This document discusses data preprocessing techniques for data mining. It covers data cleaning, integration, reduction, transformation, and discretization. Data cleaning involves handling missing, noisy, and inconsistent data through techniques like filling in missing values, smoothing noisy data, and resolving inconsistencies. Data integration combines data from multiple sources. Data reduction reduces data size through dimensionality reduction, numerosity reduction, and compression. Dimensionality reduction techniques include wavelet transforms and principal component analysis.