SlideShare a Scribd company logo
By Tochukwu (Tobe) Matthias
Data & Analytics Manager at Molina
Healthcare & Founder of Data Techcon
AboutSpeaker
Founder
• Data Techcon, LLC
Professional Expertise
• Data & Analytics Manager, Molina Healthcare
• Data Subject Matter Expert, Comptia
Leadership
• Chapter Lead Women in Data, Los Angeles
Education
• Msc Computer & Information Systems
• Bsc. Computer Science & Statistics
• Digital Analytics Certification - MIT
Agenda
• Introduction to Data Science in Marketing
• Marketing Mix Model
• Data Collection Methods
• Aggregating Data from Disparate Sources to build a Holistic Analytics Solution
• Measurement & Metrics
• Predict Analytics
• A/B Testing
• Attribution Model
• Building a Data driven Marketing Structure in an Organization
DataScienceinMarketing
• Applying Data Science in marketing involves leveraging data and advanced analytics in building analytics solution
and statistical model that provides valuable insights that helps improve the effectiveness of marketing tactics
for a more optimized data-driven strategy that maximizes profit and increases ROI.
• One core goal of applying data science in marketing is to create Data-driven marketing strategies which will help
drive informed and actionable decisions geared towards optimizing marketing tactics for the highest possible
return on investment (ROI).
WhyImplementData-drivenMarketing
”Data-driven organizations are
23X likely to acquire customers,
6x as likely to retain & 19x likely
to be profitable”.
- McKinsey Global Institute
“Marketers who want to stand
the test of time must start
harnessing data to drive real-time
marketing strategies and
influential consumer
connections.” – Patrick Salyer
“Tracking marketing is a cultural
thing. Either tracking matters or it
doesn’t. You’re in one camp or the
other. Either you’re analytical and
data-driven, or you go by what you
think works. People who go by gut
are wrong.” - Stuart McDonald
MarketingMixModel
• MarketingMixModeling(MMM)istheapplicationofstatisticalanalysistomarketinghistoric
dataacrossmediamixchannelslike;Paidsearch,PaidSocial,Display,TV,Radio,Onlineto
quantifytheeffectivenessofmarketingcampaignsandoptimizemarketinginvestments.
• Basedonanalysisthefourfactorsinfluencingmarketingare;Product,PricePlaceand
Promotion.
• Marketingmixcanbeimprovedbytesting,collectingdata,measuring,analyzing,monitoring
andreporting.
MarketingMixChannels
Digital Marketing Channels
• Paid Search – Google & Bing
• Paid Social – Facebook, IG
• Affiliate – Media Alpha, Datalot
• Streaming Audio – Hulu, Pandora
• Streaming Video – Pandora, Youtube
• Display - Verizon
• Native –
• Videos - Youtube
Traditional Marketing Channels
• TV
• Radio
• OOH
• Direct Mail
• Print
4P’sofMarketingMix
• Product–Thisisthefoundationofevery
marketing.Buildinganoutstandingproductand
userexperienceisessentialtoacompany’success.
• Price–Itisimportanttonotethatthepriceof
anycompany’sproductmustbeprofitable.
• Place–Thisisthespacewhereconsumerengage
withtheproducts.Itcanbeonlineoroffline.
• Promotion–Thisisthemethodofadvertisement
topromotetheproduct
Imagesource:investinganswers
Benefitsof MarketingMixModel
• Toidentifywhichmarketingchanneldrivesthehighestreturnsmaximumreturn(ROI)
• Toforecastfuturemarketingbudgetacrossmediamixchannels.
• IdentifyingKeyinfluencingfactorsthatdrivesengagementandgrowthsuchaschannel,medium,geo,price,
competition,andmacro-economic factors)
• Tohelpoptimizemarketingspendacrossallchannelsbasedonperformance
• ToTrackandMonitorsuccessmetricsbasedonmarketingobjectives
DataRequiredforMarketingMixModel
• Advertisementorcampaigndata
• Demographicandbehavioraldata
• Productdata
• Websitedataforuserbehavior
• Salesdata
• Geolocationdata
DisparateDataSourcesinMarketing
BUSINESS INTELLEGENCE TOOLS
• Tableau
• PowerBI
• Qlik
• Domo
• Sisense
• Looker
• GoogleDataStudio
Buildinga360HolisticMarketingView
DigitalMarketingAnalytics–GoogleAds,FacebookAds,Bing
WebAnalytics–AdobeAnalytics,GoogleAnalytics
Customer/SalesAnalytics–Salesforce,Hubspot
SalesAnalytics–SQLServer,Salesforce
MeasuringSuccessinMarketing–KPIMetrics
• Awareness–Reach,Impressions
• Interest/Engagment–Clicks,Visits,CTR
• Conversion–Leads,Purchases
• Retention–CLTV,ChurnRate
Applicationof DataScienceinMarketing
Optimize
Marketing
Budget
Lead Scoring
Predictive
Model
Advanced
Audience
Targeting
Improve
Customer
Experience
Retargeting Testing Segmentation Forecasting
Attribution
Modeling
PredictiveAnalyticsinDigitalMarketing
Figure 1: This chart shows how predictive analytics provides greater business value by giving insight into the likelihood of future events. (Source: OLSPS Analytics n.d.)
•Analysis
•Prediction
•Monitoring
•Reporting
PredictiveAnalyticsinDigitalMarketing
•Buildingpredictivemodeltoforecastcustomerbehavior
•Audience&CustomerTargeting
•CustomerSegmentation
•EstimatingCustomerLifeTimeValue
Casestudy–BuildaPredictiveModeltoPredictROAS
DefinethebusinessObjective
• ThebusinessgoalistoleveragehistoricdatafromgoogleandfbadstobuildapredictivemodeltoforecastROAS.
Identifythedatasourcesandextractdatasets
• Extract,Transformandloaddatafromvarioussources- Googleads,facebookads,Googleanalytics,python
ExploratoryDataAnalysis
• Prepareandcleansethedata-applydescriptivestatistics,removeduplicates,treatmissingvalue,convertcategoricalto
numericvariable, removeunwantedcolumns,renamecolumns
FeatureEngineering
• UsingdomainexpertisetoCreatingnewfeaturesfromthedatasets likecalculatingCTR,CPL,ROAS
CaseStudy–BuildPredictiveModeltoPredictROAS
ModelBuilding
• Definethepredictor andinputfactors.ROASwillbetheindependentvariablehere.
• Splitdataintotrainandtest(80%train,20%test)
TraintheModel
• Usethetrainingdatasettotrain,fitandtuneyourmodel usingcrossvalidation
TesttheModel
• Thetestdataisusedtotestthemodelaftertraining
ValidatetheModel
• Selectwinning model–youwillhave1bestmodelforeachalgorithm
• Chooseperformancemetricsandevaluate.ForregressionwerecommendMeanSquaredError(MSE),MeanAbsoluteError(MAE).
Lowervaluesarebetter.ForClassificationwerecommendArearUnderROCCurve(highervaluesarebetter)
AttributionModel
AttributionModelisa
setofrulesthat
determineshow
conversionis
attributedtovarious
touchpointsofa
conversionfunnelpath.
TypesofAttributionModel
•LastInteractionAttributionModel–100%salescreditisattributedtothelasttouchpoint
•FirstInteractionAttributionModel–100%creditisgiventothefirsttouchpoint
•LinearAttributionModel–Givesequalcredittoeachtouchpointthroughoutthe
conversionpath.
•TimeDecay–Givestouchpointsclosesttotheconversionmostofthecredit.
Whichattributionmodelisbest?
“Anyattributionmodelisgoingtobemessy,”Mechanicsaid.“Findonethatmakessomedegreeofsenseandstickwithit.Whetherit’sfirsttouch,last
touchorblended,thereallyimportantthingisgettingeverybody[onateam]tobuyintoitandthenstickwiththatovertime.”--ChrisMechanicCEO
andco-founderofdigitalagencyWebmechanix
A/BTesting
• A/Btesting(alsoknownassplittesting)isaprocessconductinganexperimentontwovariationsof
elementsonthewebpageandrandomlyassigningdifferentversionstotwodifferentsamplesizes.
• WebsiteelementstoconductconductA/btesting
• Logo,CTAButtons,Headlines,Images,Videos,Ads
• Whya/bTesting
A/BTesting–UserExperienceFlow
A/bTestingCaseStudy–CheckoutPageForm
Experiment goal: Increase CTR on the billing and
shipping page
We have to run experiments to improve our goal
CaseStudy–A/bTestingCheckoutPageForm
• Hypothesis–AddingaPayPalcheckoutoptionormakingtheformshortercanhelpimprove
theclickthroughrate.
• SuccessMetrics–DAU,Clicks,CTR
• ExperimentProcess
• Randomlyassign50%ofthesamplesizeoruserstocontrolgroupthentheother50%toexperiment
group
• Decideontheexperimentduration
• Comparetheengagement metrics;CTRtoseeiftheyarestatisticallysignificant
• Result–Sawa22%increaseinCTRtothenextfunnelwhichincreasedconversionrate
BuildingaData-DrivenMarketingStructure
• PromoteDataLiteracy
• Buildanalyticsintodigitaltransformation
• Investintherighttechnologies
• Embracenewtechnologies
• Don’tlookatdataasaseparatepartofthebusiness
THANKYOU!
“Theendhascomeformakingmarketingdecisionsbasedongutinstincts;everythingmarketersdointhedigitalworld
cannowbetracked,fromthefirstclickallthewaytothedealclose.CMOswhodonotembraceandacceptthis
conceptwilllikelynotbeCMOsforverylong.”
–KurtAndersen,EVPMarketingandSalesEnablement,Savo
“Marketerstodayneedtodomorethanjustcollectandanalyzedata.Theyneedtobeclearastohowtheavailabilityofthisdat
–LindaPopky,FounderandPresident,Leverage2Market Associates

More Related Content

PPTX
Data Science in Digital Marketing - Forest Cassidy, LeadFerret
PDF
Digital media plan & Strategy
POT
Digital Marketing Proposal - Understanding Digital Marketing
PDF
Data Science for Marketing
PPTX
Digital Marketing Plan for Real Estate Business
PPTX
Instagram marketing 101
PPTX
Introduction to digital marketing - mylivpro
PPTX
Digital marketing explainer
Data Science in Digital Marketing - Forest Cassidy, LeadFerret
Digital media plan & Strategy
Digital Marketing Proposal - Understanding Digital Marketing
Data Science for Marketing
Digital Marketing Plan for Real Estate Business
Instagram marketing 101
Introduction to digital marketing - mylivpro
Digital marketing explainer

What's hot (20)

PDF
Web Analytics in 10 slides
PPSX
Digital Marketing
PPTX
Content marketing
PPT
Digital Marketing Proposal - Understanding Digital Marketing
PPT
Social media strategy
PPTX
Digital Marketing Trends for 2023
PPTX
Digital Marketing Plan by Vicky Deshmukh
PDF
AI in Marketing
PPTX
Web analytics
PPTX
Marketing analytics Topics
PDF
INSTAGRAM MARKETING - Visual storytelling and beyond
PPTX
Digital marketing
PPT
BIG DATA in MARKETING
PDF
Social Media Analytics
PDF
Build a High-Impact SEO Strategy in 2022
PDF
Digital Marketing Strategy Guide
PDF
Instagram Analytics (1)
PDF
Social Media Analytics
PPTX
Use of Big Data Analytics in Advertising
PDF
Coke Zero - Coca Cola: Digital Marketing Campaign for Coke Zero
Web Analytics in 10 slides
Digital Marketing
Content marketing
Digital Marketing Proposal - Understanding Digital Marketing
Social media strategy
Digital Marketing Trends for 2023
Digital Marketing Plan by Vicky Deshmukh
AI in Marketing
Web analytics
Marketing analytics Topics
INSTAGRAM MARKETING - Visual storytelling and beyond
Digital marketing
BIG DATA in MARKETING
Social Media Analytics
Build a High-Impact SEO Strategy in 2022
Digital Marketing Strategy Guide
Instagram Analytics (1)
Social Media Analytics
Use of Big Data Analytics in Advertising
Coke Zero - Coca Cola: Digital Marketing Campaign for Coke Zero
Ad

Similar to Applying Data Science and Analytics in Marketing (20)

PPT
22mmbm53 shivam Dissertation_Presentation OJT.ppt
PDF
Structuring Your Marketing Team
PPTX
Marketing research and Trends in Marketing BA4207 Anna University UNIT 5
PPTX
Unit I-Final MArketing analytics unit 1 ppt
PDF
Growth marketing
PDF
Bmgt 311 2013_chapter_1
PDF
PPTX
Data Driven Marketing Webinar
PDF
Integrated Marketing
PDF
Data-driven Strategies for the Student Travel Market
PPTX
Air Force Research Laboratory Small Business Hub Collider - Small Business Ma...
PPTX
Building future ready marketing strategy for businesses in fin tech space
PPT
7 Steps to Improve Marketing ROI in 2013
PDF
The Importance of Data Analytics in Digital Marketing - Skillfloor
DOCX
Data-Driven Decisions A Pillar of Effective Digital Marketing.docx
PDF
Using measurement data as proof points to demonstrate value | North West Netw...
PPTX
CMO Dashboard
PDF
C2C workshop 2.16.2015 as brown
PPTX
Marketing (chapter 4)(1).pptx
PDF
Digital Marketing Course Week 2: Introduction to Digital Marketing
22mmbm53 shivam Dissertation_Presentation OJT.ppt
Structuring Your Marketing Team
Marketing research and Trends in Marketing BA4207 Anna University UNIT 5
Unit I-Final MArketing analytics unit 1 ppt
Growth marketing
Bmgt 311 2013_chapter_1
Data Driven Marketing Webinar
Integrated Marketing
Data-driven Strategies for the Student Travel Market
Air Force Research Laboratory Small Business Hub Collider - Small Business Ma...
Building future ready marketing strategy for businesses in fin tech space
7 Steps to Improve Marketing ROI in 2013
The Importance of Data Analytics in Digital Marketing - Skillfloor
Data-Driven Decisions A Pillar of Effective Digital Marketing.docx
Using measurement data as proof points to demonstrate value | North West Netw...
CMO Dashboard
C2C workshop 2.16.2015 as brown
Marketing (chapter 4)(1).pptx
Digital Marketing Course Week 2: Introduction to Digital Marketing
Ad

More from Data Con LA (20)

PPTX
Data Con LA 2022 Keynotes
PPTX
Data Con LA 2022 Keynotes
PDF
Data Con LA 2022 Keynote
PPTX
Data Con LA 2022 - Startup Showcase
PPTX
Data Con LA 2022 Keynote
PDF
Data Con LA 2022 - Using Google trends data to build product recommendations
PPTX
Data Con LA 2022 - AI Ethics
PDF
Data Con LA 2022 - Improving disaster response with machine learning
PDF
Data Con LA 2022 - What's new with MongoDB 6.0 and Atlas
PDF
Data Con LA 2022 - Real world consumer segmentation
PPTX
Data Con LA 2022 - Modernizing Analytics & AI for today's needs: Intuit Turbo...
PPTX
Data Con LA 2022 - Moving Data at Scale to AWS
PDF
Data Con LA 2022 - Collaborative Data Exploration using Conversational AI
PDF
Data Con LA 2022 - Why Database Modernization Makes Your Data Decisions More ...
PDF
Data Con LA 2022 - Intro to Data Science
PDF
Data Con LA 2022 - How are NFTs and DeFi Changing Entertainment
PPTX
Data Con LA 2022 - Why Data Quality vigilance requires an End-to-End, Automat...
PPTX
Data Con LA 2022-Perfect Viral Ad prediction of Superbowl 2022 using Tease, T...
PPTX
Data Con LA 2022- Embedding medical journeys with machine learning to improve...
PPTX
Data Con LA 2022 - Data Streaming with Kafka
Data Con LA 2022 Keynotes
Data Con LA 2022 Keynotes
Data Con LA 2022 Keynote
Data Con LA 2022 - Startup Showcase
Data Con LA 2022 Keynote
Data Con LA 2022 - Using Google trends data to build product recommendations
Data Con LA 2022 - AI Ethics
Data Con LA 2022 - Improving disaster response with machine learning
Data Con LA 2022 - What's new with MongoDB 6.0 and Atlas
Data Con LA 2022 - Real world consumer segmentation
Data Con LA 2022 - Modernizing Analytics & AI for today's needs: Intuit Turbo...
Data Con LA 2022 - Moving Data at Scale to AWS
Data Con LA 2022 - Collaborative Data Exploration using Conversational AI
Data Con LA 2022 - Why Database Modernization Makes Your Data Decisions More ...
Data Con LA 2022 - Intro to Data Science
Data Con LA 2022 - How are NFTs and DeFi Changing Entertainment
Data Con LA 2022 - Why Data Quality vigilance requires an End-to-End, Automat...
Data Con LA 2022-Perfect Viral Ad prediction of Superbowl 2022 using Tease, T...
Data Con LA 2022- Embedding medical journeys with machine learning to improve...
Data Con LA 2022 - Data Streaming with Kafka

Recently uploaded (20)

PPT
Chapter 3 METAL JOINING.pptnnnnnnnnnnnnn
PDF
Lecture1 pattern recognition............
PPTX
05. PRACTICAL GUIDE TO MICROSOFT EXCEL.pptx
PPTX
Moving the Public Sector (Government) to a Digital Adoption
PPT
Reliability_Chapter_ presentation 1221.5784
PPT
Quality review (1)_presentation of this 21
PPTX
Acceptance and paychological effects of mandatory extra coach I classes.pptx
PPTX
ALIMENTARY AND BILIARY CONDITIONS 3-1.pptx
PPTX
oil_refinery_comprehensive_20250804084928 (1).pptx
PPT
Chapter 2 METAL FORMINGhhhhhhhjjjjmmmmmmmmm
PDF
Clinical guidelines as a resource for EBP(1).pdf
PDF
Foundation of Data Science unit number two notes
PDF
168300704-gasification-ppt.pdfhghhhsjsjhsuxush
PPTX
Computer network topology notes for revision
PPTX
Introduction to Knowledge Engineering Part 1
PDF
“Getting Started with Data Analytics Using R – Concepts, Tools & Case Studies”
PDF
Fluorescence-microscope_Botany_detailed content
PPTX
Major-Components-ofNKJNNKNKNKNKronment.pptx
PDF
Mega Projects Data Mega Projects Data
Chapter 3 METAL JOINING.pptnnnnnnnnnnnnn
Lecture1 pattern recognition............
05. PRACTICAL GUIDE TO MICROSOFT EXCEL.pptx
Moving the Public Sector (Government) to a Digital Adoption
Reliability_Chapter_ presentation 1221.5784
Quality review (1)_presentation of this 21
Acceptance and paychological effects of mandatory extra coach I classes.pptx
ALIMENTARY AND BILIARY CONDITIONS 3-1.pptx
oil_refinery_comprehensive_20250804084928 (1).pptx
Chapter 2 METAL FORMINGhhhhhhhjjjjmmmmmmmmm
Clinical guidelines as a resource for EBP(1).pdf
Foundation of Data Science unit number two notes
168300704-gasification-ppt.pdfhghhhsjsjhsuxush
Computer network topology notes for revision
Introduction to Knowledge Engineering Part 1
“Getting Started with Data Analytics Using R – Concepts, Tools & Case Studies”
Fluorescence-microscope_Botany_detailed content
Major-Components-ofNKJNNKNKNKNKronment.pptx
Mega Projects Data Mega Projects Data

Applying Data Science and Analytics in Marketing