SlideShare a Scribd company logo
International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064
Volume 1 Issue 2, November 2012
www.ijsr.net
Parallel Generators of Pseudo-random Numbers
with Control of Calculation Errors
S. Dichenko1
, O. Finko2
Kuban State University of Technology.
Moskowskaya St., 2, Krasnodar 350072, Russia
1
dichenko.sa@yandex.ru,
2
ofinko@yandex.ru
Abstract: Algorithms of parallel realization of classical "congruent" methods of generation of pseudo-random numbers are discussed.
Algebraic (equational) and matrix interpretations of ways of realization of algorithms are presented. In order to achieve high level of
performance of modern and perspective technical tools of cryptographic protection of data, as well as to provide contemporary stochastic
methods of modeling, it is necessary to realize existing "congruent" methods in parallel. In developing solutions for the problems of
high level of complexity, such as cryptographic protection of data, ensuring high levels of security of functioning in real time is of out-
most importance. In this article the means of ensuring of functional diagnosis of the tools for pseudo-random numbers generation by
means of application of classical methods of superfluous arithmetic coding (module control) are briefly discussed.
Keywords: Pseudo-random numbers, congruent method, cryptography, fault diagnosis and tolerance in cryptography.
1. Introduction
Pseudo-random number (PRN) generators have important
applied meaning for the implementation of most crypto-
graphic algorithms and key material generation systems [1] –
[6]. Stricter requirements for the encryption speed and in-
creasing amount of data which needs to be protected cause
the necessity to construct parallel algorithms of PRN genera-
tion, what should be supported by providing the required
level of reliability of their operation [7], [8].
The purpose of the article is constructing parallel algo-
rithms of PRN generation with control of calculation errors
based on the congruent method.
2. Varieties of the congruent method
Varieties of the congruent method, in particular, are ex-
pressed by formulas (1) – (4):
,1 mnn bxx  (1)
,1 mnn cbxx  (2)
,1
m
n
d
n cxbx  (3)
,1211
21
m
n
d
n
d
n cxbxbx   (4)
where m – module, b – multiple, mb 0 ; c – increment,
mc 0 ; nx – the initial value, mxn 0 ; m
 – smal-
lest non-negative residue of number  module m .
In accordance with the purpose, we pose a problem to
construct parallel algorithms of PRN generation with control
of calculation errors. Algorithms of PRN generation are
shown as algebraic and matrix formulas.
3. Development of parallel algorithms
3.1 Algebraic method
Formula (1) can take the following series of algebraic trans-
formations:


















































,
,
,
,
1
3
2
2
23
2
1
12
1
m
n
k
mknkn
m
n
mn
nmnn
m
n
mn
nmnn
mnn
xbbxx
xb
x
xbbbxx
xb
x
bxbbxx
bxx

with ,2,1k or we have:













,
,
,
22
11
mnkkn
mnn
mnn
xx
xx
xx




(5)
where
m
i
i b , ki ,,2,1  .
For (2) it is possible to get:
 
 













































,1
,1
,1
,
1
1
1
23
23
2
1
12
1
m
k
j
j
n
k
mknkn
m
nmnn
m
n
mn
nmnn
mnn
bcxbcbxx
bbcxbcbxx
bcxbc
x
cbxbcbxx
cbxx


with ,3,2k or we have:













,
,
,
222
111
mknkkn
mnn
mnn
xx
xx
xx




(6)
20
International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064
Volume 1 Issue 2, November 2012
www.ijsr.net
where ;1,,
1
1
11
m
k
j
jimm
i
i ccb








 


 
For (3) it is possible to get:
 
 
































,1
,1
,1
,
1
1
1
23
23
2
12
1
m
k
j
j
n
k
m
kn
d
kn
m
dd
n
d
m
n
d
n
m
d
n
d
m
n
d
n
m
n
d
n
bcxbcxbx
bbcxbcxbx
bcxbcxbx
cxbx

with ,3,2k or we have:













,
,
,
222
111
mknkkn
mnn
mnn
xx
xx
xx




(7)
where ;1,,
1
1
11
m
k
j
jimm
di
i ccb








 


 
.,,2,1 ki 
For (4) it is possible to get:













,
,
,
1
21222
11111
mknknkkn
mnnn
mnnn
xxx
xxx
xxx




(8)
where ;1
2
12
m
  miii 2111    ,
when ,4,3i ;
mii 11   , when ,3,2i ;
c1 ;   miii c 11    , when ,3,2i .
3.2 Examples
Let’s have 4310 x , 756b , 2047m .
Find 321 ,, xxx using (5):
,363431756 204701  m
bxx
,130431756
2047
2
0
2
2 
m
xbx
24431756
2047
3
0
3
3 
m
xbx .
Let’shave 4120 x , 531b , 711c , 4093m .
Find 4321 ,,, xxxx using (6):
,2554711412531 409301  m
cbxx
 
  ,21021531711412531
1
4093
2
10
2
2


m
cxbx 
  ,35771531531711412531
1
4093
23
2
1
0
3
3









 

m
j
jcxbx 
  .9461531531531711412531
1
4093
234
3
1
0
4
4









 

m
j
jcxbx 
3.3 Matrix method
Let’s present the considered algorithms of PRN generation in
matrix form.
For (1) it is possible to get:
,2
1
m
n
k
mn
x
x





















BX
(9)
where
m
i
i b ; .,,2,1 ki 
For (2) it is possible to get:
,2
1
2
1
mk
n
k
mn
x
x






































GBX
(10)
where
.,,2,1;1,,
1
1
11 kiccb
m
k
j
jimm
i
i 







 


 
For (3) it is possible to get:
,2
1
2
1
mk
n
k
mn
x
x






































GBX
where ;1,,
1
1
11
m
k
j
jimm
di
i ccb 







 


 
ki ,,2,1  .
For (4) it is possible to get:
,
2
1
1
2
1
2
1
1
mk
n
k
n
k
mnn
xx
xx


























































GBAX
where ;1
2
12
m
  miii 2111    ,
when ,4,3i ;
mkk 11   , when ,3,2k ;
c1 ;   mkkk c 11    , when ,3,2k .
3.4 Examples
Let’s have 431nx , 756b , 2047m .
Find 321 ,, xxx using (9):
21
International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064
Volume 1 Issue 2, November 2012
www.ijsr.net
.
24
130
363
431
756
756
756
2047
3
2





















 mnxBX
Let’shave 412nx , 531b , 711c , 4093m .
Find 4321 ,,, xxxx using (10):
 
 
 
.
946
3577
2102
2554
1531531531711
1531531711
1531711
711
412
531
531
531
531
23
2
4
3
2

















































m
mnx GBX
4. Control of calculation errors
Let’s use ,qmM  as a composite module in calculating
any of the obtained systems of expressions (5) – (8), where
mq  module introduced for the implementation of control
of calculation errors.
Then each of the expressions (5) – (8) can be rewritten as
a system of expressions on module M , for example (7):

















,
,
,
222
111
M
knkkn
M
nn
M
nn
xx
xx
xx




(11)
where ;1,,
1
1
11
M
k
j
jiMM
di
i ccb 







 






ki ,,1  .
Control digits are calculated by the system:


















,
,
,
222
111
q
knkkn
q
nn
q
nn
rr
rr
rr




, (12)
where ;1,,
1
1
11
q
k
j
jiqq
di
i ccb 







 






.,,1 ki 
Thus the result of (11), (12) is a redundant arithmetic
code, represented by informational 


 knn xx ,,1  and control
vectors knn rr  ,,1  . If the minimal values of the arithmetic
code distance 1min  qd control arithmetic expressions are
as follows:













,0ifis,error
,0ifno,iserror
jn
q
jn
jn
q
jn
rx
rx
where kj 1 .
The final result is:
,11
m
nn xx 
  ,22
m
nn xx 
  , .
m
knkn xx 
 
5. Conclusion
Developed algorithms of accurate parallel PRN generation
provide the required level of perspective highly productive
cryptographic means of protection of data.
References
[1] A.V.Babash, G.P.Shankin, “Cryptology”. SOLON-
PRESS. 1997. (book style)
[2] Henk C.A. van Tilborg, “Fundamentals of Cryptology”.
KLUWER ACADEMIC PUBLISHERS.2000. (book
style)
[3] B.Schneier, “Applied Cryptography”. John Wiley &
Sons, Inc. 1996. (book style)
[4] B.А.Forouzan, “Cryptography and Network Security”.
McGraw Hill. 2008. (book style)
[5] D.E.Knuth,“The Art of Computer Programming. Vo-
lume 2. Seminumerical Algorithms”. Addison-Wesley.
Redwood City. 1981. (book style)
[6] C.P.Schonorr, “On the Construction of Random Num-
ber Generators and Random Function Generators”.
EUROCRUPT. 1988. (journal style)
[7] “Cryptographic Hardware and Embedded Systems –
CHES 2004”. 6th International Workshop Cambridge,
MA, USA, August 11-13, 2004. Proceedings
[8] “Fault Diagnosis and Tolerance in Cryptography”.
Third International Workshop, FDTC 2006, Yokohama,
Japan, October 10, 2006, Proceedings.
Sergey Dichenko- Is a Graduate student. Research
interests are development of parallel algorithms for
generating pseudo-random numbers and binary se-
quences. Error control algorithms.
Oleg Finko - Professor, Doctor of Technical
Sciences. Professor of Department of computer tech-
nologies and information security of the Kuban State
University of Technology. Research interests ‐a resi-
due number system, the use of error-correcting coding
techniques in cryptography, multi-biometric encryption, digital
signature algorithms improve, secure electronic document systems,
Parallel computing logic by modular numerical polyno-
mials.URL: http://www.mathnet.ru/eng/person/40004
22

More Related Content

PDF
INTRA BLOCK AND INTER BLOCK NEIGHBORING JOINT DENSITY BASED APPROACH FOR JPEG...
PDF
Justification of Montgomery Modular Reduction
PDF
Stegnography of high embedding efficiency by using an extended matrix encodin...
PDF
Multiple Dimensional Fault Tolerant Schemes for Crypto Stream Ciphers
PDF
Multiple Dimensional Fault Tolerant Schemes for Crypto Stream Ciphers
PDF
Enhancement and Analysis of Chaotic Image Encryption Algorithms
PDF
The Quality of the New Generator Sequence Improvent to Spread the Color Syste...
PDF
New Approach of Preprocessing For Numeral Recognition
INTRA BLOCK AND INTER BLOCK NEIGHBORING JOINT DENSITY BASED APPROACH FOR JPEG...
Justification of Montgomery Modular Reduction
Stegnography of high embedding efficiency by using an extended matrix encodin...
Multiple Dimensional Fault Tolerant Schemes for Crypto Stream Ciphers
Multiple Dimensional Fault Tolerant Schemes for Crypto Stream Ciphers
Enhancement and Analysis of Chaotic Image Encryption Algorithms
The Quality of the New Generator Sequence Improvent to Spread the Color Syste...
New Approach of Preprocessing For Numeral Recognition

Similar to Parallel generators of pseudo random numbers with control of calculation errors (20)

PDF
COLOR IMAGE ENCRYPTION BASED ON MULTIPLE CHAOTIC SYSTEMS
PDF
Journal_IJABME
PDF
COLOR IMAGE ENCRYPTION BASED ON MULTIPLE CHAOTIC SYSTEMS
PDF
COLOR IMAGE ENCRYPTION BASED ON MULTIPLE CHAOTIC SYSTEMS
PDF
COLOR IMAGE ENCRYPTION BASED ON MULTIPLE CHAOTIC SYSTEMS
PDF
FUSION BASED MULTIMODAL AUTHENTICATION IN BIOMETRICS USING CONTEXT-SENSITIVE ...
PDF
Fusion based multimodal authentication in biometrics using context sensitive ...
PDF
Random Keying Technique for Security in Wireless Sensor Networks Based on Mem...
PPT
mws_gen_reg_ppt_nonlinear.ppt
PDF
A New Key Stream Generator Based on 3D Henon map and 3D Cat map
PDF
CASCADE BLOCK CIPHER USING BRAIDING/ENTANGLEMENT OF SPIN MATRICES AND BIT ROT...
PDF
Application of thermal error in machine tools based on Dynamic Bayesian Network
PDF
Text encryption
PDF
Random Chaotic Number Generation based Clustered Image Encryption
PDF
Message Embedded Cipher Using 2-D Chaotic Map
PDF
MESSAGE EMBEDDED CIPHER USING 2-D CHAOTIC MAP
PDF
Fixed-Point Code Synthesis for Neural Networks
PDF
Fixed-Point Code Synthesis for Neural Networks
PDF
The Perceptron - Xavier Giro-i-Nieto - UPC Barcelona 2018
PDF
D143136
COLOR IMAGE ENCRYPTION BASED ON MULTIPLE CHAOTIC SYSTEMS
Journal_IJABME
COLOR IMAGE ENCRYPTION BASED ON MULTIPLE CHAOTIC SYSTEMS
COLOR IMAGE ENCRYPTION BASED ON MULTIPLE CHAOTIC SYSTEMS
COLOR IMAGE ENCRYPTION BASED ON MULTIPLE CHAOTIC SYSTEMS
FUSION BASED MULTIMODAL AUTHENTICATION IN BIOMETRICS USING CONTEXT-SENSITIVE ...
Fusion based multimodal authentication in biometrics using context sensitive ...
Random Keying Technique for Security in Wireless Sensor Networks Based on Mem...
mws_gen_reg_ppt_nonlinear.ppt
A New Key Stream Generator Based on 3D Henon map and 3D Cat map
CASCADE BLOCK CIPHER USING BRAIDING/ENTANGLEMENT OF SPIN MATRICES AND BIT ROT...
Application of thermal error in machine tools based on Dynamic Bayesian Network
Text encryption
Random Chaotic Number Generation based Clustered Image Encryption
Message Embedded Cipher Using 2-D Chaotic Map
MESSAGE EMBEDDED CIPHER USING 2-D CHAOTIC MAP
Fixed-Point Code Synthesis for Neural Networks
Fixed-Point Code Synthesis for Neural Networks
The Perceptron - Xavier Giro-i-Nieto - UPC Barcelona 2018
D143136
Ad

More from International Journal of Science and Research (IJSR) (20)

PDF
Innovations in the Diagnosis and Treatment of Chronic Heart Failure
PDF
Design and implementation of carrier based sinusoidal pwm (bipolar) inverter
PDF
Polarization effect of antireflection coating for soi material system
PDF
Image resolution enhancement via multi surface fitting
PDF
Ad hoc networks technical issues on radio links security & qo s
PDF
Microstructure analysis of the carbon nano tubes aluminum composite with diff...
PDF
Improving the life of lm13 using stainless spray ii coating for engine applic...
PDF
An overview on development of aluminium metal matrix composites with hybrid r...
PDF
Pesticide mineralization in water using silver nanoparticles incorporated on ...
PDF
Comparative study on computers operated by eyes and brain
PDF
T s eliot and the concept of literary tradition and the importance of allusions
PDF
Effect of select yogasanas and pranayama practices on selected physiological ...
PDF
Grid computing for load balancing strategies
PDF
A new algorithm to improve the sharing of bandwidth
PDF
Main physical causes of climate change and global warming a general overview
PDF
Performance assessment of control loops
PDF
Capital market in bangladesh an overview
PDF
Faster and resourceful multi core web crawling
PDF
Extended fuzzy c means clustering algorithm in segmentation of noisy images
PDF
Modeling software architecture with uml
Innovations in the Diagnosis and Treatment of Chronic Heart Failure
Design and implementation of carrier based sinusoidal pwm (bipolar) inverter
Polarization effect of antireflection coating for soi material system
Image resolution enhancement via multi surface fitting
Ad hoc networks technical issues on radio links security & qo s
Microstructure analysis of the carbon nano tubes aluminum composite with diff...
Improving the life of lm13 using stainless spray ii coating for engine applic...
An overview on development of aluminium metal matrix composites with hybrid r...
Pesticide mineralization in water using silver nanoparticles incorporated on ...
Comparative study on computers operated by eyes and brain
T s eliot and the concept of literary tradition and the importance of allusions
Effect of select yogasanas and pranayama practices on selected physiological ...
Grid computing for load balancing strategies
A new algorithm to improve the sharing of bandwidth
Main physical causes of climate change and global warming a general overview
Performance assessment of control loops
Capital market in bangladesh an overview
Faster and resourceful multi core web crawling
Extended fuzzy c means clustering algorithm in segmentation of noisy images
Modeling software architecture with uml
Ad

Recently uploaded (20)

PPTX
IOT PPTs Week 10 Lecture Material.pptx of NPTEL Smart Cities contd
PPT
Project quality management in manufacturing
PPTX
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
PDF
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
PDF
Embodied AI: Ushering in the Next Era of Intelligent Systems
PPTX
Lesson 3_Tessellation.pptx finite Mathematics
DOCX
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
PDF
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
PPTX
Sustainable Sites - Green Building Construction
PPTX
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
PPTX
Construction Project Organization Group 2.pptx
PPTX
Lecture Notes Electrical Wiring System Components
PPT
Mechanical Engineering MATERIALS Selection
PDF
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
PPTX
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
PDF
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
PPTX
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
PDF
Well-logging-methods_new................
PPTX
additive manufacturing of ss316l using mig welding
PDF
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
IOT PPTs Week 10 Lecture Material.pptx of NPTEL Smart Cities contd
Project quality management in manufacturing
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
Embodied AI: Ushering in the Next Era of Intelligent Systems
Lesson 3_Tessellation.pptx finite Mathematics
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
Sustainable Sites - Green Building Construction
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
Construction Project Organization Group 2.pptx
Lecture Notes Electrical Wiring System Components
Mechanical Engineering MATERIALS Selection
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
Well-logging-methods_new................
additive manufacturing of ss316l using mig welding
Mitigating Risks through Effective Management for Enhancing Organizational Pe...

Parallel generators of pseudo random numbers with control of calculation errors

  • 1. International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064 Volume 1 Issue 2, November 2012 www.ijsr.net Parallel Generators of Pseudo-random Numbers with Control of Calculation Errors S. Dichenko1 , O. Finko2 Kuban State University of Technology. Moskowskaya St., 2, Krasnodar 350072, Russia 1 dichenko.sa@yandex.ru, 2 ofinko@yandex.ru Abstract: Algorithms of parallel realization of classical "congruent" methods of generation of pseudo-random numbers are discussed. Algebraic (equational) and matrix interpretations of ways of realization of algorithms are presented. In order to achieve high level of performance of modern and perspective technical tools of cryptographic protection of data, as well as to provide contemporary stochastic methods of modeling, it is necessary to realize existing "congruent" methods in parallel. In developing solutions for the problems of high level of complexity, such as cryptographic protection of data, ensuring high levels of security of functioning in real time is of out- most importance. In this article the means of ensuring of functional diagnosis of the tools for pseudo-random numbers generation by means of application of classical methods of superfluous arithmetic coding (module control) are briefly discussed. Keywords: Pseudo-random numbers, congruent method, cryptography, fault diagnosis and tolerance in cryptography. 1. Introduction Pseudo-random number (PRN) generators have important applied meaning for the implementation of most crypto- graphic algorithms and key material generation systems [1] – [6]. Stricter requirements for the encryption speed and in- creasing amount of data which needs to be protected cause the necessity to construct parallel algorithms of PRN genera- tion, what should be supported by providing the required level of reliability of their operation [7], [8]. The purpose of the article is constructing parallel algo- rithms of PRN generation with control of calculation errors based on the congruent method. 2. Varieties of the congruent method Varieties of the congruent method, in particular, are ex- pressed by formulas (1) – (4): ,1 mnn bxx  (1) ,1 mnn cbxx  (2) ,1 m n d n cxbx  (3) ,1211 21 m n d n d n cxbxbx   (4) where m – module, b – multiple, mb 0 ; c – increment, mc 0 ; nx – the initial value, mxn 0 ; m  – smal- lest non-negative residue of number  module m . In accordance with the purpose, we pose a problem to construct parallel algorithms of PRN generation with control of calculation errors. Algorithms of PRN generation are shown as algebraic and matrix formulas. 3. Development of parallel algorithms 3.1 Algebraic method Formula (1) can take the following series of algebraic trans- formations:                                                   , , , , 1 3 2 2 23 2 1 12 1 m n k mknkn m n mn nmnn m n mn nmnn mnn xbbxx xb x xbbbxx xb x bxbbxx bxx  with ,2,1k or we have:              , , , 22 11 mnkkn mnn mnn xx xx xx     (5) where m i i b , ki ,,2,1  . For (2) it is possible to get:                                                  ,1 ,1 ,1 , 1 1 1 23 23 2 1 12 1 m k j j n k mknkn m nmnn m n mn nmnn mnn bcxbcbxx bbcxbcbxx bcxbc x cbxbcbxx cbxx   with ,3,2k or we have:              , , , 222 111 mknkkn mnn mnn xx xx xx     (6) 20
  • 2. International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064 Volume 1 Issue 2, November 2012 www.ijsr.net where ;1,, 1 1 11 m k j jimm i i ccb               For (3) it is possible to get:                                     ,1 ,1 ,1 , 1 1 1 23 23 2 12 1 m k j j n k m kn d kn m dd n d m n d n m d n d m n d n m n d n bcxbcxbx bbcxbcxbx bcxbcxbx cxbx  with ,3,2k or we have:              , , , 222 111 mknkkn mnn mnn xx xx xx     (7) where ;1,, 1 1 11 m k j jimm di i ccb               .,,2,1 ki  For (4) it is possible to get:              , , , 1 21222 11111 mknknkkn mnnn mnnn xxx xxx xxx     (8) where ;1 2 12 m   miii 2111    , when ,4,3i ; mii 11   , when ,3,2i ; c1 ;   miii c 11    , when ,3,2i . 3.2 Examples Let’s have 4310 x , 756b , 2047m . Find 321 ,, xxx using (5): ,363431756 204701  m bxx ,130431756 2047 2 0 2 2  m xbx 24431756 2047 3 0 3 3  m xbx . Let’shave 4120 x , 531b , 711c , 4093m . Find 4321 ,,, xxxx using (6): ,2554711412531 409301  m cbxx     ,21021531711412531 1 4093 2 10 2 2   m cxbx    ,35771531531711412531 1 4093 23 2 1 0 3 3             m j jcxbx    .9461531531531711412531 1 4093 234 3 1 0 4 4             m j jcxbx  3.3 Matrix method Let’s present the considered algorithms of PRN generation in matrix form. For (1) it is possible to get: ,2 1 m n k mn x x                      BX (9) where m i i b ; .,,2,1 ki  For (2) it is possible to get: ,2 1 2 1 mk n k mn x x                                       GBX (10) where .,,2,1;1,, 1 1 11 kiccb m k j jimm i i               For (3) it is possible to get: ,2 1 2 1 mk n k mn x x                                       GBX where ;1,, 1 1 11 m k j jimm di i ccb               ki ,,2,1  . For (4) it is possible to get: , 2 1 1 2 1 2 1 1 mk n k n k mnn xx xx                                                           GBAX where ;1 2 12 m   miii 2111    , when ,4,3i ; mkk 11   , when ,3,2k ; c1 ;   mkkk c 11    , when ,3,2k . 3.4 Examples Let’s have 431nx , 756b , 2047m . Find 321 ,, xxx using (9): 21
  • 3. International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064 Volume 1 Issue 2, November 2012 www.ijsr.net . 24 130 363 431 756 756 756 2047 3 2                       mnxBX Let’shave 412nx , 531b , 711c , 4093m . Find 4321 ,,, xxxx using (10):       . 946 3577 2102 2554 1531531531711 1531531711 1531711 711 412 531 531 531 531 23 2 4 3 2                                                  m mnx GBX 4. Control of calculation errors Let’s use ,qmM  as a composite module in calculating any of the obtained systems of expressions (5) – (8), where mq  module introduced for the implementation of control of calculation errors. Then each of the expressions (5) – (8) can be rewritten as a system of expressions on module M , for example (7):                  , , , 222 111 M knkkn M nn M nn xx xx xx     (11) where ;1,, 1 1 11 M k j jiMM di i ccb                 ki ,,1  . Control digits are calculated by the system:                   , , , 222 111 q knkkn q nn q nn rr rr rr     , (12) where ;1,, 1 1 11 q k j jiqq di i ccb                 .,,1 ki  Thus the result of (11), (12) is a redundant arithmetic code, represented by informational     knn xx ,,1  and control vectors knn rr  ,,1  . If the minimal values of the arithmetic code distance 1min  qd control arithmetic expressions are as follows:              ,0ifis,error ,0ifno,iserror jn q jn jn q jn rx rx where kj 1 . The final result is: ,11 m nn xx    ,22 m nn xx    , . m knkn xx    5. Conclusion Developed algorithms of accurate parallel PRN generation provide the required level of perspective highly productive cryptographic means of protection of data. References [1] A.V.Babash, G.P.Shankin, “Cryptology”. SOLON- PRESS. 1997. (book style) [2] Henk C.A. van Tilborg, “Fundamentals of Cryptology”. KLUWER ACADEMIC PUBLISHERS.2000. (book style) [3] B.Schneier, “Applied Cryptography”. John Wiley & Sons, Inc. 1996. (book style) [4] B.А.Forouzan, “Cryptography and Network Security”. McGraw Hill. 2008. (book style) [5] D.E.Knuth,“The Art of Computer Programming. Vo- lume 2. Seminumerical Algorithms”. Addison-Wesley. Redwood City. 1981. (book style) [6] C.P.Schonorr, “On the Construction of Random Num- ber Generators and Random Function Generators”. EUROCRUPT. 1988. (journal style) [7] “Cryptographic Hardware and Embedded Systems – CHES 2004”. 6th International Workshop Cambridge, MA, USA, August 11-13, 2004. Proceedings [8] “Fault Diagnosis and Tolerance in Cryptography”. Third International Workshop, FDTC 2006, Yokohama, Japan, October 10, 2006, Proceedings. Sergey Dichenko- Is a Graduate student. Research interests are development of parallel algorithms for generating pseudo-random numbers and binary se- quences. Error control algorithms. Oleg Finko - Professor, Doctor of Technical Sciences. Professor of Department of computer tech- nologies and information security of the Kuban State University of Technology. Research interests ‐a resi- due number system, the use of error-correcting coding techniques in cryptography, multi-biometric encryption, digital signature algorithms improve, secure electronic document systems, Parallel computing logic by modular numerical polyno- mials.URL: http://www.mathnet.ru/eng/person/40004 22