The document describes research on decomposing optimization problem landscapes into elementary components. It defines key landscape concepts like configuration space, neighborhood operators, and objective functions. It then introduces the idea of elementary landscapes where the objective function is a linear combination of eigenfunctions. The paper discusses decomposing general landscapes into a sum of elementary components and proposes using average neighborhood fitness for selection in non-elementary landscapes. It applies these concepts to the Hamiltonian Path Optimization problem, analyzing the problem's reversals and swaps neighborhoods.