SlideShare a Scribd company logo
Models Matter
Choice and use of modern stormwater 
models
Get out your superglue!
Image: Enviroscape® classroom kit
A topic only an engineer could love
Getting what you need from 
stormwater studies
Are your consultants not answering the questions that 
matter to you?
Are they answering questions you didn’t ask? 
Are they ensuring the long‐term function of your 
project?
Are they presenting the material in a form you can 
understand?
Are they considering the environmental impacts?
What do you want to know?
Figure: USGS
Common drainage study objectives
Develop my property without causing flooding (and 
lawsuits) downstream
Size my new culvert to ensure that it doesn’t overtop
Guide my city’s development to ensure that our streams 
are not impaired
Set our new water intake to ensure that it doesn’t go dry
Restore my city’s stream to provide good fishing habitat
Do the bare minimum to meet those @#$!@# regulations
Why model?
To keep brilliant consultants in jobs
To meet your objectives 
How does a model work?
Inputs
What causes the process? 
Responses
How does the system respond?
Objectives
What important effects occur?
Error
How reliable are my results?
Inputs
Most typical is rainfall
Baseflow/dry weather flow
Snowmelt
Existing watershed condition
Temperature
Humidity
Wind
Sun
Responses
Infiltration over time
Groundwater recharge
Runoff over time
Flowrate
Flow depth
Flow velocity
Objectives
Maximum values
What will be the peak flood level for a given storm?
Minimum values
Will I have any flow in my stream during an August drought?
Total values
How much rain will infiltrate the soil in a given year?
Average values
Number of exceedances
How many times is my building likely to flood in 100 years?
Number of deficits
How many times is my pond likely to dry up in 100 years?
Deficit Level
Exceedance Level
Time
Flooded
Time
Flooded
Time w/out
water
Example River Level Objectives
Error
How closely does your 
model mirror reality? 
Error Analysis
How do your assumptions 
affect your results?
Sensitivity Analysis
Can you optimize your 
assumptions to reduce 
error?
Calibration
Define your objectives
Meet with your consultant
On site if possible
Don’t let him leave until he completely understands 
your objectives
Define how you will measure success
Be clear and concise
Write objectives into the contract
His recommended modelling plan should address all 
of the aspects that follow
What data currently exists?
Surveying, constructing, testing, and calibrating a model 
for a large watershed takes a lot of time and money
Is the existing dataset detailed enough?
Is the existing dataset reliable?
Does the existing data require significant re‐formatting?
Often there are existing studies that can provide a 
starting point
FEMA
Corps of Engineers
City engineer
Where do you want to focus?
Be clear about where the critical 
locations are
Non‐critical locations can be 
modelled more roughly
Critical locations will require 
more detail 
Take care in applying existing 
models: they may have been 
made for a different purpose
Under what range of conditions?
100‐yr storm
Has a 1% chance of occurring in a given year
You may have three 100‐yr storms in a year
Event modelling – hypothetical storms
A 100‐yr storm doesn’t necessarily produce a 100‐yr 
runoff; soil moisture, storm duration, rainfall 
distribution and several other factors come into play
Long‐term rainfall/runoff conditions
Continuous modelling – calibrates model with recorded 
data and tests future case against the long‐term rainfall
What exactly is a 25‐yr storm?
You may encounter a 25‐year storm two years in a row
More accurate to say “4%” chance storm
A rainfall distribution is required to understand how the 
total rainfall depth falls over time
How certain do you need to be?
Figure: Cooperative Research
Center for Catchment Hydrology
75%?
99%?
Within 0.5 feet elevation?
Within 100 cubic feet per second?
Which parameter will be used for 
calibration and error analysis?
Flow?
Water elevation?
Perform sensitivity analysis and 
calibration to increase confidence
Data is hard to find for small 
watersheds
Can another similar watershed be 
used for calibration?
Sensitivity Analysis to Increase Confidence
Change uncertain model parameters and examine the 
effects on the results
Infiltration parameters are usually a good candidate
Keep parameters within a reasonable range
Typically done one at a time
Look at effects over a range of conditions
Results are “sensitive” to a parameter when a change in 
the parameter makes a large difference in the result
Measured parameters are typically not changed
Pipe diameter
Channel length
Sensitivity Example
100 % Parameter Change
%ResultChange
0
100
-100
-100
= mild positive sensitivity
= negligible sensitivity
= strong negative sensitivity
Calibration to Increase Confidence
Needed especially for physical models
Compare modelled results with measured results and 
adjust for better fit using what was learned from 
sensitivity analysis
Degree of fit can be measured using several statistical 
techniques
Formal calibration can be done with recorded rainfall 
and flow time series
Informal calibration can be performed with measured 
total rainfall and high water marks
Figure: William James, Computational Hydraulics International
Calibration Example
What future scenarios?
After construction of a 1.5 acre restaurant site
At full build‐out per the city 20‐year plan
With our 75‐year old culvert collapsed
What expertise is available?
Some models require significantly more expertise to 
operate than others
Does your staff or consultant:
Have a thorough understanding of the processes 
involved in your watershed?
Have a solid foundation in the model being employed 
and the algorithms driving it?
Have the community relations skills to present your 
project to the public?
Have the availability to perform the work?
What is your schedule and budget?
Consider the cost of making a wrong decision
A perfect model a year late is useless
Do you need a model?
Long term gauge data is preferred, but doesn’t exist many places
Image: USACE EM 1110-2-1415
OK: you have defined objectives
you know you need a model
Now what?
Model Selection and Proper Application
Hydrology
Hydrology: the science dealing with the occurrence, 
circulation, distribution, and properties of the waters of the 
earth and its atmosphere
Many hydrologic parameters are hard to measure
= part of a simple drainage study
Modelling other parts of the 
water cycle helps us to 
understand the long‐term 
environmental impacts of land 
use decisions 
Hydrology
Hydraulics: the science dealing with the laws governing water or other 
liquids in motion and their applications in engineering; practical or 
applied hydrodynamics
Hydraulic parameters are typically easier to measure
Hydraulics
Image: Tarleton University Hydraulics Lab
Model selection criteria
Ability to explain past observations
Can be improved through calibration 
Ability to predict future observations 
Cost of creation and use
Especially for models that will be maintained into the future
Robustness
A robust model will perform well under a wide range of 
conditions and will remain stable under reasonable conditions
Simplicity
Models with the fewest number of parameters are usually best 
for a given error level
Model Structure
Figure: Cooperative Research
Center for Catchment Hydrology
Empirical‐based on statistical analysis of other watersheds
Conceptual‐based on a conceptual understanding of watershed 
processes
Physical‐based on physical processes that can be tied directly to 
measured characteristics
Empirical Hydrologic Models
Do not attempt to explain the driving 
processes, they simply transform an 
input into a result based on statistical 
analysis of previous results
Can provide reliable results if used 
within the constraints of the original 
study:
Studies typically provide bounds of 
applicability based on factors like 
location, rainfall distribution, or land 
use
Robust and simple, but high error
Empirical Hydrologic Models: 
Regional Regression
Table and Figure: USGS Water Resources Investigation Report 03-4176
Peak flows only
Be sure to choose the right region
Usually limited by drainage area
Note the prediction error
Empirical Hydrologic Models: 
Rational Method
Table: NOAA Atlas 14 for University of Tennessee
Knoxville Monitoring Station
Q=CiA
Q=flow (ac‐in/hr≈cfs)
i = rainfall intensity for time 
of concentration (in/hr)
A = area (acres)
Peak flows only
Best for small urban watersheds
Can lead to paradoxical results
Rational Method Example
Rational Method Example
Site is 6 acres
2 acres grass (C = 0.12) that flow onto:
4 acres paved (C = 0.95)
Overall C = 0.67
Time of Concentration (Tc)
Grass sheetflow Tc = 8 mins
Paved shallow concentrated Tc = 2 min
Total Tc = 10 mins
Corresponding intensity = 6.8”/hr for 100‐yr storm
Q = CiA = 0.67*6.8*6 = 27.5 cfs
Figure from Andy Reese, AMEC
Rational Method Quandary
Site is 6 acres
2 acres grass (C = 0.12) that flow onto:
4 acres paved (C = 0.95)
Only consider paved area
Tc
Paved shallow concentrated Tc = 2 min (use 5‐min intensity)
Corresponding intensity = 8.5”/hr for 100‐yr storm
Q = CiA = 0.95*8.5*4 = 32.3 cfs
Why the flow increase?
Tough to determine C for complex watersheds
Many communities put a cap on Rational Method area
Figure from Andy Reese, AMEC
Conceptual Hydrologic Models
Explain driving processes like infiltration and runoff 
to some extent
Several inputs may be lumped into non‐measurable 
factors that replicate processes like infiltration
Many of the processes are still based on regression 
equations
Conceptual Hydrologic Models: SCS
More sophisticated than the Rational method
Considers:
Rainfall distribution
Initial rainfall losses
Land use (CN) – not a directly measurable parameter
Time of concentration (Tc)
Provides peak flows as well as:
Total infiltration and runoff volumes
Outflow hydrographs
However, several aspects of the model are still based 
on regression analysis and don’t explain the 
underlying processes.
SCS Method Example
Physical Hydrologic Models
Model the actual physical processes that drive the 
water cycle
Have large data requirements
Should be calibrated to some extent
Examples
SWMM
InfoWorks
Mike SHE
Physical Hydrologic Models: SWMM
Has hydrologic, hydraulic and water quality modules
Allows for choice of several physical hydrologic 
methods
SWMM Examples
Spatial and Time Scales
Level of detail should be based on your 
objectives:
You care about 2 acre watersheds and 
pipe flow for your new subdivision
You don’t care about such fine detail for 
the Mississippi River‐different processes 
are important
Lumped vs. distributed models
Lumped:
Basin is divided into subbasins
The characteristics of each 
subbasin are represented by a 
weighted average
Distributed:
Watershed characteristics are 
determined at each location
Large amounts of data required
Most data is satellite derived
Long run times
Necessity of Fieldwork
Design Event Models
Many design studies are driven using a single storm 
event
The chosen event is often chosen based on a regulated 
design storm with a specified probability of occurrence 
(e.g. 2% probability storm)
Remember: a 2% probability storm does not mean a 2% 
probability runoff
What happens between storms?
What about the regional water balance?
What about water quality?
Soil moisture conditions at the start of the storm must 
be assumed
Continuous Stormwater Models
Are calibrated using a long‐term historical dataset
Rather than run a hypothetical 2% probability design 
storm, run 50 years of data and perform a flood 
frequency analysis on the output
Low flow conditions can be examined for water 
quality
Land use impacts on water supply can be examined 
for drought periods
The impact of soil moisture on runoff can be 
realistically considered
Hydraulic Governing Equations
The St. Venant equations are used to model flow
Continuity
Momentum
Hydrologic models: continuity only
Hydraulic routing models: continuity and some form of 
momentum
Some situations can be approximated well with simplifications
Some situations require more exacting analysis
Flood Routing Methods
Kinematic Wave
Gravity balances friction
Ignores tailwater
Flow is uniform
Hydrograph is merely translated
Only for steep, well defined channels
Only for slowly rising floodwaters
Can use long time steps
Diffusion Wave
Adds attenuation
Allows for downstream boundary condition
Allows for moderately rising floodwaters
Dynamic Wave
Allows for convective and local acceleration
Handles looped networks
Requires short time steps
Routing Method Choice
Overall Complexity
“Things should be made as simple as possible, but not any 
simpler” ‐Albert Einstein
Modelling Costs
Modelling Error
Modelling Value
Model Complexity
Optimum Model Complexity
ComplexSimple
Making the most of your 
modelling investment
So far, you have:
Defined your study objectives
Chosen a model that can analyze for your objectives
Set up the model to take best advantage of the available data
Run the model
Performed sensitivity and/or error and calibration analysis to 
give an idea of the certainty your model can provide
Now, try to get as much useful information as possible 
from the model you have worked so hard on
Water Quality
Expand your SWMM hydrology 
and hydraulics model with water 
quality parameters to account for 
pollutants such as sediment
Model contaminant breakdown 
using models like HSPF
Use your long‐term continuous 
model to:
Examine what happens to 
pollutants during low flows
Outlet Protection
Photo: Mary Halley
A random pile of gravel 
does not make for good 
outlet protection
Modelled outlet velocity 
and tailwater conditions 
can be used to design 
proper outlet protection 
given the local soils
Culvert Flushing
Photo: Greg Wilson
Use model to check that 
culvert flow velocities are 
high enough (>2.5 ft/s) to 
flush culvert when flowing 
partially full
Sediment traps and low‐
flow barrels can be used to 
ensure flushing
Low Flow Channels
Typical stream crossing: improperly 
sized culvert
New properly sized and 
positioned culvert with 
additional bankfull culvert to 
allow stream to stay 
connected to its floodplain at 
times of bankfull and beyond 
bankfull flow
Streambank Erosion
Photo: Mary Halley
Use model to check that 
natural streams will be 
kept in equilibrium (e.g. no 
net erosion or deposition)
Requires knowledge of soils
Shear stress method
Table method
Geomorphologic method
Stream Erosion vs. Deposition
Debris Blockage
Photo: Lee Gentry
Assume that a percentage 
of any culvert will be 
blocked by debris
Check for flooding effects
Inlet Capacity
Simply sizing a pipe to 
carry flow is not enough
Inlets are more often than 
not the limiting factor
FHWA publication HY‐22
FHWA or other curves can 
be used in a dual‐drainage 
model to correctly model 
overland flow
Design Information (Input) MINOR MAJOR
Type of Inlet Type =
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow') aLOCAL = 1.0 1.0 inches
Total Number of Units in the Inlet (Grate or Curb Opening) No = 1 1
Length of a Single Unit Inlet (Grate or Curb Opening) Lo = 6.00 6.00 ft
Width of a Unit Grate (cannot be greater than W from Q-Allow) Wo = N/A N/A ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5) Cf-G = N/A N/A
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) Cf-C = 0.10 0.10
Denver No. 14 Curb Opening
H-Vert
H-Curb
W
Lo (C)
Lo (G)
Wo
WP
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Q for 1/2 Street (cfs)
QIntercepted&Bypassed(cfs),FlowSpreadT&T-Crown(ft),FlowDepth(inches)
QIntercepted(cfs) QBypassed(cfs) SpreadT (ft),Limited
byT-CROWN
SpreadT (ft),Not Limitedby
T-CROWN
FlowDepthd(inches)
Gutter Geometry (Enter data in the blue cells)
Maximum Allowable Width for Spread Behind Curb TBACK = 5.0 ft
Side Slope Behind Curb (leave blank for no conveyance credit behind curb) SBACK = 0.1000 ft. vert. / ft. horiz
Manning's Roughness Behind Curb nBACK = 0.1000
Height of Curb at Gutter Flow Line HCURB = 6.00 inches
Distance from Curb Face to Street Crown TCROWN = 13.0 ft
Gutter Depression a = 1.64 inches
Gutter Width W = 1.50 ft
Street Transverse Slope SX = 0.0200 ft. vert. / ft. horiz
Street Longitudinal Slope - Enter 0 for sump condition SO = 0.0300 ft. vert. / ft. horiz
Manning's Roughness for Street Section nSTREET = 0.0150
Minor Storm Major Storm
Max. Allowable Water Spread for Minor & Major Storm TMAX = 5.0 10.0 ft
Max. Allowable Depth at Gutter Flow Line for Minor & Major Storm dMAX = inches
Allow Flow Depth at Street Crown (leave blank for no) X = yes
H
y
d xS
S wa
S treet
C row n
W
T , T .
Tx
Q xwQ
T .C R O W N
C U R B
SBA C K
T .B AC K
M AX
Minor Storm Major Storm
Max. Allowable Gutter Capacity Based on Minimum of QT or Qd Qallow = 1.5 5.5 cfs
Inlet Capacity
Modelling Concepts

More Related Content

PPTX
Hydrological modelling
PPTX
Hec ras flood modeling little river newburyport
PPTX
Seminar on Hydrological modelling
PDF
Hydrological modelling i5
PPTX
Hec ras
PPT
Estimation of storm sewage
PPTX
Flood forecasting presentation final
PPT
Hydrology and hydraulics for design design
Hydrological modelling
Hec ras flood modeling little river newburyport
Seminar on Hydrological modelling
Hydrological modelling i5
Hec ras
Estimation of storm sewage
Flood forecasting presentation final
Hydrology and hydraulics for design design

What's hot (20)

PDF
sewers and sewer netwrok - design construction and maintenance
PPT
Types of flow in open channel
PPTX
Groundwater Contamination and prevention
PPT
Flood estimation
PPTX
Sources of water supply
PPTX
Infiltration equations and index
PDF
Waste water estimation
PPTX
Sewer Design
PPTX
Class lecture on Hydrology by Rabindra Ranjan saha Lecture 13
PDF
DIVERSION HEAD WORK
PPSX
Flood Mapping via HEC-RAS Model and ArcGIS
PDF
river training work
PDF
PPTX
Reservoir Planning
PPTX
Principles of groundwater flow
PPTX
Methods of flood control
PPTX
Introduction, hydrologic cycle, climate and water m1
PPTX
Unsteady radial flow in a confined aquifer Nonequilibrium well pumping equation
PDF
Rainfall-Runoff Modelling
PPTX
Rainwater harvesting (civil engineering seminar)
sewers and sewer netwrok - design construction and maintenance
Types of flow in open channel
Groundwater Contamination and prevention
Flood estimation
Sources of water supply
Infiltration equations and index
Waste water estimation
Sewer Design
Class lecture on Hydrology by Rabindra Ranjan saha Lecture 13
DIVERSION HEAD WORK
Flood Mapping via HEC-RAS Model and ArcGIS
river training work
Reservoir Planning
Principles of groundwater flow
Methods of flood control
Introduction, hydrologic cycle, climate and water m1
Unsteady radial flow in a confined aquifer Nonequilibrium well pumping equation
Rainfall-Runoff Modelling
Rainwater harvesting (civil engineering seminar)
Ad

Viewers also liked (20)

PPTX
RAINFALL RUNOFF MODELLING USING HEC-HMS
PDF
Rainfall Runoff Modelling on the Lower Tapi Basin using HEC-HMS
PDF
Which is the best model ?
PDF
Lecture3
PDF
Concurrent session 7 hec rts
PPT
Lecture4(hydro)
PPTX
Technical
PPTX
Regression analysis
PDF
Surface Soil Moisture & Groundwater Monitoring, Estimations, Variations, & Re...
PDF
11.rainfall runoff modelling of a watershed
PDF
Mandal
PPTX
GIS file types
PPTX
Climate change impact assessment on hydrology on river basins
PPTX
APPLICATIONS OF ARC SWAT MODEL FOR HYDROLOGICAL MODELLING
PPTX
AS Level Physical Geography - Hydrology and Fluvial Geomorphology
PPTX
Mass and Flow duration curves
PPT
PPTX
Climate change and water resources
RAINFALL RUNOFF MODELLING USING HEC-HMS
Rainfall Runoff Modelling on the Lower Tapi Basin using HEC-HMS
Which is the best model ?
Lecture3
Concurrent session 7 hec rts
Lecture4(hydro)
Technical
Regression analysis
Surface Soil Moisture & Groundwater Monitoring, Estimations, Variations, & Re...
11.rainfall runoff modelling of a watershed
Mandal
GIS file types
Climate change impact assessment on hydrology on river basins
APPLICATIONS OF ARC SWAT MODEL FOR HYDROLOGICAL MODELLING
AS Level Physical Geography - Hydrology and Fluvial Geomorphology
Mass and Flow duration curves
Climate change and water resources
Ad

Similar to Modelling Concepts (20)

PPT
Plant Asia Presentation.
PDF
Developing an Ethically-Aware Design Character through Problem Framing
PPT
Webquest Template0
PPT
Bundledarrows190 bit.ly/stanfordstartupscamp307
PPTX
Kastens IAI ppt for 2016 MD meeting
PPTX
Planning By Unit
PPT
C3Problems and Brainstorming.ppt
PPTX
Final_Submission_Template 2024 1(2).pptx
PDF
UXWeek 2015 - Designing for Behavior Change
PPT
Jisc e assess-mar_12
PPTX
Pencukuran daerah operasi.pptx
PDF
Design and Engineering: Module-2 Notes
PPTX
Introduction to Green Practices and a Quick Assessment
PPTX
Introduction to green practices and a quick assessment
PPT
Global Warming Webquest
DOCX
Design Engineering-1 Report
PDF
Lecture4EngSocExp.ppt (1).pdf
PPT
Change Is Good (AxureWorld)
Plant Asia Presentation.
Developing an Ethically-Aware Design Character through Problem Framing
Webquest Template0
Bundledarrows190 bit.ly/stanfordstartupscamp307
Kastens IAI ppt for 2016 MD meeting
Planning By Unit
C3Problems and Brainstorming.ppt
Final_Submission_Template 2024 1(2).pptx
UXWeek 2015 - Designing for Behavior Change
Jisc e assess-mar_12
Pencukuran daerah operasi.pptx
Design and Engineering: Module-2 Notes
Introduction to Green Practices and a Quick Assessment
Introduction to green practices and a quick assessment
Global Warming Webquest
Design Engineering-1 Report
Lecture4EngSocExp.ppt (1).pdf
Change Is Good (AxureWorld)

Recently uploaded (20)

PDF
NewMind AI Weekly Chronicles - August'25 Week I
PPT
“AI and Expert System Decision Support & Business Intelligence Systems”
PDF
Network Security Unit 5.pdf for BCA BBA.
PDF
Mobile App Security Testing_ A Comprehensive Guide.pdf
PDF
Advanced methodologies resolving dimensionality complications for autism neur...
PPTX
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
PDF
Encapsulation theory and applications.pdf
PPTX
Spectroscopy.pptx food analysis technology
PPTX
Cloud computing and distributed systems.
PDF
Spectral efficient network and resource selection model in 5G networks
PDF
Review of recent advances in non-invasive hemoglobin estimation
PDF
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
PPT
Teaching material agriculture food technology
PDF
Empathic Computing: Creating Shared Understanding
PDF
Diabetes mellitus diagnosis method based random forest with bat algorithm
PDF
Machine learning based COVID-19 study performance prediction
PDF
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
PDF
Agricultural_Statistics_at_a_Glance_2022_0.pdf
DOCX
The AUB Centre for AI in Media Proposal.docx
PPTX
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
NewMind AI Weekly Chronicles - August'25 Week I
“AI and Expert System Decision Support & Business Intelligence Systems”
Network Security Unit 5.pdf for BCA BBA.
Mobile App Security Testing_ A Comprehensive Guide.pdf
Advanced methodologies resolving dimensionality complications for autism neur...
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
Encapsulation theory and applications.pdf
Spectroscopy.pptx food analysis technology
Cloud computing and distributed systems.
Spectral efficient network and resource selection model in 5G networks
Review of recent advances in non-invasive hemoglobin estimation
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
Teaching material agriculture food technology
Empathic Computing: Creating Shared Understanding
Diabetes mellitus diagnosis method based random forest with bat algorithm
Machine learning based COVID-19 study performance prediction
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
Agricultural_Statistics_at_a_Glance_2022_0.pdf
The AUB Centre for AI in Media Proposal.docx
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...

Modelling Concepts