SlideShare a Scribd company logo
1
A
Project Based Lab Report
On
AMPLITUDE MODULATION USING MULTIPLIERS AND
ENVELOPE DETECTOR
Submittedin partial fulfilment of the
Requirements for the awardof the Degree of
Bachelor of Technology
In
Electronics & Communication Engineering
By
SK.JUNEZ RIYAZ (Id No-150040793)
Under the guidance of
Guide Name: Mr.YGSK Naidu
Designation: Asst. Professor
Dept. of Electronics and Communication Engineering
K.L. UNIVERSITY
Green fields,Vaddeswaram-522502,
Guntur Dist.
2016-17
2
DEPARTMENT OF ELECTRONICS AND ENGINEERING
CERTIFICATE
This is to certify that this project based lab report entitled “AMPLITUDE
MODULATION USING MULTIPLIERS AND ENVELOPE DETECTOR” is a
bonafide work done by SK.JUNEZ RIYAZ (Id No-150040793) in partial fulfilment of
the requirement for the award of degree in Bachelor of Technology in Electronics and
Communication Engineering during the academic year 2016-2017.
I also declare that this project based lab report is of our own effort and
it has not been submitted to any other university for the award of any degree.
Signature of the Project guide Signature of Course
Coordinator
Head
Dep. Of ECE
3
ACKNOWLEDGMENT
My sincere thanks to in the Lab for their outstanding support throughout the project for the
successful completion of the work.
We express our gratitude to Dr. ASCS SASTRY, Head of the Department for Electronics and
Communication Engineering for providing us with adequate facilities, ways and means by
which we are able to complete this project based work.
We would like to place on record the deep sense of gratitude to the honourable Vice Chancellor,
K L University for providing the necessary facilities to carry the concluded project based work.
Last but not the least, we thank all Teaching and Non-Teaching Staff of our department and
especially my classmates and my friends for their support in the completion of our project based
work.
Place: KL University
SK.JUNEZ RIYAZ
(Id No-150040793)
4
CONTENTS
CONTENT Page No
Abstract 5
Problem statement: 5
Chapter 1: Introduction 7
Chapter 2: Tasks Simulation Results 10
(a) Task1 10
(b) Task2: 12
(c) Task3: 15
(d) Task4: 18
Chapter 3: 22
Applications 22
Conclusions and future scope 23
References 23
5
Abstract
The project amplitude modulation using multipliers and envelope
detection is useful for communication purpose where the receptors
are far away from the emitter. Here at the emitting side we will
modulate the signal since it is weak to travel that much distance.
After receiving the signal at the receiver they will demodulate it.
Here in this project we are using envelope detector for the
demodulation purpose, so if we do frequency or phase modulation the
envelope would be a straight lines divided by some space. But if we
modulate the amplitude then we can recapture the signal very
easily using envelope detector.
Problem Statement
 To generate amplitude modulation signals.
 To design an envelope detection for given modulating signal or speech signal
 Exposure to simulation on modulation/demodulation systems for Amplitude
Modulation using MATLAB for synthetic & real signals (such as speech).
A base band signal m(t) is used to generate Amplitude Modulated signal
j AM (t) = Ac[1+m(t)] cos(Wct) , where c(t) is a carrier signal c(t) = Ac cosWct as
shown in the Fig.1. The objective is to explore the theoretical concepts of AM signal by
modeling and simulation using Matlab and Simulink
6
Block diagram of Amplitude Modulation and Envelope Detection system.
Task1:
Consider a single tone modulating signal m(t) = cos860p t , and carrier signal with
frequency
of 9000 Hz .
1. Determine the expression for Amplitude Modulated signal in both time domain and
frequency domain.
2. Sketch the modulating signal m(t) and its spectrum.
3. Sketch the carrier signal c(t) and its spectrum.
4. Sketch the Amplitude Modulated signal ( ) AM j t and its spectrum.
5. Identify the USB, LSB and carrier spectra.
6. Determine the maximum and minimum amplitudes of the envelope.
7. Find the powers of USB, LSB, total sideband, carrier and modulated signals.
Task 2:
Assume that the demodulation process is envelope detection as shown in Figure.
The objective is to design an envelope detector in demodulation / reception of amplitude
modulated wave.
Task 3:
Repeat the above Tasks for multi tone signal
2cos1000 p t -sin1500p t +1.5cos2000p t
Task4:
Repeat above tasks for real speech signals.
7
Objectives
1) Understanding the basic theory of Modulation and Demodulation.
2) Implementing the Amplitude Modulation and Demodulation using low pass
filter in MAT LAB for different types of signals .
3)understanding the working of filter.
Modulation and Demodulation is to prevent the unwanted signals which are
not in the particular band of frequency and retrieve the original signal
(message signal) .In this project the modulation and demodulation of the
single tone message signal , multi tone message signals,recored voice,music
signals ,female and male voice are performed with the carrier wave of sine for
modulation and carrier wave of cosine for demodulation and after performing
this operations the demodulated signal is passed through the low pass filter in
order to get the desired out put i..e the signal in the particular range of
frequency
Chapter 1-Introdution
The frequency range audible to human begins known as audible range is between 20 Hz
to 20kHz .The frequency of human voice and music signals lies between 200 Hz to
4000Hz.Signals in the audible range audible range are not transmitted directly for the
following reason
1)The wave length of audible signals is very long .To transmit such signals signals the
size of
antenna must be atleast one tenth of signal wave length.
For example: consider a 1500Hz signal .The wavelength of the signal is(3*10^8)/1500
The height of antenna should be atleast 0.2*10^5 meters which is not possible practically
2) The signals in the audible range are not transmitted directly for the following reasons.
8
3)The audio signals attenuate rapidly in the atmosphere.
4)The interference will occur if two are more audio signals are transmitted
simultaneously.
Because of the above reasons the audio signals signals are modulated before modulation
.Not only for audio signals it is also used for signals to be transmitted for longer
distances.
Modulation is of three types they are:
 Amplitude Modulation (AM)
 Frequency Modulation (FM)
 Phase Modulation (PM)
Amplitude Modulation
In amplitude modulaton the amplitude of carrier wave is transmitted or varied in
accordance with
the instantaneous val;ue of the signal to be transmitted (modulated signal) i..e the
amplitude of the
carreir wave is varied in accordance with the message signal amplitude its from peak to
peak.
The figure 1.1 describes the modulation
9
Figure1.1
The figure 1.2 clearly describes the Amplitude modulation. m(t) is the message signal c(t)
is the carrier
signal the message signal is multiplied with carrier signal and the s(t) is amplitude
modulated signal
where the amplitude of the carrier is varied in accordance with message signal.
Figure1.3
Figure 1.3 gives the block diagram about the amplitude modulation here message is
multiplied with carrier signal
And output is as shown in the figure 1.2
Modulated wave = Eq-1
Demodulation
Demodulation is getting the required signal or output from the modulated wave. In
demodulation
10
the modulated signal is multiplied with carrier wave in order to get original information .
The carrier wave may be cosine or sine.
After demodulation the signal is passed through the lowpass filter as shown in the figure
0.1 then
the original signal will be obtained.
Figure1.4
From the above figure it can be described that y(t) is modulated signal and cos(w_ct) is
the carrier wave and the z(t) is the demodulated signal. And then its passes through the
filter to get the signal
of required frequency and reject the unwanted frequency .
Filter :It is a frequency selector(it allows particukar band of frequency to pass and the
particular
band of frequency to get rejected
Chapter 2
TASKS ,SIMULATION,RESULTS AND DISCUSSION
Task1: Consider a single tone modulating signal m(t) = cos860p t , and carrier signal
with frequency of 9000 Hz
Code:
fs=4000;
N=5000;
Ts=1/fs;
t=(0:Ts:(N*Ts)-Ts);
a=cos(860*pi*t);
b=cos(2*pi*9000*t);
k=a.*b;
m=k+b;
[v,A]=T2F(t,a);
[w,B]=T2F(t,b);
[f,M]=T2F(t,m);
11
subplot(3,3,5);
plot(t,m,'black','Linewidth',1.5);
axis([-0.001 0.009 -2 5])
title('y(t),modulated signal');
subplot(3,3,6);
plot(f,abs(M),'r','Linewidth',2);
axis([-1500 1500 -0.001 1.2]);
title('|y(jw)| modulated signal');
subplot(3,3,3);
plot(t,a/max(a),'black','Linewidth',1.5);
title(' x(t),msg signal');
axis([0 0.005 -1 1])
subplot(3,3,4);
plot(v,abs(A),'r','Linewidth',2);
title('|X(jw)| msg signal');
axis([-2500 2500 -0.001 3]);
subplot(3,3,1);
plot(t,b/max(b),'black','Linewidth',1.5);
title('c(t),carrier signal');
axis([0 0.01 -2 2])
subplot(3,3,2);
plot(w,abs(B),'r','Linewidth',2);
title('|c(t)|,carrier signal');
axis([-1500 1500 -0.001 1.2]);
OUTPUT:
Figure 2.1
0 2 4 6 8
x 10
-3
-2
0
2
4
y(t),modulated signal
-1000 0 1000
0
0.5
1
|y(jw)| modulated signal
0 5
x 10
-3
-1
0
1
x(t),msg signal
-2000 0 2000
0
1
2
3
|X(jw)| msg signal
0 0.005 0.01
-2
0
2
c(t),carrier signal
-1000 0 1000
0
0.5
1
|c(t)|,carrier signal
12
Task2
Assume that the demodulation process is envelope detection as shown in Figure.
The objective is to design an envelope detector in demodulation / reception of amplitude modulated wave
Code:
% AM demodulation using Envelope detection
clear all; close all; clc;
% Generation of AM single tone
fs=6000;
N=5000;
Ts=1/fs;
t=(0:Ts:(N*Ts)-Ts);
a=cos(860*pi*t);
b=cos(2*pi*9000*t);
k=a.*b;
m=k+b;
[v,A]=T2F(t,a);
[w,B]=T2F(t,b);
[f,M]=T2F(t,m);
subplot(3,3,5);
plot(t,m,'black','Linewidth',1.5);
axis([-0.001 0.009 -2 5])
title('y(t),modulated signal');
subplot(3,3,6);
plot(f,abs(M),'r','Linewidth',2);
axis([-3000 3000 -0.001 1.2]);
title('|y(jw)| modulated signal');
subplot(3,3,3);
plot(t,a,'black','Linewidth',1.5);
title(' x(t),msg signal');
axis([0 0.005 -1 1])
subplot(3,3,4);
plot(v,abs(A),'r','Linewidth',2);
title('|X(jw)| msg signal');
axis([-3000 3000 -0.001 1]);
subplot(3,3,1);
plot(t,b,'black','Linewidth',1.5);
title('c(t),carrier signal');
axis([0 0.01 -2 2])
subplot(3,3,2);
plot(w,abs(B),'r','Linewidth',2);
title('|c(t)|,carrier signal');
axis([-3200 3200 -0.02 1.2]);
figure();
plot(t,a,'black','Linewidth',1.5);grid on
title(' x(t),msg signal');
axis([0 0.005 -1 1])
legend('Message Signal');
% %%% --------- Envelope Detector ----------------------
sf = abs(m); % Halfwave Rectifier
% Spectrum of rectified signal
fh = (-N/2:1:N/2-1)*fs/N;
Sf = (2/N)*fftshift(fft(sf));
13
[a,b]=butter(9,0.172) ; % LPF tranfer function
env = filtfilt(a,b,sf); % Low pass filtering the rectified signal
env = env-mean(env); % Removing the DC
% Spectrum of envelope detected signal
fenv = (-N/2:1:N/2-1)*fs/N;
Senv = (2/N)*fftshift(fft(env));
figure();
subplot(2,2,1);
plot(t,abs(sf)/max(abs(sf)),'b','Linewidth',2);grid on; axis([0 0.005 -0.02 1.2]);
xlabel('Time'); ylabel('Magnitude|'); title('Rectified signal');
subplot(2,2,2);
plot(fh,real(Sf)/max(real(Sf)),'m','Linewidth',2);axis([-12000 12000 -0.0012 1.2]);
xlabel('frequency'); ylabel('Magnitude'); title('Spectrum of Rectified signal ');
grid on
subplot(2,2,3);
plot(t,env, 'r', 'LineWidth',1.5);axis([0 0.005 -1.2 1.2]);hold on
plot(t,m/max(m), '--k', 'LineWidth',1.5);axis([0 0.005 -1.2 1.2]);
xlabel('Time'); ylabel('Magnitude|'); title('Envelope Detector output'); grid on;
legend('demodulated signal','Modulated signal');
subplot(2,2,4);
plot(fenv,abs(Senv)/max(abs(Senv)), 'b', 'LineWidth',1.5);axis([-12000 12000 -0.0012
1.2]);
xlabel('Frequency');ylabel('Amplitude');title('Spectrum of envelope Detector');
grid on;
figure();
plot(t,env, 'r', 'LineWidth',1.5);axis([0 0.02 -1.2 1.2]);
xlabel('Time'); ylabel('Magnitude|'); title('Envelope Detector output'); grid on;
legend('Demodulated Signal');
Output
Figure 3.1
0 2 4 6 8
x 10
-3
-2
0
2
4
y(t),modulated signal
-2000 0 2000
0
0.5
1
|y(jw)| modulated signal
0 5
x 10
-3
-1
0
1
x(t),msg signal
-2000 0 2000
0
0.5
1
|X(jw)| msg signal
0 0.005 0.01
-2
0
2
c(t),carrier signal
-2000 0 2000
0
0.5
1
|c(t)|,carrier signal
14
Figure 3.2
Figure 3.3
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
x 10
-3
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
x(t),msg signal
Message Signal
0 1 2 3 4 5
x 10
-3
0
0.5
1
Time
Magnitude|
Rectified signal
-1 -0.5 0 0.5 1
x 10
4
0
0.5
1
frequency
Magnitude
Spectrum of Rectified signal
0 1 2 3 4 5
x 10
-3
-1
-0.5
0
0.5
1
Time
Magnitude|
Envelope Detector output
demodulated signal
Modulated signal
-1 -0.5 0 0.5 1
x 10
4
0
0.5
1
Frequency
Amplitude
Spectrum of envelope Detector
15
Figure 3.4
Task3:
Repeat the above Tasks for multi tone signal
2cos(1000*pi t) -sin1500p t +1.5cos2000p t
Code
% AM demodulation using Envelope detection
clear all; close all; clc;
% Generation of AM single tone
fs=5000;
N=5000;
Ts=1/fs;
t=(0:Ts:(N*Ts)-Ts);
a=2*cos(1000*pi*t)-sin(150*pi*t)+1.5*cos(2000*pi*t);
b=cos(2*pi*9000*t);
k=a.*b;
m=k+b;
[v,A]=T2F(t,a);
[w,B]=T2F(t,b);
[f,M]=T2F(t,m);
subplot(3,3,5);
plot(t,m,'black','Linewidth',1.5);
axis([-0.001 0.009 -2 5])
title('y(t),modulated signal');
subplot(3,3,6);
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
Time
Magnitude|
Envelope Detector output
Demodulated Signal
16
plot(f,abs(M),'r','Linewidth',2);
axis([-1500 1500 -0.001 1.2]);
title('|y(jw)| modulated signal');
subplot(3,3,3);
plot(t,a/max(a),'black','Linewidth',1.5);
title(' x(t),msg signal');
axis([0 0.005 -1 1])
subplot(3,3,4);
plot(v,abs(A),'r','Linewidth',2);
title('|X(jw)| msg signal');
axis([-2500 2500 -0.001 3]);
subplot(3,3,1);
plot(t,b/max(b),'black','Linewidth',1.5);
title('c(t),carrier signal');
axis([0 0.01 -2 2])
subplot(3,3,2);
plot(w,abs(B),'r','Linewidth',2);
title('|c(t)|,carrier signal');
axis([-1500 1500 -0.001 1.2]);
figure();
plot(t,a/max(a),'black','Linewidth',1.5);grid on
title(' x(t),msg signal');
axis([0 0.005 -1 1])
legend('Message Signal');
% %%% --------- Envelope Detector ----------------------
sf = abs(m); % Halfwave Rectifier
% Spectrum of rectified signal
fh = (-N/2:1:N/2-1)*fs/N;
Sf = (2/N)*fftshift(fft(sf));
[a,b]=butter(9,0.8) ; % LPF tranfer function
env = filtfilt(a,b,sf); % Low pass filtering the rectified signal
env = env-mean(env); % Removing the DC
% Spectrum of envelope detected signal
fenv = (-N/2:1:N/2-1)*fs/N;
Senv = (2/N)*fftshift(fft(env));
figure();
subplot(2,2,1);
plot(t,abs(sf)/max(abs(sf)),'b','Linewidth',2);grid on; axis([0 0.005 -0.02
1.2]);
xlabel('Time'); ylabel('Magnitude|'); title('Rectified signal');
subplot(2,2,2);
plot(fh,real(Sf)/max(real(Sf)),'m','Linewidth',2);axis([-12000 12000 -0.0012
1.2]);
xlabel('frequency'); ylabel('Magnitude'); title('Spectrum of Rectified signal
');
grid on
subplot(2,2,3);
plot(t,env/max(env), 'r', 'LineWidth',1.5);axis([0 0.005 -1.2 1.2]);hold on
plot(t,m/max(m), '--k', 'LineWidth',1.5);axis([0 0.005 -1.2 1.2]);
xlabel('Time'); ylabel('Magnitude|'); title('Envelope Detector output'); grid
on;
legend('demodulated signal','Modulated signal');
subplot(2,2,4);
plot(fenv,abs(Senv)/max(abs(Senv)), 'b', 'LineWidth',1.5);axis([-12000 12000
-0.0012 1.2]);
xlabel('Frequency');ylabel('Amplitude');title('Spectrum of envelope
Detector');
grid on;
17
figure();
plot(t,env/max(env), 'r', 'LineWidth',1.5);axis([0.101 0.107 -1.2 1.2]);
xlabel('Time'); ylabel('Magnitude|'); title('Envelope Detector output'); grid
on;
legend('Demodulated Signal');
Output:
Figure 4.1
Figure 4.2
0 2 4 6 8
x 10
-3
-2
0
2
4
y(t),modulated signal
-1000 0 1000
0
0.5
1
|y(jw)| modulated signal
0 5
x 10
-3
-1
0
1
x(t),msg signal
-2000 0 2000
0
1
2
3
|X(jw)| msg signal
0 0.005 0.01
-2
0
2
c(t),carrier signal
-1000 0 1000
0
0.5
1
|c(t)|,carrier signal
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
x 10
-3
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
x(t),msg signal
Message Signal
18
Figure 4.3
Figure 4.4
Task4:
Repeat the above tasks for male / female speech or music signals
Code:
clear all;close all;clc;
%===========================================
fs=4000;
N=5000;
Ts=1/fs;
%==========================================
[y,fs]=wavread('bird.wav');
0 1 2 3 4 5
x 10
-3
0
0.5
1
Time
Magnitude|
Rectified signal
-1 -0.5 0 0.5 1
x 10
4
0
0.5
1
frequency
Magnitude
Spectrum of Rectified signal
0 1 2 3 4 5
x 10
-3
-1
-0.5
0
0.5
1
Time
Magnitude|
Envelope Detector output
demodulated signal
Modulated signal
-1 -0.5 0 0.5 1
x 10
4
0
0.5
1
Frequency
Amplitude
Spectrum of envelope Detector
0.101 0.102 0.103 0.104 0.105 0.106
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
Time
Magnitude|
Envelope Detector output
Demodulated Signal
19
a=y(60000:90000);
% writes the data stored in the variable y to a new1.wav file
wavwrite(a,'new1.wav');
figure();
plot(a);grid on
set(gca,'fontsize',14)
xlabel('time ----->','FontSize',14);ylabel('Amplitude -----
>','FontSize',14);
title('Recorded .mat file real time speech Signal','FontSize',14);
k=length(a)
a=a';
t=0:k-1;
b=cos(2*pi*0.1*t);
z=a.*b;
m=z+b;
[v,A]=T2F(t,a);
[w,B]=T2F(t,b);
[f,M]=T2F(t,m);
subplot(3,3,5);
plot(t,m,'black','Linewidth',1.5);
title('y(t),modulated signal');
subplot(3,3,6);
plot(f,abs(M),'r','Linewidth',2);
title('|y(jw)| modulated signal');
subplot(3,3,3);
plot(t,a/max(a),'black','Linewidth',1.5);
title(' x(t),msg signal');
subplot(3,3,4);
plot(v,abs(A),'r','Linewidth',2);
title('|X(jw)| msg signal');
subplot(3,3,1);
plot(t,b,'black','Linewidth',1.5);
title('c(t),carrier signal');
axis([0 100 -2 2]);
subplot(3,3,2);
plot(w,abs(B),'r','Linewidth',2);
title('|c(t)|,carrier signal');
figure();
plot(t,a/max(a),'black','Linewidth',1.5);grid on
title(' x(t),msg signal');
legend('Message Signal');
% %%% --------- Envelope Detector ----------------------
sf = abs(m); % Halfwave Rectifier
% Spectrum of rectified signal
[fh,Sf]=T2F(t,sf);
[a,b]=butter(2,0.172) ; % LPF tranfer function
env = filtfilt(a,b,sf); % Low pass filtering the rectified signal
env = env-mean(env); % Removing the DC [fenv,Senv]=T2F(t,env);
figure();
subplot(2,2,1);
plot(t,abs(sf)/max(abs(sf)),'b','Linewidth',2);grid on;
xlabel('Time'); ylabel('Magnitude|'); title('Rectified signal');
subplot(2,2,2);
plot(fh,real(Sf)/max(real(Sf)),'m','Linewidth',2);
xlabel('frequency'); ylabel('Magnitude'); title('Spectrum of Rectified signal
'); grid on
subplot(2,2,3);
20
plot(t,env/max(env), 'r', 'LineWidth',1.5);hold on
plot(t,m/max(m), '--k', 'LineWidth',1.5);
xlabel('Time'); ylabel('Magnitude|'); title('Envelope Detector output'); grid
on;
legend('demodulated signal','Modulated signal');
subplot(2,2,4);
plot(fenv,abs(Senv)/max(abs(Senv)), 'b', 'LineWidth',1.5);
xlabel('Frequency');ylabel('Amplitude');title('Spectrum of envelope
Detector');
grid on;
figure();
plot(t,env/max(env), 'r', 'LineWidth',1.5);
xlabel('Time'); ylabel('Magnitude|'); title('Envelope Detector output'); grid
on;
legend('Demodulated Signal');
sound([a,env]);
Output:
Figure 5.1
0 2 4
x 10
4
-2
0
2
y(t),modulated signal
-1 0 1
0
1
2
x 10
4|y(jw)| modulated signal
0 2 4
x 10
4
-2
0
2
x(t),msg signal
-1 0 1
0
500
1000
|X(jw)| msg signal
0 50 100
-2
0
2
c(t),carrier signal
-1 0 1
0
1
2
x 10
4
|c(t)|,carrier signal
21
Figure 5.2
Figure 5.3
0 0.5 1 1.5 2 2.5 3
x 10
4
-1.5
-1
-0.5
0
0.5
1
x(t),msg signal
Message Signal
0 1 2 3
x 10
4
0
0.5
1
Time
Magnitude|
Rectified signal
-1 -0.5 0 0.5
-0.5
0
0.5
1
frequency
Magnitude
Spectrum of Rectified signal
0 1 2 3
x 10
4
-1
-0.5
0
0.5
1
Time
Magnitude|
Envelope Detector output
demodulated signal
Modulated signal
-1 -0.5 0 0.5
0
0.5
1
Frequency
Amplitude
Spectrum of envelope Detector
22
Figure 5.4
Chapter 3
APPLICATIONS
 Broadcast transmissions are used in broadcasting long, medium and short waves.
 Many airborne applications involving VHF transmissions use air band radio.This includes ground to
air communication.
 HF radio links use sideband amplitude modulation.
 Quadrature amplitude modulation is used to transmit a variety of data that includes cellular
communication and short-range wireless links such as Wi-Fi.
0 0.5 1 1.5 2 2.5 3
x 10
4
-0.5
0
0.5
1
Time
Magnitude|
Envelope Detector output
Demodulated Signal
23
CONCLUSION
Here in our project it has fulfilled all our objectives and also it gave exact results for the
envelope detection and in the modulation. Here we had observe that as we are giving the
modulation index as ‘1’ so that it was giving complete modulated output if we give it less than 1
it will give only the partial output. Mean we will get only 50% modulation only. By taking the
help of Hilbert transformation concept we get envelope detector.
FUTURE SCOPE
The above mentioned modulation techniques will be used for new generation communication
technology. The SDR mostly used in portable devices such as PDAs, smart phones, laptops and
so on. The cellular technologies like GSM, WCDMA, and LTE etc. are more supportable with
SDR. It can support the different services like location based service (GPS), World Wide Web
(www), video calling, video broadcasting, e-commerce.
References
AM Generation through MATLAB (web pg);
Signals and Systems by A Anand Kumar,
Signals and Systems by Openheim.
https://en.wikipedia.org/wiki/Amplitude_modulation
http://in.mathworks.com/help/signal/ref/modulate.html

More Related Content

PDF
Antennas and Wave Propagation
PDF
Antenna basic
PPTX
Large scale path loss 1
PDF
Lecture notes microwaves
PPTX
Antenna Parameters Part 2
PPT
Zener diodes
DOCX
Communication Theory-1 Project || Single Side Band Modulation using Filtering...
PPSX
Antennas and Wave Propagation
Antenna basic
Large scale path loss 1
Lecture notes microwaves
Antenna Parameters Part 2
Zener diodes
Communication Theory-1 Project || Single Side Band Modulation using Filtering...

What's hot (20)

PPTX
Yagi uda antenna
PPTX
Optical amplifiers
PPTX
Basics and design of antenna
PPTX
Wave Propagation In Lossy Dielectrics
PPTX
Linear Antenna
PPT
Chapter 4
PPT
Optical receivers
PDF
Lect 11.regenerative repeaters
PPTX
Path Loss and Shadowing
PDF
basic electronics
PPTX
FILTER DESIGN
PPT
Microstrip Patch Antenna Design
PPTX
Digital communication unit II
PPTX
Classification of antenna
PDF
Wdm passive components
PPTX
microwave-engineering
PPTX
Amplitude Modulation and Frequency Modulation
PPT
Antenna arrays
PPTX
Transmission lines & waveguides ppt
PPT
Microwave engineering basics
Yagi uda antenna
Optical amplifiers
Basics and design of antenna
Wave Propagation In Lossy Dielectrics
Linear Antenna
Chapter 4
Optical receivers
Lect 11.regenerative repeaters
Path Loss and Shadowing
basic electronics
FILTER DESIGN
Microstrip Patch Antenna Design
Digital communication unit II
Classification of antenna
Wdm passive components
microwave-engineering
Amplitude Modulation and Frequency Modulation
Antenna arrays
Transmission lines & waveguides ppt
Microwave engineering basics
Ad

Viewers also liked (20)

DOCX
EEP306: Amplitude modulation
PPT
Amplitude modulation
PPSX
Amplitude modulation
PPT
Lecture 8 The Communication System Finalterm Slides
PPSX
Angle modulation 2
PPT
15934 am demodulation
PPT
3rd qrtr p comm sc part 2
PPT
communication system Chapter 4
PPSX
Chapter 2 signals and spectra,
PPSX
Single sidebands ssb lathi
PPTX
fom am receiver using envelope detector | Communication Systems
PPTX
Hacking
PDF
Ece analog-communications
DOCX
Exp amplitude modulation (1)
PDF
Demodulation
PPSX
Angle modulation 3
PPTX
Communication systems
PPS
3rd qrtr +++
PPTX
Design and implementation of qpsk modulator using digital subcarrier
PPTX
Demodulation (communication engineering)
EEP306: Amplitude modulation
Amplitude modulation
Amplitude modulation
Lecture 8 The Communication System Finalterm Slides
Angle modulation 2
15934 am demodulation
3rd qrtr p comm sc part 2
communication system Chapter 4
Chapter 2 signals and spectra,
Single sidebands ssb lathi
fom am receiver using envelope detector | Communication Systems
Hacking
Ece analog-communications
Exp amplitude modulation (1)
Demodulation
Angle modulation 3
Communication systems
3rd qrtr +++
Design and implementation of qpsk modulator using digital subcarrier
Demodulation (communication engineering)
Ad

Similar to Amplitude Modulation using Multipliers and Envelope Detector (20)

PPTX
1.232dsdjdhgsjhgjsdghjsdghdgfjdfjdfhjdhfkefk
DOCX
AM Modulation and Demodulation Using MATLAB.docx
PPTX
Module 1 PCS notes.pptx
PPT
Introducción a la ingenieria y laboratorio de telecomunicaciones
PDF
Frequency Modulation and Demodulation
PDF
Amplitude modulation, Generation of AM signals
PDF
Analog Communication about amplitude modulation
PPTX
21EEB0A12_Deepak_Chaurasiyahugytfrd5er.pptx
DOCX
PPTX
Principles of communication systems for reference
PDF
COMMUNICATION SYSTEM_Module-2_part1 (1).pdf
DOCX
Exp amplitude modulation (4)
PPT
Ppt on modulated and un modulated signal
DOCX
2666 1530 analog communications_lammanual (1)
PPTX
gvfctdrxserxdcytfvygbhunijihbugvyftcdrxesxrdctfgvybuh.pptx
PDF
ADC Unit 1.pdf
DOCX
SIGNAL SPECTRA EXPERIMENT AMPLITUDE MODULATION
PPTX
Analog Communicationbbvvvvvvvvvvvhh.pptx
PPTX
Amplitude modulation sanjay
PDF
Cs manual 2021
1.232dsdjdhgsjhgjsdghjsdghdgfjdfjdfhjdhfkefk
AM Modulation and Demodulation Using MATLAB.docx
Module 1 PCS notes.pptx
Introducción a la ingenieria y laboratorio de telecomunicaciones
Frequency Modulation and Demodulation
Amplitude modulation, Generation of AM signals
Analog Communication about amplitude modulation
21EEB0A12_Deepak_Chaurasiyahugytfrd5er.pptx
Principles of communication systems for reference
COMMUNICATION SYSTEM_Module-2_part1 (1).pdf
Exp amplitude modulation (4)
Ppt on modulated and un modulated signal
2666 1530 analog communications_lammanual (1)
gvfctdrxserxdcytfvygbhunijihbugvyftcdrxesxrdctfgvybuh.pptx
ADC Unit 1.pdf
SIGNAL SPECTRA EXPERIMENT AMPLITUDE MODULATION
Analog Communicationbbvvvvvvvvvvvhh.pptx
Amplitude modulation sanjay
Cs manual 2021

Recently uploaded (20)

PDF
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
PPTX
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
DOCX
573137875-Attendance-Management-System-original
PPTX
OOP with Java - Java Introduction (Basics)
PPTX
Welding lecture in detail for understanding
PPTX
Lecture Notes Electrical Wiring System Components
PDF
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
PPTX
UNIT-1 - COAL BASED THERMAL POWER PLANTS
PDF
Embodied AI: Ushering in the Next Era of Intelligent Systems
PPTX
web development for engineering and engineering
PPTX
Construction Project Organization Group 2.pptx
PDF
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
PDF
Model Code of Practice - Construction Work - 21102022 .pdf
PPT
CRASH COURSE IN ALTERNATIVE PLUMBING CLASS
PPTX
UNIT 4 Total Quality Management .pptx
PDF
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
PPTX
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
PDF
Well-logging-methods_new................
PDF
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
PDF
Operating System & Kernel Study Guide-1 - converted.pdf
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
573137875-Attendance-Management-System-original
OOP with Java - Java Introduction (Basics)
Welding lecture in detail for understanding
Lecture Notes Electrical Wiring System Components
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
UNIT-1 - COAL BASED THERMAL POWER PLANTS
Embodied AI: Ushering in the Next Era of Intelligent Systems
web development for engineering and engineering
Construction Project Organization Group 2.pptx
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
Model Code of Practice - Construction Work - 21102022 .pdf
CRASH COURSE IN ALTERNATIVE PLUMBING CLASS
UNIT 4 Total Quality Management .pptx
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
Well-logging-methods_new................
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
Operating System & Kernel Study Guide-1 - converted.pdf

Amplitude Modulation using Multipliers and Envelope Detector

  • 1. 1 A Project Based Lab Report On AMPLITUDE MODULATION USING MULTIPLIERS AND ENVELOPE DETECTOR Submittedin partial fulfilment of the Requirements for the awardof the Degree of Bachelor of Technology In Electronics & Communication Engineering By SK.JUNEZ RIYAZ (Id No-150040793) Under the guidance of Guide Name: Mr.YGSK Naidu Designation: Asst. Professor Dept. of Electronics and Communication Engineering K.L. UNIVERSITY Green fields,Vaddeswaram-522502, Guntur Dist. 2016-17
  • 2. 2 DEPARTMENT OF ELECTRONICS AND ENGINEERING CERTIFICATE This is to certify that this project based lab report entitled “AMPLITUDE MODULATION USING MULTIPLIERS AND ENVELOPE DETECTOR” is a bonafide work done by SK.JUNEZ RIYAZ (Id No-150040793) in partial fulfilment of the requirement for the award of degree in Bachelor of Technology in Electronics and Communication Engineering during the academic year 2016-2017. I also declare that this project based lab report is of our own effort and it has not been submitted to any other university for the award of any degree. Signature of the Project guide Signature of Course Coordinator Head Dep. Of ECE
  • 3. 3 ACKNOWLEDGMENT My sincere thanks to in the Lab for their outstanding support throughout the project for the successful completion of the work. We express our gratitude to Dr. ASCS SASTRY, Head of the Department for Electronics and Communication Engineering for providing us with adequate facilities, ways and means by which we are able to complete this project based work. We would like to place on record the deep sense of gratitude to the honourable Vice Chancellor, K L University for providing the necessary facilities to carry the concluded project based work. Last but not the least, we thank all Teaching and Non-Teaching Staff of our department and especially my classmates and my friends for their support in the completion of our project based work. Place: KL University SK.JUNEZ RIYAZ (Id No-150040793)
  • 4. 4 CONTENTS CONTENT Page No Abstract 5 Problem statement: 5 Chapter 1: Introduction 7 Chapter 2: Tasks Simulation Results 10 (a) Task1 10 (b) Task2: 12 (c) Task3: 15 (d) Task4: 18 Chapter 3: 22 Applications 22 Conclusions and future scope 23 References 23
  • 5. 5 Abstract The project amplitude modulation using multipliers and envelope detection is useful for communication purpose where the receptors are far away from the emitter. Here at the emitting side we will modulate the signal since it is weak to travel that much distance. After receiving the signal at the receiver they will demodulate it. Here in this project we are using envelope detector for the demodulation purpose, so if we do frequency or phase modulation the envelope would be a straight lines divided by some space. But if we modulate the amplitude then we can recapture the signal very easily using envelope detector. Problem Statement  To generate amplitude modulation signals.  To design an envelope detection for given modulating signal or speech signal  Exposure to simulation on modulation/demodulation systems for Amplitude Modulation using MATLAB for synthetic & real signals (such as speech). A base band signal m(t) is used to generate Amplitude Modulated signal j AM (t) = Ac[1+m(t)] cos(Wct) , where c(t) is a carrier signal c(t) = Ac cosWct as shown in the Fig.1. The objective is to explore the theoretical concepts of AM signal by modeling and simulation using Matlab and Simulink
  • 6. 6 Block diagram of Amplitude Modulation and Envelope Detection system. Task1: Consider a single tone modulating signal m(t) = cos860p t , and carrier signal with frequency of 9000 Hz . 1. Determine the expression for Amplitude Modulated signal in both time domain and frequency domain. 2. Sketch the modulating signal m(t) and its spectrum. 3. Sketch the carrier signal c(t) and its spectrum. 4. Sketch the Amplitude Modulated signal ( ) AM j t and its spectrum. 5. Identify the USB, LSB and carrier spectra. 6. Determine the maximum and minimum amplitudes of the envelope. 7. Find the powers of USB, LSB, total sideband, carrier and modulated signals. Task 2: Assume that the demodulation process is envelope detection as shown in Figure. The objective is to design an envelope detector in demodulation / reception of amplitude modulated wave. Task 3: Repeat the above Tasks for multi tone signal 2cos1000 p t -sin1500p t +1.5cos2000p t Task4: Repeat above tasks for real speech signals.
  • 7. 7 Objectives 1) Understanding the basic theory of Modulation and Demodulation. 2) Implementing the Amplitude Modulation and Demodulation using low pass filter in MAT LAB for different types of signals . 3)understanding the working of filter. Modulation and Demodulation is to prevent the unwanted signals which are not in the particular band of frequency and retrieve the original signal (message signal) .In this project the modulation and demodulation of the single tone message signal , multi tone message signals,recored voice,music signals ,female and male voice are performed with the carrier wave of sine for modulation and carrier wave of cosine for demodulation and after performing this operations the demodulated signal is passed through the low pass filter in order to get the desired out put i..e the signal in the particular range of frequency Chapter 1-Introdution The frequency range audible to human begins known as audible range is between 20 Hz to 20kHz .The frequency of human voice and music signals lies between 200 Hz to 4000Hz.Signals in the audible range audible range are not transmitted directly for the following reason 1)The wave length of audible signals is very long .To transmit such signals signals the size of antenna must be atleast one tenth of signal wave length. For example: consider a 1500Hz signal .The wavelength of the signal is(3*10^8)/1500 The height of antenna should be atleast 0.2*10^5 meters which is not possible practically 2) The signals in the audible range are not transmitted directly for the following reasons.
  • 8. 8 3)The audio signals attenuate rapidly in the atmosphere. 4)The interference will occur if two are more audio signals are transmitted simultaneously. Because of the above reasons the audio signals signals are modulated before modulation .Not only for audio signals it is also used for signals to be transmitted for longer distances. Modulation is of three types they are:  Amplitude Modulation (AM)  Frequency Modulation (FM)  Phase Modulation (PM) Amplitude Modulation In amplitude modulaton the amplitude of carrier wave is transmitted or varied in accordance with the instantaneous val;ue of the signal to be transmitted (modulated signal) i..e the amplitude of the carreir wave is varied in accordance with the message signal amplitude its from peak to peak. The figure 1.1 describes the modulation
  • 9. 9 Figure1.1 The figure 1.2 clearly describes the Amplitude modulation. m(t) is the message signal c(t) is the carrier signal the message signal is multiplied with carrier signal and the s(t) is amplitude modulated signal where the amplitude of the carrier is varied in accordance with message signal. Figure1.3 Figure 1.3 gives the block diagram about the amplitude modulation here message is multiplied with carrier signal And output is as shown in the figure 1.2 Modulated wave = Eq-1 Demodulation Demodulation is getting the required signal or output from the modulated wave. In demodulation
  • 10. 10 the modulated signal is multiplied with carrier wave in order to get original information . The carrier wave may be cosine or sine. After demodulation the signal is passed through the lowpass filter as shown in the figure 0.1 then the original signal will be obtained. Figure1.4 From the above figure it can be described that y(t) is modulated signal and cos(w_ct) is the carrier wave and the z(t) is the demodulated signal. And then its passes through the filter to get the signal of required frequency and reject the unwanted frequency . Filter :It is a frequency selector(it allows particukar band of frequency to pass and the particular band of frequency to get rejected Chapter 2 TASKS ,SIMULATION,RESULTS AND DISCUSSION Task1: Consider a single tone modulating signal m(t) = cos860p t , and carrier signal with frequency of 9000 Hz Code: fs=4000; N=5000; Ts=1/fs; t=(0:Ts:(N*Ts)-Ts); a=cos(860*pi*t); b=cos(2*pi*9000*t); k=a.*b; m=k+b; [v,A]=T2F(t,a); [w,B]=T2F(t,b); [f,M]=T2F(t,m);
  • 11. 11 subplot(3,3,5); plot(t,m,'black','Linewidth',1.5); axis([-0.001 0.009 -2 5]) title('y(t),modulated signal'); subplot(3,3,6); plot(f,abs(M),'r','Linewidth',2); axis([-1500 1500 -0.001 1.2]); title('|y(jw)| modulated signal'); subplot(3,3,3); plot(t,a/max(a),'black','Linewidth',1.5); title(' x(t),msg signal'); axis([0 0.005 -1 1]) subplot(3,3,4); plot(v,abs(A),'r','Linewidth',2); title('|X(jw)| msg signal'); axis([-2500 2500 -0.001 3]); subplot(3,3,1); plot(t,b/max(b),'black','Linewidth',1.5); title('c(t),carrier signal'); axis([0 0.01 -2 2]) subplot(3,3,2); plot(w,abs(B),'r','Linewidth',2); title('|c(t)|,carrier signal'); axis([-1500 1500 -0.001 1.2]); OUTPUT: Figure 2.1 0 2 4 6 8 x 10 -3 -2 0 2 4 y(t),modulated signal -1000 0 1000 0 0.5 1 |y(jw)| modulated signal 0 5 x 10 -3 -1 0 1 x(t),msg signal -2000 0 2000 0 1 2 3 |X(jw)| msg signal 0 0.005 0.01 -2 0 2 c(t),carrier signal -1000 0 1000 0 0.5 1 |c(t)|,carrier signal
  • 12. 12 Task2 Assume that the demodulation process is envelope detection as shown in Figure. The objective is to design an envelope detector in demodulation / reception of amplitude modulated wave Code: % AM demodulation using Envelope detection clear all; close all; clc; % Generation of AM single tone fs=6000; N=5000; Ts=1/fs; t=(0:Ts:(N*Ts)-Ts); a=cos(860*pi*t); b=cos(2*pi*9000*t); k=a.*b; m=k+b; [v,A]=T2F(t,a); [w,B]=T2F(t,b); [f,M]=T2F(t,m); subplot(3,3,5); plot(t,m,'black','Linewidth',1.5); axis([-0.001 0.009 -2 5]) title('y(t),modulated signal'); subplot(3,3,6); plot(f,abs(M),'r','Linewidth',2); axis([-3000 3000 -0.001 1.2]); title('|y(jw)| modulated signal'); subplot(3,3,3); plot(t,a,'black','Linewidth',1.5); title(' x(t),msg signal'); axis([0 0.005 -1 1]) subplot(3,3,4); plot(v,abs(A),'r','Linewidth',2); title('|X(jw)| msg signal'); axis([-3000 3000 -0.001 1]); subplot(3,3,1); plot(t,b,'black','Linewidth',1.5); title('c(t),carrier signal'); axis([0 0.01 -2 2]) subplot(3,3,2); plot(w,abs(B),'r','Linewidth',2); title('|c(t)|,carrier signal'); axis([-3200 3200 -0.02 1.2]); figure(); plot(t,a,'black','Linewidth',1.5);grid on title(' x(t),msg signal'); axis([0 0.005 -1 1]) legend('Message Signal'); % %%% --------- Envelope Detector ---------------------- sf = abs(m); % Halfwave Rectifier % Spectrum of rectified signal fh = (-N/2:1:N/2-1)*fs/N; Sf = (2/N)*fftshift(fft(sf));
  • 13. 13 [a,b]=butter(9,0.172) ; % LPF tranfer function env = filtfilt(a,b,sf); % Low pass filtering the rectified signal env = env-mean(env); % Removing the DC % Spectrum of envelope detected signal fenv = (-N/2:1:N/2-1)*fs/N; Senv = (2/N)*fftshift(fft(env)); figure(); subplot(2,2,1); plot(t,abs(sf)/max(abs(sf)),'b','Linewidth',2);grid on; axis([0 0.005 -0.02 1.2]); xlabel('Time'); ylabel('Magnitude|'); title('Rectified signal'); subplot(2,2,2); plot(fh,real(Sf)/max(real(Sf)),'m','Linewidth',2);axis([-12000 12000 -0.0012 1.2]); xlabel('frequency'); ylabel('Magnitude'); title('Spectrum of Rectified signal '); grid on subplot(2,2,3); plot(t,env, 'r', 'LineWidth',1.5);axis([0 0.005 -1.2 1.2]);hold on plot(t,m/max(m), '--k', 'LineWidth',1.5);axis([0 0.005 -1.2 1.2]); xlabel('Time'); ylabel('Magnitude|'); title('Envelope Detector output'); grid on; legend('demodulated signal','Modulated signal'); subplot(2,2,4); plot(fenv,abs(Senv)/max(abs(Senv)), 'b', 'LineWidth',1.5);axis([-12000 12000 -0.0012 1.2]); xlabel('Frequency');ylabel('Amplitude');title('Spectrum of envelope Detector'); grid on; figure(); plot(t,env, 'r', 'LineWidth',1.5);axis([0 0.02 -1.2 1.2]); xlabel('Time'); ylabel('Magnitude|'); title('Envelope Detector output'); grid on; legend('Demodulated Signal'); Output Figure 3.1 0 2 4 6 8 x 10 -3 -2 0 2 4 y(t),modulated signal -2000 0 2000 0 0.5 1 |y(jw)| modulated signal 0 5 x 10 -3 -1 0 1 x(t),msg signal -2000 0 2000 0 0.5 1 |X(jw)| msg signal 0 0.005 0.01 -2 0 2 c(t),carrier signal -2000 0 2000 0 0.5 1 |c(t)|,carrier signal
  • 14. 14 Figure 3.2 Figure 3.3 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 x 10 -3 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 x(t),msg signal Message Signal 0 1 2 3 4 5 x 10 -3 0 0.5 1 Time Magnitude| Rectified signal -1 -0.5 0 0.5 1 x 10 4 0 0.5 1 frequency Magnitude Spectrum of Rectified signal 0 1 2 3 4 5 x 10 -3 -1 -0.5 0 0.5 1 Time Magnitude| Envelope Detector output demodulated signal Modulated signal -1 -0.5 0 0.5 1 x 10 4 0 0.5 1 Frequency Amplitude Spectrum of envelope Detector
  • 15. 15 Figure 3.4 Task3: Repeat the above Tasks for multi tone signal 2cos(1000*pi t) -sin1500p t +1.5cos2000p t Code % AM demodulation using Envelope detection clear all; close all; clc; % Generation of AM single tone fs=5000; N=5000; Ts=1/fs; t=(0:Ts:(N*Ts)-Ts); a=2*cos(1000*pi*t)-sin(150*pi*t)+1.5*cos(2000*pi*t); b=cos(2*pi*9000*t); k=a.*b; m=k+b; [v,A]=T2F(t,a); [w,B]=T2F(t,b); [f,M]=T2F(t,m); subplot(3,3,5); plot(t,m,'black','Linewidth',1.5); axis([-0.001 0.009 -2 5]) title('y(t),modulated signal'); subplot(3,3,6); 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 Time Magnitude| Envelope Detector output Demodulated Signal
  • 16. 16 plot(f,abs(M),'r','Linewidth',2); axis([-1500 1500 -0.001 1.2]); title('|y(jw)| modulated signal'); subplot(3,3,3); plot(t,a/max(a),'black','Linewidth',1.5); title(' x(t),msg signal'); axis([0 0.005 -1 1]) subplot(3,3,4); plot(v,abs(A),'r','Linewidth',2); title('|X(jw)| msg signal'); axis([-2500 2500 -0.001 3]); subplot(3,3,1); plot(t,b/max(b),'black','Linewidth',1.5); title('c(t),carrier signal'); axis([0 0.01 -2 2]) subplot(3,3,2); plot(w,abs(B),'r','Linewidth',2); title('|c(t)|,carrier signal'); axis([-1500 1500 -0.001 1.2]); figure(); plot(t,a/max(a),'black','Linewidth',1.5);grid on title(' x(t),msg signal'); axis([0 0.005 -1 1]) legend('Message Signal'); % %%% --------- Envelope Detector ---------------------- sf = abs(m); % Halfwave Rectifier % Spectrum of rectified signal fh = (-N/2:1:N/2-1)*fs/N; Sf = (2/N)*fftshift(fft(sf)); [a,b]=butter(9,0.8) ; % LPF tranfer function env = filtfilt(a,b,sf); % Low pass filtering the rectified signal env = env-mean(env); % Removing the DC % Spectrum of envelope detected signal fenv = (-N/2:1:N/2-1)*fs/N; Senv = (2/N)*fftshift(fft(env)); figure(); subplot(2,2,1); plot(t,abs(sf)/max(abs(sf)),'b','Linewidth',2);grid on; axis([0 0.005 -0.02 1.2]); xlabel('Time'); ylabel('Magnitude|'); title('Rectified signal'); subplot(2,2,2); plot(fh,real(Sf)/max(real(Sf)),'m','Linewidth',2);axis([-12000 12000 -0.0012 1.2]); xlabel('frequency'); ylabel('Magnitude'); title('Spectrum of Rectified signal '); grid on subplot(2,2,3); plot(t,env/max(env), 'r', 'LineWidth',1.5);axis([0 0.005 -1.2 1.2]);hold on plot(t,m/max(m), '--k', 'LineWidth',1.5);axis([0 0.005 -1.2 1.2]); xlabel('Time'); ylabel('Magnitude|'); title('Envelope Detector output'); grid on; legend('demodulated signal','Modulated signal'); subplot(2,2,4); plot(fenv,abs(Senv)/max(abs(Senv)), 'b', 'LineWidth',1.5);axis([-12000 12000 -0.0012 1.2]); xlabel('Frequency');ylabel('Amplitude');title('Spectrum of envelope Detector'); grid on;
  • 17. 17 figure(); plot(t,env/max(env), 'r', 'LineWidth',1.5);axis([0.101 0.107 -1.2 1.2]); xlabel('Time'); ylabel('Magnitude|'); title('Envelope Detector output'); grid on; legend('Demodulated Signal'); Output: Figure 4.1 Figure 4.2 0 2 4 6 8 x 10 -3 -2 0 2 4 y(t),modulated signal -1000 0 1000 0 0.5 1 |y(jw)| modulated signal 0 5 x 10 -3 -1 0 1 x(t),msg signal -2000 0 2000 0 1 2 3 |X(jw)| msg signal 0 0.005 0.01 -2 0 2 c(t),carrier signal -1000 0 1000 0 0.5 1 |c(t)|,carrier signal 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 x 10 -3 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 x(t),msg signal Message Signal
  • 18. 18 Figure 4.3 Figure 4.4 Task4: Repeat the above tasks for male / female speech or music signals Code: clear all;close all;clc; %=========================================== fs=4000; N=5000; Ts=1/fs; %========================================== [y,fs]=wavread('bird.wav'); 0 1 2 3 4 5 x 10 -3 0 0.5 1 Time Magnitude| Rectified signal -1 -0.5 0 0.5 1 x 10 4 0 0.5 1 frequency Magnitude Spectrum of Rectified signal 0 1 2 3 4 5 x 10 -3 -1 -0.5 0 0.5 1 Time Magnitude| Envelope Detector output demodulated signal Modulated signal -1 -0.5 0 0.5 1 x 10 4 0 0.5 1 Frequency Amplitude Spectrum of envelope Detector 0.101 0.102 0.103 0.104 0.105 0.106 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 Time Magnitude| Envelope Detector output Demodulated Signal
  • 19. 19 a=y(60000:90000); % writes the data stored in the variable y to a new1.wav file wavwrite(a,'new1.wav'); figure(); plot(a);grid on set(gca,'fontsize',14) xlabel('time ----->','FontSize',14);ylabel('Amplitude ----- >','FontSize',14); title('Recorded .mat file real time speech Signal','FontSize',14); k=length(a) a=a'; t=0:k-1; b=cos(2*pi*0.1*t); z=a.*b; m=z+b; [v,A]=T2F(t,a); [w,B]=T2F(t,b); [f,M]=T2F(t,m); subplot(3,3,5); plot(t,m,'black','Linewidth',1.5); title('y(t),modulated signal'); subplot(3,3,6); plot(f,abs(M),'r','Linewidth',2); title('|y(jw)| modulated signal'); subplot(3,3,3); plot(t,a/max(a),'black','Linewidth',1.5); title(' x(t),msg signal'); subplot(3,3,4); plot(v,abs(A),'r','Linewidth',2); title('|X(jw)| msg signal'); subplot(3,3,1); plot(t,b,'black','Linewidth',1.5); title('c(t),carrier signal'); axis([0 100 -2 2]); subplot(3,3,2); plot(w,abs(B),'r','Linewidth',2); title('|c(t)|,carrier signal'); figure(); plot(t,a/max(a),'black','Linewidth',1.5);grid on title(' x(t),msg signal'); legend('Message Signal'); % %%% --------- Envelope Detector ---------------------- sf = abs(m); % Halfwave Rectifier % Spectrum of rectified signal [fh,Sf]=T2F(t,sf); [a,b]=butter(2,0.172) ; % LPF tranfer function env = filtfilt(a,b,sf); % Low pass filtering the rectified signal env = env-mean(env); % Removing the DC [fenv,Senv]=T2F(t,env); figure(); subplot(2,2,1); plot(t,abs(sf)/max(abs(sf)),'b','Linewidth',2);grid on; xlabel('Time'); ylabel('Magnitude|'); title('Rectified signal'); subplot(2,2,2); plot(fh,real(Sf)/max(real(Sf)),'m','Linewidth',2); xlabel('frequency'); ylabel('Magnitude'); title('Spectrum of Rectified signal '); grid on subplot(2,2,3);
  • 20. 20 plot(t,env/max(env), 'r', 'LineWidth',1.5);hold on plot(t,m/max(m), '--k', 'LineWidth',1.5); xlabel('Time'); ylabel('Magnitude|'); title('Envelope Detector output'); grid on; legend('demodulated signal','Modulated signal'); subplot(2,2,4); plot(fenv,abs(Senv)/max(abs(Senv)), 'b', 'LineWidth',1.5); xlabel('Frequency');ylabel('Amplitude');title('Spectrum of envelope Detector'); grid on; figure(); plot(t,env/max(env), 'r', 'LineWidth',1.5); xlabel('Time'); ylabel('Magnitude|'); title('Envelope Detector output'); grid on; legend('Demodulated Signal'); sound([a,env]); Output: Figure 5.1 0 2 4 x 10 4 -2 0 2 y(t),modulated signal -1 0 1 0 1 2 x 10 4|y(jw)| modulated signal 0 2 4 x 10 4 -2 0 2 x(t),msg signal -1 0 1 0 500 1000 |X(jw)| msg signal 0 50 100 -2 0 2 c(t),carrier signal -1 0 1 0 1 2 x 10 4 |c(t)|,carrier signal
  • 21. 21 Figure 5.2 Figure 5.3 0 0.5 1 1.5 2 2.5 3 x 10 4 -1.5 -1 -0.5 0 0.5 1 x(t),msg signal Message Signal 0 1 2 3 x 10 4 0 0.5 1 Time Magnitude| Rectified signal -1 -0.5 0 0.5 -0.5 0 0.5 1 frequency Magnitude Spectrum of Rectified signal 0 1 2 3 x 10 4 -1 -0.5 0 0.5 1 Time Magnitude| Envelope Detector output demodulated signal Modulated signal -1 -0.5 0 0.5 0 0.5 1 Frequency Amplitude Spectrum of envelope Detector
  • 22. 22 Figure 5.4 Chapter 3 APPLICATIONS  Broadcast transmissions are used in broadcasting long, medium and short waves.  Many airborne applications involving VHF transmissions use air band radio.This includes ground to air communication.  HF radio links use sideband amplitude modulation.  Quadrature amplitude modulation is used to transmit a variety of data that includes cellular communication and short-range wireless links such as Wi-Fi. 0 0.5 1 1.5 2 2.5 3 x 10 4 -0.5 0 0.5 1 Time Magnitude| Envelope Detector output Demodulated Signal
  • 23. 23 CONCLUSION Here in our project it has fulfilled all our objectives and also it gave exact results for the envelope detection and in the modulation. Here we had observe that as we are giving the modulation index as ‘1’ so that it was giving complete modulated output if we give it less than 1 it will give only the partial output. Mean we will get only 50% modulation only. By taking the help of Hilbert transformation concept we get envelope detector. FUTURE SCOPE The above mentioned modulation techniques will be used for new generation communication technology. The SDR mostly used in portable devices such as PDAs, smart phones, laptops and so on. The cellular technologies like GSM, WCDMA, and LTE etc. are more supportable with SDR. It can support the different services like location based service (GPS), World Wide Web (www), video calling, video broadcasting, e-commerce. References AM Generation through MATLAB (web pg); Signals and Systems by A Anand Kumar, Signals and Systems by Openheim. https://en.wikipedia.org/wiki/Amplitude_modulation http://in.mathworks.com/help/signal/ref/modulate.html