Space Realizations_new.pptx
PDF
alt klausur
Lecture 23 loop transfer function
Clase 02-modelado-de-sistemas-de-control (1)
7-2.Nyquist Stability Criterion.ppt
Geohydrology ii (3)
1619494.ppt
An introduction to impluse response.pptx
State Space Realizations_new.pptx
alt klausur

Similar to 17330361.ppt (20)

PPTX
LecturejsaudhF;HSFIJkfjknajks;bvuajvn 04.pptx
PPTX
State Equations Model Based On Modulo 2 Arithmetic And Its Applciation On Rec...
PPTX
State equations model based on modulo 2 arithmetic and its applciation on rec...
PPT
Block diagrams.ppt
PPT
chapter-2.ppt control system slide for students
PPT
2706264.ppt
PPTX
Time-Response Lecture
PPTX
Transfer Functions of Electrical Networks
PDF
SPSF04 - Euler and Runge-Kutta Methods
PPTX
fcs-0202.pptx
PPT
555328898-Unit-4-1-PPT-CS.ppt introduction
PPT
555328898-Unit-4-1-PPT-CS.ppt introduction
PDF
Positive and negative solutions of a boundary value problem for a fractional ...
PDF
Lecture7bewekwkewoenw weeojwnewnejwenw.pdf
PDF
Lecture -Earthquake Engineering (2).pdf
DOCX
Discrete control2
DOCX
Discrete control
PDF
Computer Controlled Systems (solutions manual). Astrom. 3rd edition 1997
PDF
PPT
frequency responce.ppt
LecturejsaudhF;HSFIJkfjknajks;bvuajvn 04.pptx
State Equations Model Based On Modulo 2 Arithmetic And Its Applciation On Rec...
State equations model based on modulo 2 arithmetic and its applciation on rec...
Block diagrams.ppt
chapter-2.ppt control system slide for students
2706264.ppt
Time-Response Lecture
Transfer Functions of Electrical Networks
SPSF04 - Euler and Runge-Kutta Methods
fcs-0202.pptx
555328898-Unit-4-1-PPT-CS.ppt introduction
555328898-Unit-4-1-PPT-CS.ppt introduction
Positive and negative solutions of a boundary value problem for a fractional ...
Lecture7bewekwkewoenw weeojwnewnejwenw.pdf
Lecture -Earthquake Engineering (2).pdf
Discrete control2
Discrete control
Computer Controlled Systems (solutions manual). Astrom. 3rd edition 1997
frequency responce.ppt
Ad

Recently uploaded (20)

PPTX
AUTOMOTIVE ENGINE MANAGEMENT (MECHATRONICS).pptx
PPTX
A Brief Introduction to IoT- Smart Objects: The "Things" in IoT
PDF
MLpara ingenieira CIVIL, meca Y AMBIENTAL
PPTX
Chemical Technological Processes, Feasibility Study and Chemical Process Indu...
PPTX
mechattonicsand iotwith sensor and actuator
PPTX
"Array and Linked List in Data Structures with Types, Operations, Implementat...
PDF
null (2) bgfbg bfgb bfgb fbfg bfbgf b.pdf
PDF
UEFA_Embodied_Carbon_Emissions_Football_Infrastructure.pdf
PDF
Computer System Architecture 3rd Edition-M Morris Mano.pdf
PDF
LOW POWER CLASS AB SI POWER AMPLIFIER FOR WIRELESS MEDICAL SENSOR NETWORK
PPTX
Sorting and Hashing in Data Structures with Algorithms, Techniques, Implement...
PPTX
tack Data Structure with Array and Linked List Implementation, Push and Pop O...
PPTX
Chapter 2 -Technology and Enginerring Materials + Composites.pptx
PPTX
CyberSecurity Mobile and Wireless Devices
PDF
Influence of Green Infrastructure on Residents’ Endorsement of the New Ecolog...
PPTX
Graph Data Structures with Types, Traversals, Connectivity, and Real-Life App...
PPTX
Software Engineering and software moduleing
PPTX
Module 8- Technological and Communication Skills.pptx
PPTX
wireless networks, mobile computing.pptx
PDF
Unit1 - AIML Chapter 1 concept and ethics
AUTOMOTIVE ENGINE MANAGEMENT (MECHATRONICS).pptx
A Brief Introduction to IoT- Smart Objects: The "Things" in IoT
MLpara ingenieira CIVIL, meca Y AMBIENTAL
Chemical Technological Processes, Feasibility Study and Chemical Process Indu...
mechattonicsand iotwith sensor and actuator
"Array and Linked List in Data Structures with Types, Operations, Implementat...
null (2) bgfbg bfgb bfgb fbfg bfbgf b.pdf
UEFA_Embodied_Carbon_Emissions_Football_Infrastructure.pdf
Computer System Architecture 3rd Edition-M Morris Mano.pdf
LOW POWER CLASS AB SI POWER AMPLIFIER FOR WIRELESS MEDICAL SENSOR NETWORK
Sorting and Hashing in Data Structures with Algorithms, Techniques, Implement...
tack Data Structure with Array and Linked List Implementation, Push and Pop O...
Chapter 2 -Technology and Enginerring Materials + Composites.pptx
CyberSecurity Mobile and Wireless Devices
Influence of Green Infrastructure on Residents’ Endorsement of the New Ecolog...
Graph Data Structures with Types, Traversals, Connectivity, and Real-Life App...
Software Engineering and software moduleing
Module 8- Technological and Communication Skills.pptx
wireless networks, mobile computing.pptx
Unit1 - AIML Chapter 1 concept and ethics
Ad

17330361.ppt

  • 1. Professor Walter W. Olson Department of Mechanical, Industrial and Manufacturing Engineering University of Toledo Loop Transfer Function -1 Real Imaginary Plane of the Open Loop Transfer Function B(0) B(iw) ( ) B i -1 is called the critical point Stable Unstable -B(iw)
  • 2. Outline of Today’s Lecture  Review  Partial Fraction Expansion  real distinct roots  repeated roots  complex conjugate roots  Open Loop System  Nyquist Plot  Simple Nyquist Theorem  Nyquist Gain Scaling  Conditional Stability  Full Nyquist Theorem
  • 3. Partial Fraction Expansion  When using Partial Fraction Expansion, our objective is to turn the Transfer Function into a sum of fractions where the denominators are the factors of the denominator of the Transfer Function: Then we use the linear property of Laplace Transforms and the relatively easy form to make the Inverse Transform. 2 1 1 2 1 1 ( ) ( 2 ) ( ) ( ) ( 2 ) m k i i ni ni i i n q r i i ni ni i i K s z s s G s s s p s s  w w  w w                1 2 1 2 2 1 2 1 1 1 ( ) ( ) ( ) ( ) ( ) ( ) ... ... 2 2 q n r n n n q nq nq B s K A s A s A s B s G s s s p s p s p s s s s  w w  w w               
  • 4. Case 1: Real and Distinct Roots   1 0 1 2 1 2 0 3 3 0 ... ( ) ( ) Put the transfer function in the form of ( ) ... where the are called the residue at the pole and determined by ( ) n i i n n i i s G s s s p a a a a G s s s p s p s p a p a sG s a s p                           3 1 2 1 1 2 2 ( ) ( ) ... n s p s p n n s p s p G s a s p G s a s p G s a s p G s          
  • 5. Case 1: Real and Distinct Roots Example                       0 1 2 0 1 2 2 2 2 2 0 1 2 0 1 2 1 2 1 0 1 2 1 2 2 0 0 2 4 ( ) 1 5 ( ) 1 5 2 4 1 5 5 1 6 8 6 5 5 1 0.6 0.75 6 5 6 5 3.6 0.15 5 8 1.6 1.6 0.75 ( ) 1 s s G s s s s a a a G s s s s s s a s s a s s a s s s s a s s a s s a s s a a a a a a a a a a a a a a G s s s                                                                5 0.15 5 ( ) 1.6 0.75 0.15 t t s g t e e      
  • 6. Case 2: Complex Conjugate Roots 2 2 1 2 1 1 1 ... ( ) ... ( 2 ) We can either solve this using the method of matching coefficients which is usually more difficult or by a method similar to that previously used as follows: 2 q i i i i G s s s s s  w w  w w                   2 1 1 1 1 2 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 ( ) then the term 2 1 1 proceeding as before 1 1 i i i s s s s A s a a s s s s a s G s a s G s  w w   w w   w w   w w   w w  w w   w w   w w   w w                                
  • 7. Case 3: Repeated Roots     1 1 1 1 2 2 2 3 3 ... ( ) ...( ) ... Form the equation with the repeated terms expanded as ( ) ... ... ... ( ) ( ) ( ) ( ) ( ) ( ) i n i n n n n i i i n n i s p n n i s p n n i s p n G s s p a a a G s s p s p s p a s p G s d a s p G s ds d a s p G s ds d a ds                                      3 1 1 1 ( ) ... ( ) n i s p n n i n s p s p G s d a s p G s ds               
  • 8. Heaviside Expansion         1 1 2 Heaviside Expansion Formula: L where are the distinct roots of ( ) 15( 2) Example: ( ) ( 2 25) Roots of the denominator are 0, 1 4.899, and i n b t i i i i A s A b e d B s B b ds b n B s s G s s s s i                                           2 2 2 3 1 2 1 1 4.899 1 4.899 0 1 4.899 15. 73.485i 15. 73.485i 48.0 1 4.899 ( 2 25) 2 2 3 4 25 15( 2) L 3 4 25 30 ( ) 25 ( 0 9.798i 48.00 9.798i 0.6 1.408 ) 1. i 2 i i s t i s s i t i t t i i d B s s s s s s s ds s G s e s s g t e e e g t e                                                1 4.899 0.6 1.408i t i t e     
  • 9. Loop Nomenclature Reference Input R(s) +- Output y(s) Error signal E(s) Open Loop Signal B(s) Plant G(s) Sensor H(s) Prefilter F(s) Controller C(s) +- Disturbance/Noise The plant is that which is to be controlled with transfer function G(s) The prefilter and the controller define the control laws of the system. The open loop signal is the signal that results from the actions of the prefilter, the controller, the plant and the sensor and has the transfer function F(s)C(s)G(s)H(s) The closed loop signal is the output of the system and has the transfer function ( ) ( ) ( ) 1 ( ) ( ) ( ) F s C s G s C s G s H s 
  • 10. Closed Loop System ++ Output y(s) Error signal E(s) Open Loop Signal B(s) Plant P(s) Controller C(s) Input r(s)                                                 The closed loop transfer function is ( ) ( ) ( ) 1 1 The characteristic polynomial is ( ) 1 For stability, the roots of ( ) m p c c p c p yr p c c p c p c p c p c p n s n s d s d s n s n s C s P s y s G s n s n s r s C s P s d s d s n s n s d s d s s C s P s d s d s n s n s s              ust have negative real parts While we can check for stability, it does not give us design guidance -1
  • 11. Open Loop System ++ Output y(s) Error signal E(s) Open Loop Signal B(s) Plant P(s) Controller C(s) Input r(s)             ( ) The open loop transfer function is ( ) ( ) p c c p n s n s b s B s C s P s r s d s d s    Note: Your book uses L(s) rather than B(s) To avoid confusion with the Laplace transform, I will use B(s) Sensor -1 If in the closed loop, the input r(s) were sinusoidal and if the signal were to continue in the same form and magnitude after the signal were disconnected, it would be necessary for         0 ( ) 1 p c c p n s n s B i d s d s w   
  • 12. Open Loop System Nyquist Plot Error signal E(s) ++ Output y(s) Open Loop Signal B(s) Plant P(s) Controller C(s) Input r(s) Sensor -1         0 ( ) 1 p c c p n s n s B i d s d s w    -1 Real Imaginary Plane of the Open Loop Transfer Function B(0) B(iw) ( ) B i -1 is called the critical point B(-iw)
  • 13. Simple Nyquist TheoremError signal E(s) ++ Output y(s) Open Loop Signal B(s) Plant P(s) Controller C(s) Input r(s) Sensor -1 Simple Nyquist Theorem: For the loop transfer function, B(iw), if B(iw) has no poles in the right hand side, expect for simple poles on the imaginary axis, then the system is stable if there are no encirclements of the critical point -1. -1 Real Imaginary Plane of the Open Loop Transfer Function B(0) B(iw) ( ) B i -1 is called the critical point Stable Unstable -B(iw)
  • 14. Example  Plot the Nyquist plot for   1 ( ) 2 2 B s s s s          4 2 2 2 1 ( ) 4 2 2 (0) (1 ) 0.4 0.2 ( 1 ) 0.4 0.2 (2 ) 0.1 0.05 ( 2 ) 0.1 0.05 i B i i i i B i B i i B i i B i i B i i w w w w w w                         -1 Im Re Stable
  • 15. Example  Plot the Nyquist plot for   10 ( ) 2 2 B s s s s          4 2 20 20 10 10 ( ) 4 2 2 (0) (1 ) 4 2 ( 1 ) 4 2 (2 ) 1 0.5 ( 2 ) 1 0.5 (4 ) 0.077 0.135 ( 4 ) 0.077 135 i B i i i i B i B i i B i i B i i B i i B i i B i i w w w w w w                               -1 Im Re Unstable
  • 16. Nyquist Gain Scaling  The form of the Nyquist plot is scaled by the system gain  Show with Sisotool   ( ) 2 2 K B s s s s   
  • 17. Conditional Stabilty  Whlie most system increase stability by decreasing gain, some can be stabilized by increasing gain  Show with Sisotool   2 2 (0.25 0.12 1) ( ) 1.69 1.09 1 K s s B s s s s     
  • 18. Full Nyquist Theorem  Assume that the transfer function B(iw) with P poles has been plotted as a Nyquist plot. Let N be the number of clockwise encirclements of -1 by B(iw) minus the counterclockwise encirclements of -1 by B(iw)Then the closed loop system has Z=N+P poles in the right half plane.  Show with Sisotool      ( 5 2 )( 5 2 ) ( ) .5 2 .5 2 2 6 2 6 K s i s i B s s s i s i s i s i             
  • 19. Summary  Open Loop System  Nyquist Plot  Simple Nyquist Theorem  Nyquist Gain Scaling  Conditional Stability  Full Nyquist Theorem Next Class: Stability Margins -1 Im Re Unstable