SlideShare a Scribd company logo
4
Most read
5
Most read
6
Most read
Jacques.van.Helden@ulb.ac.be
Université Libre de Bruxelles, Belgique
Laboratoire de Bioinformatique des Génomes et des Réseaux (BiGRe)
http://www.bigre.ulb.ac.be/
1
Position-specific scoring matrices (PSSM)
Regulatory sequence analysis
2
.
Binding sites for the yeast Pho4p transcription factor
(Source : Oshima et al. Gene 179, 1996; 171-177)
Alignment of transcription factor binding sites
Gene Site Name Sequence Affinity
PHO5 UASp2 ---aCtCaCACACGTGGGACTAGC- high
PHO84 Site D ---TTTCCAGCACGTGGGGCGGA-- high
PHO81 UAS ----TTATGGCACGTGCGAATAA-- high
PHO8 Proximal GTGATCGCTGCACGTGGCCCGA--- high
group 1 consensus ---------gCACGTGgg------- high
PHO5 UASp1 --TAAATTAGCACGTTTTCGC---- medium
PHO84 Site E ----AATACGCACGTTTTTAATCTA medium
group 2 consensus --------cgCACGTTtt------- medium
Degenerate consensus ---------GCACGTKKk------- high-med
Non-binding sites
PHO5 UASp3 --TAATTTGGCATGTGCGATCTC-- No binding
PHO84 Site C -----ACGTCCACGTGGAACTAT-- No binding
PHO84 Site A -----TTTATCACGTGACACTTTTT No binding
PHO84 Site B -----TTACGCACGTTGGTGCTG-- No binding
PHO8 Distal ---TTACCCGCACGCTTAATAT--- No binding
IUPAC ambiguous nucleotide code
A A Adenine
C C Cy tosine
G G Guanine
T T Thy mine
R A or G puRine
Y C or T pYrimidine
W A or T Weak hy drogen bonding
S G or C Strong hy drogen bonding
M A or C aMino group at common position
K G or T Keto group at common position
H A, C or T not G
B G, C or T not A
V G, A, C not T
D G, A or T not C
N G, A, C or T aNy
Jacques.van.Helden@ulb.ac.be
Université Libre de Bruxelles, Belgique
Laboratoire de Bioinformatique des Génomes et des Réseaux (BiGRe)
http://www.bigre.ulb.ac.be/
3
From alignments to weights
Regulatory sequence analysis
4
Sequence logo
Tom Schneider’s sequence logo
(generated with Web Logo http://weblogo.berkeley.edu/logo.cgi)
Count matrix (TRANSFAC matrix F$PHO4_01)
Residueposition 1 2 3 4 5 6 7 8 9 10 11 12
A 1 3 2 0 8 0 0 0 0 0 1 2
C 2 2 3 8 0 8 0 0 0 2 0 2
G 1 2 3 0 0 0 8 0 5 4 5 2
T 4 1 0 0 0 0 0 8 3 2 2 2
Sum 8 8 8 8 8 8 8 8 8 8 8 8
5
Frequency matrix
Pos 1 2 3 4 5 6 7 8 9 10 11 12
A 0.13 0.38 0.25 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.13 0.25
C 0.25 0.25 0.38 1.00 0.00 1.00 0.00 0.00 0.00 0.25 0.00 0.25
G 0.13 0.25 0.38 0.00 0.00 0.00 1.00 0.00 0.63 0.50 0.63 0.25
T 0.50 0.13 0.00 0.00 0.00 0.00 0.00 1.00 0.38 0.25 0.25 0.25
Sum 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
A alphabet size (=4)
ni,j, occurrences of residue i at position j
pi prior residue probability for residue i
fi,j relative frequency of residue i at position j
Reference: Hertz (1999). Bioinformatics 15:563-577.
!
fi, j =
ni, j
ni, j
i=1
A
"
6
Corrected frequency matrix
P
r
Pos 1 2 3 4 5 6 7 8 9 10 11 12
A 0.15 0.37 0.26 0.04 0.93 0.04 0.04 0.04 0.04 0.04 0.15 0.26
C 0.24 0.24 0.35 0.91 0.02 0.91 0.02 0.02 0.02 0.24 0.02 0.24
G 0.13 0.24 0.35 0.02 0.02 0.02 0.91 0.02 0.58 0.46 0.58 0.24
T 0.48 0.15 0.04 0.04 0.04 0.04 0.04 0.93 0.37 0.26 0.26 0.26
Sum 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
A alphabet size (=4)
ni,j, occurrences of residue i at position j
pi prior residue probability for residue i
fi,j relative frequency of residue i at position j
k pseudo weight (arbitrary, 1 in this case)
f'i,j corrected frequency of residue i at position j
Reference: Hertz (1999). Bioinformatics 15:563-577.
!
fi, j
'
=
ni, j + k /A
ni, j
i=1
A
" + k
!
fi, j
'
=
ni, j + pik
ni, j
i=1
A
" + k
1st option: identically
distributed pseudo-weight
2nd option: pseudo-weight distributed
according to residue priors
7
Weight matrix (Bernoulli model)
Prior Pos 1 2 3 4 5 6 7 8 9 10 11 12
0.325 A -0.79 0.13 -0.23 -2.20 1.05 -2.20 -2.20 -2.20 -2.20 -2.20 -0.79 -0.23
0.175 C 0.32 0.32 0.70 1.65 -2.20 1.65 -2.20 -2.20 -2.20 0.32 -2.20 0.32
0.175 G -0.29 0.32 0.70 -2.20 -2.20 -2.20 1.65 -2.20 1.19 0.97 1.19 0.32
0.325 T 0.39 -0.79 -2.20 -2.20 -2.20 -2.20 -2.20 1.05 0.13 -0.23 -0.23 -0.23
1.000 Sum -0.37 -0.02 -1.02 -4.94 -5.55 -4.94 -4.94 -5.55 -3.08 -1.13 -2.03 0.19
A alphabet size (=4)
ni,j, occurrences of residue i at position j
pi prior residue probability for residue i
fi,j relative frequency of residue i at position j
k pseudo weight (arbitrary, 1 in this case)
f'i,j corrected frequency of residue i at position j
Wi,j weight of residue i at position j
!
Wi, j = ln
fi, j
'
pi
"
#
$
%
&
'
!
fi, j
'
=
ni, j + pik
nr, j
r=1
A
" + k
Reference: Hertz (1999). Bioinformatics 15:563-577.
The use of a weight matrix relies on
Bernoulli assumption
If we assume, for the background
model, an independent succession of
nucleotides (Bernoulli model), the
weight WS of a sequence segment S is
simply the sum of weights of the
nucleotides at successive positions of
the matrix (Wi,j).
In this case, it is convenient to convert
the PSSM into a weight matrix, which
can then be used to assign a score to
each position of a given sequence.
8
Properties of the weight function
!
Wi, j = ln
fi, j
'
pi
"
#
$
%
&
'
!
fi, j
'
=
ni, j + pik
ni, j
i=1
A
" + k
fi, j
'
i=1
A
" =1  The weight is
 positive when f’i,j > pi
(favourable positions for the binding of
the transcription factor)
 negative when f’i,j < pi
(unfavourable positions)
Jacques.van.Helden@ulb.ac.be
Université Libre de Bruxelles, Belgique
Laboratoire de Bioinformatique des Génomes et des Réseaux (BiGRe)
http://www.bigre.ulb.ac.be/
9
Information content
Regulatory sequence analysis
10
Shannon uncertainty
 Shannon uncertainty
 Hs(j): uncertainty of a column of a PSSM
 Hg: uncertainty of the background (e.g. a
genome)
 Special cases of uncertainty
(for a 4 letter alphabet)
 min(H)=0
• No uncertainty at all: the nucleotide is
completely specified (e.g. p={1,0,0,0})
 H=1
• Uncertainty between two letters (e.g.
p={0.5,0,0,0.5})
 max(H) = 2 (Complete uncertainty)
• One bit of information is required to specify
the choice between each alternative (e.g.
p={0.25,0.25,0.25,0.25}).
• Two bits are required to specify a letter in a 4-
letter alphabet.
 Rseq
 Schneider (1986) defines an information
content based on Shannon’s uncertainty.
 R*
seq
 For skewed genomes (i.e. unequal residue
probabilities), Schneider recommends an
alternative formula for the information content
. This is the formula that is nowadays used.
Adapted from Schneider (1986)
!
Hs j( )= " fi, j log2( fi, j )
i=1
A
#
Hg = " pi log2(pi)
i=1
A
#
Rseq j( ) = Hg " Hs j( ) Rseq = Rseq j( )
j=1
w
#
Rseq
*
j( ) = fi, j log2
fi, j
pi
$
%
&
'
(
)
i=1
A
# Rseq
*
= Rseq
*
j( )
j=1
w
#
11
Schneider logos
 Schneider (1990) proposes a graphical representation based on his previous entropy (H) for
representing the importance of each residue at each position of an alignment. He provides a new
formula for Rseq
 Hs(j) uncertainty of column j
 Rseq(j) “information content” of column j (beware, this definition differs from Hertz’ information content)
 e(n) correction for small samples (pseudo-weight)
 Remarks
 This information content does not include any correction for the prior residue probabilities (pi)
 This information content is expressed in bits.
 Boundaries
 min(Rseq)=0 equiprobable residues
 max(Rseq)=2 perfect conservation of 1 residue with a pseudo-weight of 0,
 Sequence logos can be generated from aligned sequences on the Weblogo server
 http://weblogo.berkeley.edu/
!
Hs j( )= " fij log2( fij )
i=1
A
#
Rseq j( ) = 2 " Hs j( )+ e n( )
hij = fijRseq ( j)
Pho4p binding motif
12
Sequence logo
Rap1
Rpn4
Gcn4
HSE
Mig1
Cbf1
13
Information content
Prior Pos 1 2 3 4 5 6 7 8 9 10 11 12
0.325 A -0.12 0.05 -0.06 -0.08 0.97 -0.08 -0.08 -0.08 -0.08 -0.08 -0.12 -0.06
0.175 C 0.08 0.08 0.25 1.50 -0.04 1.50 -0.04 -0.04 -0.04 0.08 -0.04 0.08
0.175 G -0.04 0.08 0.25 -0.04 -0.04 -0.04 1.50 -0.04 0.68 0.45 0.68 0.08
0.325 T 0.19 -0.12 -0.08 -0.08 -0.08 -0.08 -0.08 0.97 0.05 -0.06 -0.06 -0.06
1.000 Sum 0.11 0.09 0.36 1.29 0.80 1.29 1.29 0.80 0.61 0.39 0.47 0.04
!
Imatrix = Ii, j
i=1
A
"
j=1
w
"
A alphabet size (=4)
ni,j, occurrences of residue i at position j
w matrix width (=12)
pi prior residue probability for residue i
fi,j relative frequency of residue i at position j
k pseudo weight (arbitrary, 1 in this case)
f'i,j corrected frequency of residue i at position j
Wi,j weight of residue i at position j
Ii,j information of residue i at position j
!
fi, j
'
=
ni, j + pik
ni, j
i=1
A
" + k
!
Ii, j = fi, j
'
ln
fi, j
'
pi
"
#
$
%
&
'
Reference: Hertz (1999).
Bioinformatics 15:563-577.
!
Ij = Ii, j
i=1
A
"
14
Information content Iij of a cell of the matrix
 For a given cell of the matrix
 Iij is positive when f’ij > pi
(i.e. when residue i is more frequent at position j than expected by chance)
 Iij is negative when f’ij < pi
 Iij tends towards 0 when f’ij -> 0 (because limitx->0 x*ln(x) = 0)
15
Information content of a column of the matrix
 For a given column i of the matrix
 The information of the column (Ij) is the
sum of information of its cells.
 Ij is always positive
 Ij is always positive
 Ij is 0 when the frequency of all residues
equal their prior probability (fij=pi)
 Ij is maximal when
• the residue im with the lowest prior
probability has a frequency of 1
(all other residues have a frequency of 0)
• and the pseudo-weight is 0
!
Ij = Ii, j
i=1
A
" = fi, j
'
ln
fi, j
'
pi
#
$
%
&
'
(
i=1
A
"
!
im = argmini (pi ) k = 0
max(Ij )=1*ln(
1
pi
) = "ln(pi )
16
!
Imatrix = Ii, j
i=1
A
"
j=1
w
"
!
P site( ) " e#Imatrix
Information content of the matrix
 The total information content represents the capability
of the matrix to make the distinction between a
binding site (represented by the matrix) and the
background model.
 The information content also allows to estimate an
upper limit for the expected frequency of the binding
sites in random sequences.
 The pattern discovery program consensus (developed
by Jerry Hertz) optimises the information content in
order to detect over-represented motifs.
 Note that this is not the case of all pattern discovery
programs: the gibbs sampler algorithm optimizes a
log-likelihood.
Reference: Hertz (1999). Bioinformatics 15:563-577.
17
Information content: effect of prior probabilities
 The upper bound of Ij increases when pi decreases
 Ij -> Inf when pi -> 0
 The information content, as defined by Gerald Hertz, has thus no upper bound.
18
References - PSSM information content
 Papers by Tom Schneider
 Schneider, T.D., G.D. Stormo, L. Gold, and A. Ehrenfeucht. 1986.
Information content of binding sites on nucleotide sequences. J Mol Biol
188: 415-431.
 Schneider, T.D. and R.M. Stephens. 1990. Sequence logos: a new way
to display consensus sequences. Nucleic Acids Res 18: 6097-6100.
 Tom Schneider’s publications online
• http://www.lecb.ncifcrf.gov/~toms/paper/index.html
 Papers by Gerald Hertz
 Hertz, G.Z. and G.D. Stormo. 1999. Identifying DNA and protein
patterns with statistically significant alignments of multiple sequences.
Bioinformatics 15: 563-577.

More Related Content

PPTX
Bioinformatics
PDF
BITS: Basics of sequence analysis
PPTX
Clustal W - Multiple Sequence alignment
PPTX
System's Biology
PPTX
Needleman-wunch algorithm harshita
PPT
Sequence alignment belgaum
PPTX
Sequence Analysis
PDF
Visualizing the pan genome - Australian Society for Microbiology - tue 8 jul ...
Bioinformatics
BITS: Basics of sequence analysis
Clustal W - Multiple Sequence alignment
System's Biology
Needleman-wunch algorithm harshita
Sequence alignment belgaum
Sequence Analysis
Visualizing the pan genome - Australian Society for Microbiology - tue 8 jul ...

What's hot (20)

PPTX
sequence of file formats in bioinformatics
PPT
Needleman wunsch computional ppt
PPTX
Bioinfromatics - local alignment
PPTX
Biological databases
PPT
RNA secondary structure prediction
PPT
Protein Structure, Databases and Structural Alignment
PPT
The Smith Waterman algorithm
PDF
2D-PAGE & DIGE
PDF
dot plot analysis
PPT
Sequencealignmentinbioinformatics 100204112518-phpapp02
PPT
Sequence Analysis
PPTX
Gene Expression Omnibus (GEO)
PPTX
Protein fold recognition and ab_initio modeling
PPTX
Global and local alignment (bioinformatics)
PPTX
Sequence alignment
PPTX
PPT
Biological databases
PDF
Advanced BLAST (BlastP, PSI-BLAST)
PPTX
Single nucleotide polymorphisms (sn ps), haplotypes,
PDF
BITS: UCSC genome browser - Part 1
sequence of file formats in bioinformatics
Needleman wunsch computional ppt
Bioinfromatics - local alignment
Biological databases
RNA secondary structure prediction
Protein Structure, Databases and Structural Alignment
The Smith Waterman algorithm
2D-PAGE & DIGE
dot plot analysis
Sequencealignmentinbioinformatics 100204112518-phpapp02
Sequence Analysis
Gene Expression Omnibus (GEO)
Protein fold recognition and ab_initio modeling
Global and local alignment (bioinformatics)
Sequence alignment
Biological databases
Advanced BLAST (BlastP, PSI-BLAST)
Single nucleotide polymorphisms (sn ps), haplotypes,
BITS: UCSC genome browser - Part 1
Ad

Viewers also liked (20)

PDF
Digital preservation activity
PDF
Relatório Proppi
PDF
Ambiental - CNI
PDF
Lista dos Postos de Turismo no Alentejo
PPT
PPTX
Ref virtual cambridge college
DOC
Proyecto, investigacion equipo #1 5°B programacion
DOCX
Plantas indrustrial
PDF
14 06-09 mae-informe-diario
DOC
Inadi
PDF
Resumo boo-box
PPT
Inteligência 360º
PPTX
Presentación jornada estratégica
DOCX
Research Paper
PDF
Planejamento estratégico - RioJunior - 2014
PDF
Антимонопольное регулирование и контроль на рынках нефти и нефтепродуктов РФ....
 
PDF
memorias operacao rodin
PDF
Ligas (rúbricas, evaluación)
DOCX
Contacto
Digital preservation activity
Relatório Proppi
Ambiental - CNI
Lista dos Postos de Turismo no Alentejo
Ref virtual cambridge college
Proyecto, investigacion equipo #1 5°B programacion
Plantas indrustrial
14 06-09 mae-informe-diario
Inadi
Resumo boo-box
Inteligência 360º
Presentación jornada estratégica
Research Paper
Planejamento estratégico - RioJunior - 2014
Антимонопольное регулирование и контроль на рынках нефти и нефтепродуктов РФ....
 
memorias operacao rodin
Ligas (rúbricas, evaluación)
Contacto
Ad

Similar to 01.4.pssm theory (20)

PPTX
Bioinformatics life sciences_v2015
PDF
Basics of bioinformatics
PPT
RNA synthesis
PDF
Signals of Evolution: Conservation, Specificity Determining Positions and Coe...
PDF
Bio informatics, Sequence tags, log odds and profile
PDF
Integration of biological annotations using hierarchical modeling
 
PPT
Bioinformatica 10-11-2011-t5-database searching
PPTX
Bioinformatica t3-scoringmatrices v2014
PPTX
The application of artificial intelligence
PPT
Prediction of transcription factor binding to DNA using rule induction methods
PDF
Personalized medicine via molecular interrogation, data mining and systems bi...
PPTX
2015 bioinformatics score_matrices_wim_vancriekinge
PPT
Project report-on-bio-informatics
PDF
Afp cafa djuric
PPTX
Knowledge extraction and visualisation using rule-based machine learning
PPT
Kyle Jensen's MIT Ph.D. Thesis Proposal
PPTX
Bioinformatica t5-database searching
PPTX
2016 bioinformatics i_score_matrices_wim_vancriekinge
PPTX
Bioinformatics t5-databasesearching v2014
PDF
Interpretation of sequence variants in the biomedical environment: what shoul...
Bioinformatics life sciences_v2015
Basics of bioinformatics
RNA synthesis
Signals of Evolution: Conservation, Specificity Determining Positions and Coe...
Bio informatics, Sequence tags, log odds and profile
Integration of biological annotations using hierarchical modeling
 
Bioinformatica 10-11-2011-t5-database searching
Bioinformatica t3-scoringmatrices v2014
The application of artificial intelligence
Prediction of transcription factor binding to DNA using rule induction methods
Personalized medicine via molecular interrogation, data mining and systems bi...
2015 bioinformatics score_matrices_wim_vancriekinge
Project report-on-bio-informatics
Afp cafa djuric
Knowledge extraction and visualisation using rule-based machine learning
Kyle Jensen's MIT Ph.D. Thesis Proposal
Bioinformatica t5-database searching
2016 bioinformatics i_score_matrices_wim_vancriekinge
Bioinformatics t5-databasesearching v2014
Interpretation of sequence variants in the biomedical environment: what shoul...

01.4.pssm theory

  • 1. Jacques.van.Helden@ulb.ac.be Université Libre de Bruxelles, Belgique Laboratoire de Bioinformatique des Génomes et des Réseaux (BiGRe) http://www.bigre.ulb.ac.be/ 1 Position-specific scoring matrices (PSSM) Regulatory sequence analysis
  • 2. 2 . Binding sites for the yeast Pho4p transcription factor (Source : Oshima et al. Gene 179, 1996; 171-177) Alignment of transcription factor binding sites Gene Site Name Sequence Affinity PHO5 UASp2 ---aCtCaCACACGTGGGACTAGC- high PHO84 Site D ---TTTCCAGCACGTGGGGCGGA-- high PHO81 UAS ----TTATGGCACGTGCGAATAA-- high PHO8 Proximal GTGATCGCTGCACGTGGCCCGA--- high group 1 consensus ---------gCACGTGgg------- high PHO5 UASp1 --TAAATTAGCACGTTTTCGC---- medium PHO84 Site E ----AATACGCACGTTTTTAATCTA medium group 2 consensus --------cgCACGTTtt------- medium Degenerate consensus ---------GCACGTKKk------- high-med Non-binding sites PHO5 UASp3 --TAATTTGGCATGTGCGATCTC-- No binding PHO84 Site C -----ACGTCCACGTGGAACTAT-- No binding PHO84 Site A -----TTTATCACGTGACACTTTTT No binding PHO84 Site B -----TTACGCACGTTGGTGCTG-- No binding PHO8 Distal ---TTACCCGCACGCTTAATAT--- No binding IUPAC ambiguous nucleotide code A A Adenine C C Cy tosine G G Guanine T T Thy mine R A or G puRine Y C or T pYrimidine W A or T Weak hy drogen bonding S G or C Strong hy drogen bonding M A or C aMino group at common position K G or T Keto group at common position H A, C or T not G B G, C or T not A V G, A, C not T D G, A or T not C N G, A, C or T aNy
  • 3. Jacques.van.Helden@ulb.ac.be Université Libre de Bruxelles, Belgique Laboratoire de Bioinformatique des Génomes et des Réseaux (BiGRe) http://www.bigre.ulb.ac.be/ 3 From alignments to weights Regulatory sequence analysis
  • 4. 4 Sequence logo Tom Schneider’s sequence logo (generated with Web Logo http://weblogo.berkeley.edu/logo.cgi) Count matrix (TRANSFAC matrix F$PHO4_01) Residueposition 1 2 3 4 5 6 7 8 9 10 11 12 A 1 3 2 0 8 0 0 0 0 0 1 2 C 2 2 3 8 0 8 0 0 0 2 0 2 G 1 2 3 0 0 0 8 0 5 4 5 2 T 4 1 0 0 0 0 0 8 3 2 2 2 Sum 8 8 8 8 8 8 8 8 8 8 8 8
  • 5. 5 Frequency matrix Pos 1 2 3 4 5 6 7 8 9 10 11 12 A 0.13 0.38 0.25 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.13 0.25 C 0.25 0.25 0.38 1.00 0.00 1.00 0.00 0.00 0.00 0.25 0.00 0.25 G 0.13 0.25 0.38 0.00 0.00 0.00 1.00 0.00 0.63 0.50 0.63 0.25 T 0.50 0.13 0.00 0.00 0.00 0.00 0.00 1.00 0.38 0.25 0.25 0.25 Sum 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 A alphabet size (=4) ni,j, occurrences of residue i at position j pi prior residue probability for residue i fi,j relative frequency of residue i at position j Reference: Hertz (1999). Bioinformatics 15:563-577. ! fi, j = ni, j ni, j i=1 A "
  • 6. 6 Corrected frequency matrix P r Pos 1 2 3 4 5 6 7 8 9 10 11 12 A 0.15 0.37 0.26 0.04 0.93 0.04 0.04 0.04 0.04 0.04 0.15 0.26 C 0.24 0.24 0.35 0.91 0.02 0.91 0.02 0.02 0.02 0.24 0.02 0.24 G 0.13 0.24 0.35 0.02 0.02 0.02 0.91 0.02 0.58 0.46 0.58 0.24 T 0.48 0.15 0.04 0.04 0.04 0.04 0.04 0.93 0.37 0.26 0.26 0.26 Sum 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 A alphabet size (=4) ni,j, occurrences of residue i at position j pi prior residue probability for residue i fi,j relative frequency of residue i at position j k pseudo weight (arbitrary, 1 in this case) f'i,j corrected frequency of residue i at position j Reference: Hertz (1999). Bioinformatics 15:563-577. ! fi, j ' = ni, j + k /A ni, j i=1 A " + k ! fi, j ' = ni, j + pik ni, j i=1 A " + k 1st option: identically distributed pseudo-weight 2nd option: pseudo-weight distributed according to residue priors
  • 7. 7 Weight matrix (Bernoulli model) Prior Pos 1 2 3 4 5 6 7 8 9 10 11 12 0.325 A -0.79 0.13 -0.23 -2.20 1.05 -2.20 -2.20 -2.20 -2.20 -2.20 -0.79 -0.23 0.175 C 0.32 0.32 0.70 1.65 -2.20 1.65 -2.20 -2.20 -2.20 0.32 -2.20 0.32 0.175 G -0.29 0.32 0.70 -2.20 -2.20 -2.20 1.65 -2.20 1.19 0.97 1.19 0.32 0.325 T 0.39 -0.79 -2.20 -2.20 -2.20 -2.20 -2.20 1.05 0.13 -0.23 -0.23 -0.23 1.000 Sum -0.37 -0.02 -1.02 -4.94 -5.55 -4.94 -4.94 -5.55 -3.08 -1.13 -2.03 0.19 A alphabet size (=4) ni,j, occurrences of residue i at position j pi prior residue probability for residue i fi,j relative frequency of residue i at position j k pseudo weight (arbitrary, 1 in this case) f'i,j corrected frequency of residue i at position j Wi,j weight of residue i at position j ! Wi, j = ln fi, j ' pi " # $ % & ' ! fi, j ' = ni, j + pik nr, j r=1 A " + k Reference: Hertz (1999). Bioinformatics 15:563-577. The use of a weight matrix relies on Bernoulli assumption If we assume, for the background model, an independent succession of nucleotides (Bernoulli model), the weight WS of a sequence segment S is simply the sum of weights of the nucleotides at successive positions of the matrix (Wi,j). In this case, it is convenient to convert the PSSM into a weight matrix, which can then be used to assign a score to each position of a given sequence.
  • 8. 8 Properties of the weight function ! Wi, j = ln fi, j ' pi " # $ % & ' ! fi, j ' = ni, j + pik ni, j i=1 A " + k fi, j ' i=1 A " =1  The weight is  positive when f’i,j > pi (favourable positions for the binding of the transcription factor)  negative when f’i,j < pi (unfavourable positions)
  • 9. Jacques.van.Helden@ulb.ac.be Université Libre de Bruxelles, Belgique Laboratoire de Bioinformatique des Génomes et des Réseaux (BiGRe) http://www.bigre.ulb.ac.be/ 9 Information content Regulatory sequence analysis
  • 10. 10 Shannon uncertainty  Shannon uncertainty  Hs(j): uncertainty of a column of a PSSM  Hg: uncertainty of the background (e.g. a genome)  Special cases of uncertainty (for a 4 letter alphabet)  min(H)=0 • No uncertainty at all: the nucleotide is completely specified (e.g. p={1,0,0,0})  H=1 • Uncertainty between two letters (e.g. p={0.5,0,0,0.5})  max(H) = 2 (Complete uncertainty) • One bit of information is required to specify the choice between each alternative (e.g. p={0.25,0.25,0.25,0.25}). • Two bits are required to specify a letter in a 4- letter alphabet.  Rseq  Schneider (1986) defines an information content based on Shannon’s uncertainty.  R* seq  For skewed genomes (i.e. unequal residue probabilities), Schneider recommends an alternative formula for the information content . This is the formula that is nowadays used. Adapted from Schneider (1986) ! Hs j( )= " fi, j log2( fi, j ) i=1 A # Hg = " pi log2(pi) i=1 A # Rseq j( ) = Hg " Hs j( ) Rseq = Rseq j( ) j=1 w # Rseq * j( ) = fi, j log2 fi, j pi $ % & ' ( ) i=1 A # Rseq * = Rseq * j( ) j=1 w #
  • 11. 11 Schneider logos  Schneider (1990) proposes a graphical representation based on his previous entropy (H) for representing the importance of each residue at each position of an alignment. He provides a new formula for Rseq  Hs(j) uncertainty of column j  Rseq(j) “information content” of column j (beware, this definition differs from Hertz’ information content)  e(n) correction for small samples (pseudo-weight)  Remarks  This information content does not include any correction for the prior residue probabilities (pi)  This information content is expressed in bits.  Boundaries  min(Rseq)=0 equiprobable residues  max(Rseq)=2 perfect conservation of 1 residue with a pseudo-weight of 0,  Sequence logos can be generated from aligned sequences on the Weblogo server  http://weblogo.berkeley.edu/ ! Hs j( )= " fij log2( fij ) i=1 A # Rseq j( ) = 2 " Hs j( )+ e n( ) hij = fijRseq ( j) Pho4p binding motif
  • 13. 13 Information content Prior Pos 1 2 3 4 5 6 7 8 9 10 11 12 0.325 A -0.12 0.05 -0.06 -0.08 0.97 -0.08 -0.08 -0.08 -0.08 -0.08 -0.12 -0.06 0.175 C 0.08 0.08 0.25 1.50 -0.04 1.50 -0.04 -0.04 -0.04 0.08 -0.04 0.08 0.175 G -0.04 0.08 0.25 -0.04 -0.04 -0.04 1.50 -0.04 0.68 0.45 0.68 0.08 0.325 T 0.19 -0.12 -0.08 -0.08 -0.08 -0.08 -0.08 0.97 0.05 -0.06 -0.06 -0.06 1.000 Sum 0.11 0.09 0.36 1.29 0.80 1.29 1.29 0.80 0.61 0.39 0.47 0.04 ! Imatrix = Ii, j i=1 A " j=1 w " A alphabet size (=4) ni,j, occurrences of residue i at position j w matrix width (=12) pi prior residue probability for residue i fi,j relative frequency of residue i at position j k pseudo weight (arbitrary, 1 in this case) f'i,j corrected frequency of residue i at position j Wi,j weight of residue i at position j Ii,j information of residue i at position j ! fi, j ' = ni, j + pik ni, j i=1 A " + k ! Ii, j = fi, j ' ln fi, j ' pi " # $ % & ' Reference: Hertz (1999). Bioinformatics 15:563-577. ! Ij = Ii, j i=1 A "
  • 14. 14 Information content Iij of a cell of the matrix  For a given cell of the matrix  Iij is positive when f’ij > pi (i.e. when residue i is more frequent at position j than expected by chance)  Iij is negative when f’ij < pi  Iij tends towards 0 when f’ij -> 0 (because limitx->0 x*ln(x) = 0)
  • 15. 15 Information content of a column of the matrix  For a given column i of the matrix  The information of the column (Ij) is the sum of information of its cells.  Ij is always positive  Ij is always positive  Ij is 0 when the frequency of all residues equal their prior probability (fij=pi)  Ij is maximal when • the residue im with the lowest prior probability has a frequency of 1 (all other residues have a frequency of 0) • and the pseudo-weight is 0 ! Ij = Ii, j i=1 A " = fi, j ' ln fi, j ' pi # $ % & ' ( i=1 A " ! im = argmini (pi ) k = 0 max(Ij )=1*ln( 1 pi ) = "ln(pi )
  • 16. 16 ! Imatrix = Ii, j i=1 A " j=1 w " ! P site( ) " e#Imatrix Information content of the matrix  The total information content represents the capability of the matrix to make the distinction between a binding site (represented by the matrix) and the background model.  The information content also allows to estimate an upper limit for the expected frequency of the binding sites in random sequences.  The pattern discovery program consensus (developed by Jerry Hertz) optimises the information content in order to detect over-represented motifs.  Note that this is not the case of all pattern discovery programs: the gibbs sampler algorithm optimizes a log-likelihood. Reference: Hertz (1999). Bioinformatics 15:563-577.
  • 17. 17 Information content: effect of prior probabilities  The upper bound of Ij increases when pi decreases  Ij -> Inf when pi -> 0  The information content, as defined by Gerald Hertz, has thus no upper bound.
  • 18. 18 References - PSSM information content  Papers by Tom Schneider  Schneider, T.D., G.D. Stormo, L. Gold, and A. Ehrenfeucht. 1986. Information content of binding sites on nucleotide sequences. J Mol Biol 188: 415-431.  Schneider, T.D. and R.M. Stephens. 1990. Sequence logos: a new way to display consensus sequences. Nucleic Acids Res 18: 6097-6100.  Tom Schneider’s publications online • http://www.lecb.ncifcrf.gov/~toms/paper/index.html  Papers by Gerald Hertz  Hertz, G.Z. and G.D. Stormo. 1999. Identifying DNA and protein patterns with statistically significant alignments of multiple sequences. Bioinformatics 15: 563-577.