SlideShare a Scribd company logo
Factoring Trinomials II
Factoring Trinomials II
Now let’s try to factor trinomials of the form ax2 + bx + c.
Factoring Trinomials II
Now let’s try to factor trinomials of the form ax2 + bx + c.
We’ll give two methods.
Factoring Trinomials II
Now let’s try to factor trinomials of the form ax2 + bx + c.
We’ll give two methods. One is short but not reliable.
Factoring Trinomials II
Now let’s try to factor trinomials of the form ax2 + bx + c.
We’ll give two methods. One is short but not reliable.
The second one takes more steps but gives definite answers.
Factoring Trinomials II
Now let’s try to factor trinomials of the form ax2 + bx + c.
We’ll give two methods. One is short but not reliable.
The second one takes more steps but gives definite answers.
Reversed FOIL Method
Factoring Trinomials II
Now let’s try to factor trinomials of the form ax2 + bx + c.
We’ll give two methods. One is short but not reliable.
The second one takes more steps but gives definite answers.
For this method, we need to find four numbers that fit certain
descriptions.
Reversed FOIL Method
Factoring Trinomials II
Now let’s try to factor trinomials of the form ax2 + bx + c.
We’ll give two methods. One is short but not reliable.
The second one takes more steps but gives definite answers.
For this method, we need to find four numbers that fit certain
descriptions. The following are examples of the task to be
accomplished.
Reversed FOIL Method
Factoring Trinomials II
Now let’s try to factor trinomials of the form ax2 + bx + c.
We’ll give two methods. One is short but not reliable.
The second one takes more steps but gives definite answers.
For this method, we need to find four numbers that fit certain
descriptions. The following are examples of the task to be
accomplished.
Example A. Let {1, 3} and {1, 2} be two pairs of numbers.
Is it possible to split the {1, 2 }, put them in the boxes that
makes the equality true?
Reversed FOIL Method
Factoring Trinomials II
Now let’s try to factor trinomials of the form ax2 + bx + c.
We’ll give two methods. One is short but not reliable.
The second one takes more steps but gives definite answers.
For this method, we need to find four numbers that fit certain
descriptions. The following are examples of the task to be
accomplished.
Example A. Let {1, 3} and {1, 2} be two pairs of numbers.
Is it possible to split the {1, 2 }, put them in the boxes that
makes the equality true?
a. 1* (± ) + 3*(± ) = 5.
Reversed FOIL Method
Factoring Trinomials II
Now let’s try to factor trinomials of the form ax2 + bx + c.
We’ll give two methods. One is short but not reliable.
The second one takes more steps but gives definite answers.
For this method, we need to find four numbers that fit certain
descriptions. The following are examples of the task to be
accomplished.
Example A. Let {1, 3} and {1, 2} be two pairs of numbers.
Is it possible to split the {1, 2 }, put them in the boxes that
makes the equality true?
a. 1* (± ) + 3*(± ) = 5.
Yes, 1* (2) + 3 * (1) = 5
Reversed FOIL Method
Factoring Trinomials II
Now let’s try to factor trinomials of the form ax2 + bx + c.
We’ll give two methods. One is short but not reliable.
The second one takes more steps but gives definite answers.
For this method, we need to find four numbers that fit certain
descriptions. The following are examples of the task to be
accomplished.
Example A. Let {1, 3} and {1, 2} be two pairs of numbers.
Is it possible to split the {1, 2 }, put them in the boxes that
makes the equality true?
a. 1* (± ) + 3*(± ) = 5.
Yes, 1* (2) + 3 * (1) = 5
b. 1* (± ) + 3* (± ) = –5.
Reversed FOIL Method
Factoring Trinomials II
Now let’s try to factor trinomials of the form ax2 + bx + c.
We’ll give two methods. One is short but not reliable.
The second one takes more steps but gives definite answers.
For this method, we need to find four numbers that fit certain
descriptions. The following are examples of the task to be
accomplished.
Example A. Let {1, 3} and {1, 2} be two pairs of numbers.
Is it possible to split the {1, 2 }, put them in the boxes that
makes the equality true?
a. 1* (± ) + 3*(± ) = 5.
Yes, 1* (2) + 3 * (1) = 5
b. 1* (± ) + 3* (± ) = –5.
Yes, 1* (1) + 3* (–2) = –5
Reversed FOIL Method
Factoring Trinomials II
Now let’s try to factor trinomials of the form ax2 + bx + c.
We’ll give two methods. One is short but not reliable.
The second one takes more steps but gives definite answers.
For this method, we need to find four numbers that fit certain
descriptions. The following are examples of the task to be
accomplished.
Example A. Let {1, 3} and {1, 2} be two pairs of numbers.
Is it possible to split the {1, 2 }, put them in the boxes that
makes the equality true?
a. 1* (± ) + 3*(± ) = 5.
Yes, 1* (2) + 3 * (1) = 5
b. 1* (± ) + 3* (± ) = –5.
Yes, 1* (1) + 3* (–2) = –5 or 1* (–2) + 3* (–1) = –5
Reversed FOIL Method
Factoring Trinomials II
Now let’s try to factor trinomials of the form ax2 + bx + c.
We’ll give two methods. One is short but not reliable.
The second one takes more steps but gives definite answers.
For this method, we need to find four numbers that fit certain
descriptions. The following are examples of the task to be
accomplished.
Example A. Let {1, 3} and {1, 2} be two pairs of numbers.
Is it possible to split the {1, 2 }, put them in the boxes that
makes the equality true?
a. 1* (± ) + 3*(± ) = 5.
Yes, 1* (2) + 3 * (1) = 5
b. 1* (± ) + 3* (± ) = –5.
Yes, 1* (1) + 3* (–2) = –5 or 1* (–2) + 3* (–1) = –5
c. 1* (± ) + 3* (± ) = 8.
Reversed FOIL Method
Factoring Trinomials II
Now let’s try to factor trinomials of the form ax2 + bx + c.
We’ll give two methods. One is short but not reliable.
The second one takes more steps but gives definite answers.
For this method, we need to find four numbers that fit certain
descriptions. The following are examples of the task to be
accomplished.
Example A. Let {1, 3} and {1, 2} be two pairs of numbers.
Is it possible to split the {1, 2 }, put them in the boxes that
makes the equality true?
a. 1* (± ) + 3*(± ) = 5.
Yes, 1* (2) + 3 * (1) = 5
b. 1* (± ) + 3* (± ) = –5.
Yes, 1* (1) + 3* (–2) = –5 or 1* (–2) + 3* (–1) = –5
c. 1* (± ) + 3* (± ) = 8.
No, since the most we can obtain is 1* (1) + 3* (2) = 7.
Reversed FOIL Method
Factoring Trinomials II
(Reversed FOIL Method)
Factoring Trinomials II
(Reversed FOIL Method)
Let’s see how the above examples are related to factoring.
Example B. Factor 3x2 + 5x + 2.
Factoring Trinomials II
(Reversed FOIL Method)
Let’s see how the above examples are related to factoring.
Example B. Factor 3x2 + 5x + 2.
The only way to get 3x2 is (3x ± #)(1x ± #).
Factoring Trinomials II
(Reversed FOIL Method)
Let’s see how the above examples are related to factoring.
Example B. Factor 3x2 + 5x + 2.
The only way to get 3x2 is (3x ± #)(1x ± #).
The #’s must be 1 and 2
Factoring Trinomials II
(Reversed FOIL Method)
Let’s see how the above examples are related to factoring.
Example B. Factor 3x2 + 5x + 2.
The only way to get 3x2 is (3x ± #)(1x ± #).
The #’s must be 1 and 2 to get the constant term +2.
Factoring Trinomials II
(Reversed FOIL Method)
Let’s see how the above examples are related to factoring.
Example B. Factor 3x2 + 5x + 2.
The only way to get 3x2 is (3x ± #)(1x ± #).
The #’s must be 1 and 2 to get the constant term +2.
We need to place 1 and 2 as the #'s so the product will
yield the correct middle term +5x.
Factoring Trinomials II
(Reversed FOIL Method)
Let’s see how the above examples are related to factoring.
Example B. Factor 3x2 + 5x + 2.
The only way to get 3x2 is (3x ± #)(1x ± #).
The #’s must be 1 and 2 to get the constant term +2.
We need to place 1 and 2 as the #'s so the product will
yield the correct middle term +5x.
That is, (3x ± #)(1x ± #) must yields +5x,
Factoring Trinomials II
(Reversed FOIL Method)
Let’s see how the above examples are related to factoring.
3(± # ) +1(± #) = 5 where the #’s are 1 and 2.
Factoring Trinomials II
(Reversed FOIL Method)
Let’s see how the above examples are related to factoring.
Example B. Factor 3x2 + 5x + 2.
The only way to get 3x2 is (3x ± #)(1x ± #).
The #’s must be 1 and 2 to get the constant term +2.
We need to place 1 and 2 as the #'s so the product will
yield the correct middle term +5x.
That is, (3x ± #)(1x ± #) must yields +5x, or that
3(± # ) +1(± #) = 5 where the #’s are 1 and 2.
Since 3(1) +1(2) = 5,
Factoring Trinomials II
(Reversed FOIL Method)
Let’s see how the above examples are related to factoring.
Example B. Factor 3x2 + 5x + 2.
The only way to get 3x2 is (3x ± #)(1x ± #).
The #’s must be 1 and 2 to get the constant term +2.
We need to place 1 and 2 as the #'s so the product will
yield the correct middle term +5x.
That is, (3x ± #)(1x ± #) must yields +5x, or that
3(± # ) +1(± #) = 5 where the #’s are 1 and 2.
Since 3(1) +1(2) = 5,
Factoring Trinomials II
(Reversed FOIL Method)
Let’s see how the above examples are related to factoring.
Example B. Factor 3x2 + 5x + 2.
The only way to get 3x2 is (3x ± #)(1x ± #).
The #’s must be 1 and 2 to get the constant term +2.
We need to place 1 and 2 as the #'s so the product will
yield the correct middle term +5x.
That is, (3x ± #)(1x ± #) must yields +5x, or that
3(± # ) +1(± #) = 5 where the #’s are 1 and 2.
Since 3(1) +1(2) = 5,
Factoring Trinomials II
(Reversed FOIL Method)
Let’s see how the above examples are related to factoring.
Example B. Factor 3x2 + 5x + 2.
The only way to get 3x2 is (3x ± #)(1x ± #).
The #’s must be 1 and 2 to get the constant term +2.
We need to place 1 and 2 as the #'s so the product will
yield the correct middle term +5x.
That is, (3x ± #)(1x ± #) must yields +5x, or that
3(± # ) +1(± #) = 5 where the #’s are 1 and 2.
Since 3(1) +1(2) = 5, we see that
3x2 + 5x + 2 = (3x + 2)(1x + 1).
Factoring Trinomials II
(Reversed FOIL Method)
Let’s see how the above examples are related to factoring.
Example B. Factor 3x2 + 5x + 2.
The only way to get 3x2 is (3x ± #)(1x ± #).
The #’s must be 1 and 2 to get the constant term +2.
We need to place 1 and 2 as the #'s so the product will
yield the correct middle term +5x.
That is, (3x ± #)(1x ± #) must yields +5x, or that
3(± # ) +1(± #) = 5 where the #’s are 1 and 2.
Since 3(1) +1(2) = 5, we see that
3x2 + 5x + 2 = (3x + 2)(1x + 1).
5x
Factoring Trinomials II
(Reversed FOIL Method)
Let’s see how the above examples are related to factoring.
Example B. Factor 3x2 + 5x + 2.
The only way to get 3x2 is (3x ± #)(1x ± #).
The #’s must be 1 and 2 to get the constant term +2.
We need to place 1 and 2 as the #'s so the product will
yield the correct middle term +5x.
That is, (3x ± #)(1x ± #) must yields +5x, or that
Factoring Trinomials II
Example C. Factor 3x2 – 7x + 2.
Factoring Trinomials II
Example C. Factor 3x2 – 7x + 2.
We start with (3x ± #)(1x ± #).
Factoring Trinomials II
Example C. Factor 3x2 – 7x + 2.
We start with (3x ± #)(1x ± #).
We need to fill in 1 and 2 as #'s
3(± # ) + 1(± # ) = –7.
Factoring Trinomials II
Example C. Factor 3x2 – 7x + 2.
We start with (3x ± #)(1x ± #).
We need to fill in 1 and 2 as #'s so that
3(± # ) + 1(± # ) = –7.
It's 3(–2) + 1(–1) = –7.
Factoring Trinomials II
Example C. Factor 3x2 – 7x + 2.
We start with (3x ± #)(1x ± #).
We need to fill in 1 and 2 as #'s so that
3(± # ) + 1(± # ) = –7.
It's 3(–2) + 1(–1) = –7.
So 3x2 – 7x + 2 = (3x –1)(1x – 2)
Factoring Trinomials II
Example C. Factor 3x2 – 7x + 2.
We start with (3x ± #)(1x ± #).
We need to fill in 1 and 2 as #'s so that
3(± # ) + 1(± # ) = –7.
It's 3(–2) + 1(–1) = –7.
So 3x2 – 7x + 2 = (3x –1)(1x – 2)
Example D. Factor 3x2 + 5x – 2.
Factoring Trinomials II
Example C. Factor 3x2 – 7x + 2.
We start with (3x ± #)(1x ± #).
We need to fill in 1 and 2 as #'s so that
3(± # ) + 1(± # ) = –7.
It's 3(–2) + 1(–1) = –7.
So 3x2 – 7x + 2 = (3x –1)(1x – 2)
Example D. Factor 3x2 + 5x – 2.
We start with (3x ± #)(1x ± #).
Factoring Trinomials II
Example C. Factor 3x2 – 7x + 2.
We start with (3x ± #)(1x ± #).
We need to fill in 1 and 2 as #'s so that
3(± # ) + 1(± # ) = –7.
It's 3(–2) + 1(–1) = –7.
So 3x2 – 7x + 2 = (3x –1)(1x – 2)
Example D. Factor 3x2 + 5x – 2.
We start with (3x ± #)(1x ± #).
We need to fill in 1 and 2 as #'s
Factoring Trinomials II
Example C. Factor 3x2 – 7x + 2.
We start with (3x ± #)(1x ± #).
We need to fill in 1 and 2 as #'s so that
3(± # ) + 1(± # ) = –7.
It's 3(–2) + 1(–1) = –7.
So 3x2 – 7x + 2 = (3x –1)(1x – 2)
Example D. Factor 3x2 + 5x – 2.
We start with (3x ± #)(1x ± #).
We need to fill in 1 and 2 as #'s so that
3(± # ) + 1(± # ) = +5.
Factoring Trinomials II
Example C. Factor 3x2 – 7x + 2.
We start with (3x ± #)(1x ± #).
We need to fill in 1 and 2 as #'s so that
3(± # ) + 1(± # ) = –7.
It's 3(–2) + 1(–1) = –7.
So 3x2 – 7x + 2 = (3x –1)(1x – 2)
Example D. Factor 3x2 + 5x – 2.
We start with (3x ± #)(1x ± #).
We need to fill in 1 and 2 as #'s so that
3(± # ) + 1(± # ) = +5.
Since c is negative, they must have opposite signs .
Factoring Trinomials II
Example C. Factor 3x2 – 7x + 2.
We start with (3x ± #)(1x ± #).
We need to fill in 1 and 2 as #'s so that
3(± # ) + 1(± # ) = –7.
It's 3(–2) + 1(–1) = –7.
So 3x2 – 7x + 2 = (3x –1)(1x – 2)
Example D. Factor 3x2 + 5x – 2.
We start with (3x ± #)(1x ± #).
We need to fill in 1 and 2 as #'s so that
3(± # ) + 1(± # ) = +5.
It is 3(+2) + 1(–1) = +5.
Since c is negative, they must have opposite signs .
Factoring Trinomials II
Example C. Factor 3x2 – 7x + 2.
We start with (3x ± #)(1x ± #).
We need to fill in 1 and 2 as #'s so that
3(± # ) + 1(± # ) = –7.
It's 3(–2) + 1(–1) = –7.
So 3x2 – 7x + 2 = (3x –1)(1x – 2)
Example D. Factor 3x2 + 5x – 2.
We start with (3x ± #)(1x ± #).
We need to fill in 1 and 2 as #'s so that
3(± # ) + 1(± # ) = +5.
It is 3(+2) + 1(–1) = +5.
So 3x2 + 5x + 2 = (3x –1)(1x + 2)
Since c is negative, they must have opposite signs .
Factoring Trinomials II
Example C. Factor 3x2 – 7x + 2.
We start with (3x ± #)(1x ± #).
We need to fill in 1 and 2 as #'s so that
Example E. Factor 3x2 + 8x + 2.
Factoring Trinomials II
Example E. Factor 3x2 + 8x + 2.
We start with (3x ± #)(1x ± #).
Factoring Trinomials II
Example E. Factor 3x2 + 8x + 2.
We start with (3x ± #)(1x ± #).
We need to fill in 1&2 so that
3(± # ) + 1(± # ) = +8.
Factoring Trinomials II
Example E. Factor 3x2 + 8x + 2.
We start with (3x ± #)(1x ± #).
We need to fill in 1&2 so that
3(± # ) + 1(± # ) = +8.
This is impossible.
Factoring Trinomials II
Example E. Factor 3x2 + 8x + 2.
We start with (3x ± #)(1x ± #).
We need to fill in 1&2 so that
3(± # ) + 1(± # ) = +8.
This is impossible. Hence the expression is prime.
Factoring Trinomials II
Example E. Factor 3x2 + 8x + 2.
We start with (3x ± #)(1x ± #).
We need to fill in 1&2 so that
3(± # ) + 1(± # ) = +8.
This is impossible. Hence the expression is prime.
Factoring Trinomials II
If both the numbers a and c in ax2 + bx + c have many factors
then there are many possibilities to check.
Example E. Factor 3x2 + 8x + 2.
We start with (3x ± #)(1x ± #).
We need to fill in 1&2 so that
3(± # ) + 1(± # ) = +8.
This is impossible. Hence the expression is prime.
Factoring Trinomials II
If both the numbers a and c in ax2 + bx + c have many factors
then there are many possibilities to check.
Example F. Factor 3x2 + 11x – 4.
Example E. Factor 3x2 + 8x + 2.
We start with (3x ± #)(1x ± #).
We need to fill in 1&2 so that
3(± # ) + 1(± # ) = +8.
This is impossible. Hence the expression is prime.
Factoring Trinomials II
If both the numbers a and c in ax2 + bx + c have many factors
then there are many possibilities to check.
Example F. Factor 3x2 + 11x – 4.
We start with (3x ± #)(1x ± #).
Example E. Factor 3x2 + 8x + 2.
We start with (3x ± #)(1x ± #).
We need to fill in 1&2 so that
3(± # ) + 1(± # ) = +8.
This is impossible. Hence the expression is prime.
Factoring Trinomials II
If both the numbers a and c in ax2 + bx + c have many factors
then there are many possibilities to check.
Example F. Factor 3x2 + 11x – 4.
We start with (3x ± #)(1x ± #). Since 4 = 2(2) = 1(4),
Example E. Factor 3x2 + 8x + 2.
We start with (3x ± #)(1x ± #).
We need to fill in 1&2 so that
3(± # ) + 1(± # ) = +8.
This is impossible. Hence the expression is prime.
3(± # ) + 1(± # ) = +11.
Factoring Trinomials II
If both the numbers a and c in ax2 + bx + c have many factors
then there are many possibilities to check.
Example F. Factor 3x2 + 11x – 4.
We start with (3x ± #)(1x ± #). Since 4 = 2(2) = 1(4),
we need to fill in 2&2 or 1&4 as #'s so that
Example E. Factor 3x2 + 8x + 2.
We start with (3x ± #)(1x ± #).
We need to fill in 1&2 so that
3(± # ) + 1(± # ) = +8.
This is impossible. Hence the expression is prime.
3(± # ) + 1(± # ) = +11. It can't be 2&2.
Factoring Trinomials II
If both the numbers a and c in ax2 + bx + c have many factors
then there are many possibilities to check.
Example F. Factor 3x2 + 11x – 4.
We start with (3x ± #)(1x ± #). Since 4 = 2(2) = 1(4),
we need to fill in 2&2 or 1&4 as #'s so that
3(± # ) + 1(± # ) = +11.
Example E. Factor 3x2 + 8x + 2.
We start with (3x ± #)(1x ± #).
We need to fill in 1&2 so that
3(± # ) + 1(± # ) = +8.
This is impossible. Hence the expression is prime.
3(± # ) + 1(± # ) = +11. It can't be 2&2.
Factoring Trinomials II
If both the numbers a and c in ax2 + bx + c have many factors
then there are many possibilities to check.
Example F. Factor 3x2 + 11x – 4.
We start with (3x ± #)(1x ± #). Since 4 = 2(2) = 1(4),
we need to fill in 2&2 or 1&4 as #'s so that
Try 1&4,
3(± # ) + 1(± # ) = +11.
Example E. Factor 3x2 + 8x + 2.
We start with (3x ± #)(1x ± #).
We need to fill in 1&2 so that
3(± # ) + 1(± # ) = +8.
This is impossible. Hence the expression is prime.
3(± # ) + 1(± # ) = +11. It can't be 2&2.
Factoring Trinomials II
If both the numbers a and c in ax2 + bx + c have many factors
then there are many possibilities to check.
Example F. Factor 3x2 + 11x – 4.
We start with (3x ± #)(1x ± #). Since 4 = 2(2) = 1(4),
we need to fill in 2&2 or 1&4 as #'s so that
Try 1&4, it is
3(+4) + 1(–1) = +11.
3(± # ) + 1(± # ) = +11.
Example E. Factor 3x2 + 8x + 2.
We start with (3x ± #)(1x ± #).
We need to fill in 1&2 so that
3(± # ) + 1(± # ) = +8.
This is impossible. Hence the expression is prime.
3(± # ) + 1(± # ) = +11. It can't be 2&2.
Factoring Trinomials II
If both the numbers a and c in ax2 + bx + c have many factors
then there are many possibilities to check.
Example F. Factor 3x2 + 11x – 4.
We start with (3x ± #)(1x ± #). Since 4 = 2(2) = 1(4),
we need to fill in 2&2 or 1&4 as #'s so that
Try 1&4, it is
3(+4) + 1(–1) = +11.
So 3x2 + 11x – 4 = (3x – 1)(1x + 4).
Factoring Trinomials II
It's not necessary to always start with ax2. If c is a prime
number, we start with c.
Example G. Factor 12x2 – 5x – 3.
Factoring Trinomials II
It's not necessary to always start with ax2. If c is a prime
number, we start with c.
Example G. Factor 12x2 – 5x – 3.
Since 3 must be 3(1),
Factoring Trinomials II
It's not necessary to always start with ax2. If c is a prime
number, we start with c.
Example G. Factor 12x2 – 5x – 3.
Since 3 must be 3(1), we need to find two numbers such
that (#)(#) = 12
Factoring Trinomials II
It's not necessary to always start with ax2. If c is a prime
number, we start with c.
Example G. Factor 12x2 – 5x – 3.
Since 3 must be 3(1), we need to find two numbers such
that (#)(#) = 12 and that
Factoring Trinomials II
It's not necessary to always start with ax2. If c is a prime
number, we start with c.
(± #)(± 3) + (± #)(±1) = – 5.
Example G. Factor 12x2 – 5x – 3.
Since 3 must be 3(1), we need to find two numbers such
that (#)(#) = 12 and that
Factoring Trinomials II
It's not necessary to always start with ax2. If c is a prime
number, we start with c.
(± #)(± 3) + (± #)(±1) = – 5.
12 = 1(12) = 2(6) = 3(4)
Example G. Factor 12x2 – 5x – 3.
Since 3 must be 3(1), we need to find two numbers such
that (#)(#) = 12 and that
Factoring Trinomials II
It's not necessary to always start with ax2. If c is a prime
number, we start with c.
(± #)(± 3) + (± #)(±1) = – 5.
12 = 1(12) = 2(6) = 3(4)
1&12 and 2&6 can be quickly eliminated.
Example G. Factor 12x2 – 5x – 3.
Since 3 must be 3(1), we need to find two numbers such
that (#)(#) = 12 and that
Factoring Trinomials II
It's not necessary to always start with ax2. If c is a prime
number, we start with c.
(± #)(± 3) + (± #)(±1) = – 5.
12 = 1(12) = 2(6) = 3(4)
1&12 and 2&6 can be quickly eliminated.
We get (3)(–3) + (4)(+1) = – 5.
Example G. Factor 12x2 – 5x – 3.
Since 3 must be 3(1), we need to find two numbers such
that (#)(#) = 12 and that
So 12x2 – 5x – 3 = (3x + 1)(4x – 3).
Factoring Trinomials II
It's not necessary to always start with ax2. If c is a prime
number, we start with c.
(± #)(± 3) + (± #)(±1) = – 5.
12 = 1(12) = 2(6) = 3(4)
1&12 and 2&6 can be quickly eliminated.
We get (3)(–3) + (4)(+1) = – 5.
Example G. Factor 12x2 – 5x – 3.
Since 3 must be 3(1), we need to find two numbers such
that (#)(#) = 12 and that
So 12x2 – 5x – 3 = (3x + 1)(4x – 3).
Factoring Trinomials II
It's not necessary to always start with ax2. If c is a prime
number, we start with c.
(± #)(± 3) + (± #)(±1) = – 5.
12 = 1(12) = 2(6) = 3(4)
1&12 and 2&6 can be quickly eliminated.
We get (3)(–3) + (4)(+1) = – 5.
Remark:
In the above method, finding
(#)(± #) + (#)( ± #) = b
does not guarantee that the trinomial will factor.
Example G. Factor 12x2 – 5x – 3.
Since 3 must be 3(1), we need to find two numbers such
that (#)(#) = 12 and that
So 12x2 – 5x – 3 = (3x + 1)(4x – 3).
Factoring Trinomials II
It's not necessary to always start with ax2. If c is a prime
number, we start with c.
(± #)(± 3) + (± #)(±1) = – 5.
12 = 1(12) = 2(6) = 3(4)
1&12 and 2&6 can be quickly eliminated.
We get (3)(–3) + (4)(+1) = – 5.
Remark:
In the above method, finding
(#)(± #) + (#)( ± #) = b
does not guarantee that the trinomial will factor. We have to
match the sign of c also.
Example H. Factor 3x2 – 7x – 2 .
Factoring Trinomials II
Example H. Factor 3x2 – 7x – 2 .
We start with (3x ± #)(1x ± #).
Factoring Trinomials II
Example H. Factor 3x2 – 7x – 2 .
We start with (3x ± #)(1x ± #). We find that:
3(–2) + 1(–1) = –7.
Factoring Trinomials II
Example H. Factor 3x2 – 7x – 2 .
We start with (3x ± #)(1x ± #). We find that:
3(–2) + 1(–1) = –7.
But this won't work since (–2)(–1) = 2 = c.
Factoring Trinomials II
Example H. Factor 3x2 – 7x – 2 .
We start with (3x ± #)(1x ± #). We find that:
3(–2) + 1(–1) = –7.
But this won't work since (–2)(–1) = 2 = c.
In fact this trinomial is prime.
Factoring Trinomials II
Example H. Factor 3x2 – 7x – 2 .
We start with (3x ± #)(1x ± #). We find that:
3(–2) + 1(–1) = –7.
But this won't work since (–2)(–1) = 2 = c.
In fact this trinomial is prime.
Factoring Trinomials II
There might be multiple matchings for
(#)(± #) + (#)( ± #) = b
make sure you chose the correct one, if any.
Example H. Factor 3x2 – 7x – 2 .
We start with (3x ± #)(1x ± #). We find that:
3(–2) + 1(–1) = –7.
But this won't work since (–2)(–1) = 2 = c.
In fact this trinomial is prime.
Factoring Trinomials II
Example I: Factor 1x2 + 5x – 6 .
There might be multiple matchings for
(#)(± #) + (#)( ± #) = b
make sure you chose the correct one, if any.
Example H. Factor 3x2 – 7x – 2 .
We start with (3x ± #)(1x ± #). We find that:
3(–2) + 1(–1) = –7.
But this won't work since (–2)(–1) = 2 = c.
In fact this trinomial is prime.
Factoring Trinomials II
Example I: Factor 1x2 + 5x – 6 .
We have:
1(+3) + 1(+2) = +5
There might be multiple matchings for
(#)(± #) + (#)( ± #) = b
make sure you chose the correct one, if any.
Example H. Factor 3x2 – 7x – 2 .
We start with (3x ± #)(1x ± #). We find that:
3(–2) + 1(–1) = –7.
But this won't work since (–2)(–1) = 2 = c.
In fact this trinomial is prime.
Factoring Trinomials II
Example I: Factor 1x2 + 5x – 6 .
We have:
1(+3) + 1(+2) = +5
1(+6) + 1(–1) = +5
There might be multiple matchings for
(#)(± #) + (#)( ± #) = b
make sure you chose the correct one, if any.
Example H. Factor 3x2 – 7x – 2 .
We start with (3x ± #)(1x ± #). We find that:
3(–2) + 1(–1) = –7.
But this won't work since (–2)(–1) = 2 = c.
In fact this trinomial is prime.
Factoring Trinomials II
Example I: Factor 1x2 + 5x – 6 .
We have:
1(+3) + 1(+2) = +5
The one that works is x2 + 5x – 6 = (x + 6)(x – 1).
1(+6) + 1(–1) = +5
There might be multiple matchings for
(#)(± #) + (#)( ± #) = b
make sure you chose the correct one, if any.
Factoring Trinomials II
Finally, before starting the reverse-FOIL procedure
Factoring Trinomials II
Finally, before starting the reverse-FOIL procedure
1. make sure the terms are arranged in order.
Factoring Trinomials II
Finally, before starting the reverse-FOIL procedure
1. make sure the terms are arranged in order.
2. if there is any common factor, pull out the GCF first.
Factoring Trinomials II
Finally, before starting the reverse-FOIL procedure
1. make sure the terms are arranged in order.
2. if there is any common factor, pull out the GCF first.
3. make sure that x2 is positive, if not, factor out the negative
sign first.
Factoring Trinomials II
Finally, before starting the reverse-FOIL procedure
1. make sure the terms are arranged in order.
2. if there is any common factor, pull out the GCF first.
3. make sure that x2 is positive, if not, factor out the negative
sign first.
Example J. Factor –x3 + 3x + 2x2
Factoring Trinomials II
Finally, before starting the reverse-FOIL procedure
1. make sure the terms are arranged in order.
2. if there is any common factor, pull out the GCF first.
3. make sure that x2 is positive, if not, factor out the negative
sign first.
Example J. Factor –x3 + 3x + 2x2
–x3 + 3x + 2x2 Arrange the terms in order
= –x3 + 2x2 + 3x
Factoring Trinomials II
Finally, before starting the reverse-FOIL procedure
1. make sure the terms are arranged in order.
2. if there is any common factor, pull out the GCF first.
3. make sure that x2 is positive, if not, factor out the negative
sign first.
Example J. Factor –x3 + 3x + 2x2
–x3 + 3x + 2x2 Arrange the terms in order
= –x3 + 2x2 + 3x Factor out the GCF
= – x(x2 – 2x – 3)
Factoring Trinomials II
Finally, before starting the reverse-FOIL procedure
1. make sure the terms are arranged in order.
2. if there is any common factor, pull out the GCF first.
3. make sure that x2 is positive, if not, factor out the negative
sign first.
Example J. Factor –x3 + 3x + 2x2
–x3 + 3x + 2x2 Arrange the terms in order
= –x3 + 2x2 + 3x Factor out the GCF
= – x(x2 – 2x – 3)
= – x(x – 3)(x + 1)
Factoring Trinomials II
Finally, before starting the reverse-FOIL procedure
1. make sure the terms are arranged in order.
2. if there is any common factor, pull out the GCF first.
3. make sure that x2 is positive, if not, factor out the negative
sign first.
Example J. Factor –x3 + 3x + 2x2
–x3 + 3x + 2x2 Arrange the terms in order
= –x3 + 2x2 + 3x Factor out the GCF
= – x(x2 – 2x – 3)
= – x(x – 3)(x + 1)
Ex. A. Factor the following trinomials. If it’s prime, state so.
1. 3x2 – x – 2 2. 3x2 + x – 2 3. 3x2 – 2x – 1
4. 3x2 + 2x – 1 5. 2x2 – 3x + 1 6. 2x2 + 3x – 1
8. 2x2 – 3x – 27. 2x2 + 3x – 2
15. 6x2 + 5x – 6
10. 5x2 + 9x – 2
B. Factor. Factor out the GCF, the “–”, and arrange the
terms in order first.
9. 5x2 – 3x – 2
12. 3x2 – 5x – 211. 3x2 + 5x + 2
14. 6x2 – 5x – 613. 3x2 – 5x + 2
16. 6x2 – x – 2 17. 6x2 – 13x + 2 18. 6x2 – 13x + 2
19. 6x2 + 7x + 2 20. 6x2 – 7x + 2 21. 6x2 – 13x + 6
22. 6x2 + 13x + 6 23. 6x2 – 5x – 4 24. 6x2 – 13x + 8
25. 6x2 – 13x – 8
Factoring Trinomials II
25. 4x2 – 9 26. 4x2 – 49
27. 25x2 – 4 28. 4x2 + 9 29. 25x2 + 9
30. – 6x2 – 5xy + 6y2 31. – 3x2 + 2x3– 2x 32. –6x3 – x2 + 2x
33. –15x2 – 25x2 – 10x 34. 12x2y2 –14x2y2 + 4xy2

More Related Content

PPTX
5 4factoring trinomial ii
PPTX
5 5factoring trinomial iii
PDF
Exponents and Polynomials
PDF
rational expressions
PPTX
2 3linear equations ii
PDF
Chapter0
PPTX
4 7polynomial operations-vertical
PDF
Chapter 1 Functions Relations V3
5 4factoring trinomial ii
5 5factoring trinomial iii
Exponents and Polynomials
rational expressions
2 3linear equations ii
Chapter0
4 7polynomial operations-vertical
Chapter 1 Functions Relations V3

What's hot (20)

PDF
123a ppt-all-2
PPT
Functions And Relations
PPTX
Factorising Common Factors
PPT
Business Math Chapter 3
PDF
Discrete Mathematics with Applications 4th Edition Susanna Solutions Manual
PPT
Business Math Chapter 2
PDF
Q1 week 1 (common monomial,sum & diffrence of two cubes,difference of tw...
PDF
Factoring Polynomials in Modular Approach
PPTX
53 multiplication and division of rational expressions
PPTX
5 6 substitution and factoring formulas
PPT
6.2 presentation
PPTX
Simplifying algebraic expression
PPT
Business Math Chapter 1
PPTX
Properties of Addition & Multiplication
PPTX
Relations
PPT
Exponents, Fractions And Factors
PPT
9 2power Of Power
PPTX
Unit 7.3
PPTX
12 rational expressions
PPT
Simplifying expressions
123a ppt-all-2
Functions And Relations
Factorising Common Factors
Business Math Chapter 3
Discrete Mathematics with Applications 4th Edition Susanna Solutions Manual
Business Math Chapter 2
Q1 week 1 (common monomial,sum & diffrence of two cubes,difference of tw...
Factoring Polynomials in Modular Approach
53 multiplication and division of rational expressions
5 6 substitution and factoring formulas
6.2 presentation
Simplifying algebraic expression
Business Math Chapter 1
Properties of Addition & Multiplication
Relations
Exponents, Fractions And Factors
9 2power Of Power
Unit 7.3
12 rational expressions
Simplifying expressions
Ad

Viewers also liked (10)

PPS
Cute animals
PPS
Friendship Bouquet
PPSX
Cute Animals
PPS
Beautiful Rose Flowers
PPT
Factoring Trinomials
PPT
Factoring Trinomials
PPS
Beautiful Thoughts On Friendship
PPT
Factoring ppt 2003 (1)
PPT
Factoring ppt
PDF
10 Ice Breaker Games - How to get to know your office
Cute animals
Friendship Bouquet
Cute Animals
Beautiful Rose Flowers
Factoring Trinomials
Factoring Trinomials
Beautiful Thoughts On Friendship
Factoring ppt 2003 (1)
Factoring ppt
10 Ice Breaker Games - How to get to know your office
Ad

Similar to 10 more on factoring trinomials and factoring by formulas (20)

PDF
Algebra factoring
PPT
Factoring 15.3 and 15.4 Grouping and Trial and Error
PPT
PPTX
Difference of Two Squares
PPT
P6 factoring
PPT
P6 factoring
PDF
3.complex numbers Further Mathematics Zimbabwe Zimsec Cambridge
PPTX
1.7 multiplication ii w
PPTX
Q1-W1-Factoring Polynomials.pptx
PPT
Math083 day 1 chapter 6 2013 fall
PDF
Alg complex numbers
PPT
Chapter p 5
PPTX
Diapositivas unidad 1
PPTX
factorization for class 8.pptx
PDF
Quadratic Equations
PPT
Factoring polynomials
PPT
Swartz Factoring
PDF
Maths paper class 12 maths paper class 12
PPTX
Paso 2 profundizar y contextualizar el conocimiento de la unidad 1 ff
PPT
Perfect Squares
Algebra factoring
Factoring 15.3 and 15.4 Grouping and Trial and Error
Difference of Two Squares
P6 factoring
P6 factoring
3.complex numbers Further Mathematics Zimbabwe Zimsec Cambridge
1.7 multiplication ii w
Q1-W1-Factoring Polynomials.pptx
Math083 day 1 chapter 6 2013 fall
Alg complex numbers
Chapter p 5
Diapositivas unidad 1
factorization for class 8.pptx
Quadratic Equations
Factoring polynomials
Swartz Factoring
Maths paper class 12 maths paper class 12
Paso 2 profundizar y contextualizar el conocimiento de la unidad 1 ff
Perfect Squares

More from elem-alg-sample (20)

PPTX
6 equations and applications of lines
PPTX
5 slopes of lines
PPTX
4 linear equations and graphs of lines
PPTX
3 rectangular coordinate system
PPTX
2 the real line, inequalities and comparative phrases
PPTX
1 basic geometry and formulas
PPTX
18 variations
PPTX
17 applications of proportions and the rational equations
PPTX
16 the multiplier method for simplifying complex fractions
PPTX
15 proportions and the multiplier method for solving rational equations
PPTX
14 the lcm and the multiplier method for addition and subtraction of rational...
PPTX
13 multiplication and division of rational expressions
PPTX
11 applications of factoring
PPTX
9 factoring trinomials
PPTX
8 factoring out gcf
PPTX
7 special binomial operations and formulas
PPTX
6 polynomial expressions and operations
PPTX
5 exponents and scientific notation
PPTX
4 literal equations
PPTX
3 linear equations
6 equations and applications of lines
5 slopes of lines
4 linear equations and graphs of lines
3 rectangular coordinate system
2 the real line, inequalities and comparative phrases
1 basic geometry and formulas
18 variations
17 applications of proportions and the rational equations
16 the multiplier method for simplifying complex fractions
15 proportions and the multiplier method for solving rational equations
14 the lcm and the multiplier method for addition and subtraction of rational...
13 multiplication and division of rational expressions
11 applications of factoring
9 factoring trinomials
8 factoring out gcf
7 special binomial operations and formulas
6 polynomial expressions and operations
5 exponents and scientific notation
4 literal equations
3 linear equations

Recently uploaded (20)

PDF
Anesthesia in Laparoscopic Surgery in India
PDF
Computing-Curriculum for Schools in Ghana
PPTX
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
PPTX
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
PPTX
Cell Structure & Organelles in detailed.
PPTX
Pharma ospi slides which help in ospi learning
PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
PDF
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
PDF
Insiders guide to clinical Medicine.pdf
PPTX
Renaissance Architecture: A Journey from Faith to Humanism
PDF
Supply Chain Operations Speaking Notes -ICLT Program
PDF
FourierSeries-QuestionsWithAnswers(Part-A).pdf
PDF
Abdominal Access Techniques with Prof. Dr. R K Mishra
PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PPTX
GDM (1) (1).pptx small presentation for students
PPTX
Pharmacology of Heart Failure /Pharmacotherapy of CHF
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PPTX
Microbial diseases, their pathogenesis and prophylaxis
PDF
O5-L3 Freight Transport Ops (International) V1.pdf
PDF
STATICS OF THE RIGID BODIES Hibbelers.pdf
Anesthesia in Laparoscopic Surgery in India
Computing-Curriculum for Schools in Ghana
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
Cell Structure & Organelles in detailed.
Pharma ospi slides which help in ospi learning
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
Insiders guide to clinical Medicine.pdf
Renaissance Architecture: A Journey from Faith to Humanism
Supply Chain Operations Speaking Notes -ICLT Program
FourierSeries-QuestionsWithAnswers(Part-A).pdf
Abdominal Access Techniques with Prof. Dr. R K Mishra
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
GDM (1) (1).pptx small presentation for students
Pharmacology of Heart Failure /Pharmacotherapy of CHF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
Microbial diseases, their pathogenesis and prophylaxis
O5-L3 Freight Transport Ops (International) V1.pdf
STATICS OF THE RIGID BODIES Hibbelers.pdf

10 more on factoring trinomials and factoring by formulas

  • 2. Factoring Trinomials II Now let’s try to factor trinomials of the form ax2 + bx + c.
  • 3. Factoring Trinomials II Now let’s try to factor trinomials of the form ax2 + bx + c. We’ll give two methods.
  • 4. Factoring Trinomials II Now let’s try to factor trinomials of the form ax2 + bx + c. We’ll give two methods. One is short but not reliable.
  • 5. Factoring Trinomials II Now let’s try to factor trinomials of the form ax2 + bx + c. We’ll give two methods. One is short but not reliable. The second one takes more steps but gives definite answers.
  • 6. Factoring Trinomials II Now let’s try to factor trinomials of the form ax2 + bx + c. We’ll give two methods. One is short but not reliable. The second one takes more steps but gives definite answers. Reversed FOIL Method
  • 7. Factoring Trinomials II Now let’s try to factor trinomials of the form ax2 + bx + c. We’ll give two methods. One is short but not reliable. The second one takes more steps but gives definite answers. For this method, we need to find four numbers that fit certain descriptions. Reversed FOIL Method
  • 8. Factoring Trinomials II Now let’s try to factor trinomials of the form ax2 + bx + c. We’ll give two methods. One is short but not reliable. The second one takes more steps but gives definite answers. For this method, we need to find four numbers that fit certain descriptions. The following are examples of the task to be accomplished. Reversed FOIL Method
  • 9. Factoring Trinomials II Now let’s try to factor trinomials of the form ax2 + bx + c. We’ll give two methods. One is short but not reliable. The second one takes more steps but gives definite answers. For this method, we need to find four numbers that fit certain descriptions. The following are examples of the task to be accomplished. Example A. Let {1, 3} and {1, 2} be two pairs of numbers. Is it possible to split the {1, 2 }, put them in the boxes that makes the equality true? Reversed FOIL Method
  • 10. Factoring Trinomials II Now let’s try to factor trinomials of the form ax2 + bx + c. We’ll give two methods. One is short but not reliable. The second one takes more steps but gives definite answers. For this method, we need to find four numbers that fit certain descriptions. The following are examples of the task to be accomplished. Example A. Let {1, 3} and {1, 2} be two pairs of numbers. Is it possible to split the {1, 2 }, put them in the boxes that makes the equality true? a. 1* (± ) + 3*(± ) = 5. Reversed FOIL Method
  • 11. Factoring Trinomials II Now let’s try to factor trinomials of the form ax2 + bx + c. We’ll give two methods. One is short but not reliable. The second one takes more steps but gives definite answers. For this method, we need to find four numbers that fit certain descriptions. The following are examples of the task to be accomplished. Example A. Let {1, 3} and {1, 2} be two pairs of numbers. Is it possible to split the {1, 2 }, put them in the boxes that makes the equality true? a. 1* (± ) + 3*(± ) = 5. Yes, 1* (2) + 3 * (1) = 5 Reversed FOIL Method
  • 12. Factoring Trinomials II Now let’s try to factor trinomials of the form ax2 + bx + c. We’ll give two methods. One is short but not reliable. The second one takes more steps but gives definite answers. For this method, we need to find four numbers that fit certain descriptions. The following are examples of the task to be accomplished. Example A. Let {1, 3} and {1, 2} be two pairs of numbers. Is it possible to split the {1, 2 }, put them in the boxes that makes the equality true? a. 1* (± ) + 3*(± ) = 5. Yes, 1* (2) + 3 * (1) = 5 b. 1* (± ) + 3* (± ) = –5. Reversed FOIL Method
  • 13. Factoring Trinomials II Now let’s try to factor trinomials of the form ax2 + bx + c. We’ll give two methods. One is short but not reliable. The second one takes more steps but gives definite answers. For this method, we need to find four numbers that fit certain descriptions. The following are examples of the task to be accomplished. Example A. Let {1, 3} and {1, 2} be two pairs of numbers. Is it possible to split the {1, 2 }, put them in the boxes that makes the equality true? a. 1* (± ) + 3*(± ) = 5. Yes, 1* (2) + 3 * (1) = 5 b. 1* (± ) + 3* (± ) = –5. Yes, 1* (1) + 3* (–2) = –5 Reversed FOIL Method
  • 14. Factoring Trinomials II Now let’s try to factor trinomials of the form ax2 + bx + c. We’ll give two methods. One is short but not reliable. The second one takes more steps but gives definite answers. For this method, we need to find four numbers that fit certain descriptions. The following are examples of the task to be accomplished. Example A. Let {1, 3} and {1, 2} be two pairs of numbers. Is it possible to split the {1, 2 }, put them in the boxes that makes the equality true? a. 1* (± ) + 3*(± ) = 5. Yes, 1* (2) + 3 * (1) = 5 b. 1* (± ) + 3* (± ) = –5. Yes, 1* (1) + 3* (–2) = –5 or 1* (–2) + 3* (–1) = –5 Reversed FOIL Method
  • 15. Factoring Trinomials II Now let’s try to factor trinomials of the form ax2 + bx + c. We’ll give two methods. One is short but not reliable. The second one takes more steps but gives definite answers. For this method, we need to find four numbers that fit certain descriptions. The following are examples of the task to be accomplished. Example A. Let {1, 3} and {1, 2} be two pairs of numbers. Is it possible to split the {1, 2 }, put them in the boxes that makes the equality true? a. 1* (± ) + 3*(± ) = 5. Yes, 1* (2) + 3 * (1) = 5 b. 1* (± ) + 3* (± ) = –5. Yes, 1* (1) + 3* (–2) = –5 or 1* (–2) + 3* (–1) = –5 c. 1* (± ) + 3* (± ) = 8. Reversed FOIL Method
  • 16. Factoring Trinomials II Now let’s try to factor trinomials of the form ax2 + bx + c. We’ll give two methods. One is short but not reliable. The second one takes more steps but gives definite answers. For this method, we need to find four numbers that fit certain descriptions. The following are examples of the task to be accomplished. Example A. Let {1, 3} and {1, 2} be two pairs of numbers. Is it possible to split the {1, 2 }, put them in the boxes that makes the equality true? a. 1* (± ) + 3*(± ) = 5. Yes, 1* (2) + 3 * (1) = 5 b. 1* (± ) + 3* (± ) = –5. Yes, 1* (1) + 3* (–2) = –5 or 1* (–2) + 3* (–1) = –5 c. 1* (± ) + 3* (± ) = 8. No, since the most we can obtain is 1* (1) + 3* (2) = 7. Reversed FOIL Method
  • 18. Factoring Trinomials II (Reversed FOIL Method) Let’s see how the above examples are related to factoring.
  • 19. Example B. Factor 3x2 + 5x + 2. Factoring Trinomials II (Reversed FOIL Method) Let’s see how the above examples are related to factoring.
  • 20. Example B. Factor 3x2 + 5x + 2. The only way to get 3x2 is (3x ± #)(1x ± #). Factoring Trinomials II (Reversed FOIL Method) Let’s see how the above examples are related to factoring.
  • 21. Example B. Factor 3x2 + 5x + 2. The only way to get 3x2 is (3x ± #)(1x ± #). The #’s must be 1 and 2 Factoring Trinomials II (Reversed FOIL Method) Let’s see how the above examples are related to factoring.
  • 22. Example B. Factor 3x2 + 5x + 2. The only way to get 3x2 is (3x ± #)(1x ± #). The #’s must be 1 and 2 to get the constant term +2. Factoring Trinomials II (Reversed FOIL Method) Let’s see how the above examples are related to factoring.
  • 23. Example B. Factor 3x2 + 5x + 2. The only way to get 3x2 is (3x ± #)(1x ± #). The #’s must be 1 and 2 to get the constant term +2. We need to place 1 and 2 as the #'s so the product will yield the correct middle term +5x. Factoring Trinomials II (Reversed FOIL Method) Let’s see how the above examples are related to factoring.
  • 24. Example B. Factor 3x2 + 5x + 2. The only way to get 3x2 is (3x ± #)(1x ± #). The #’s must be 1 and 2 to get the constant term +2. We need to place 1 and 2 as the #'s so the product will yield the correct middle term +5x. That is, (3x ± #)(1x ± #) must yields +5x, Factoring Trinomials II (Reversed FOIL Method) Let’s see how the above examples are related to factoring.
  • 25. 3(± # ) +1(± #) = 5 where the #’s are 1 and 2. Factoring Trinomials II (Reversed FOIL Method) Let’s see how the above examples are related to factoring. Example B. Factor 3x2 + 5x + 2. The only way to get 3x2 is (3x ± #)(1x ± #). The #’s must be 1 and 2 to get the constant term +2. We need to place 1 and 2 as the #'s so the product will yield the correct middle term +5x. That is, (3x ± #)(1x ± #) must yields +5x, or that
  • 26. 3(± # ) +1(± #) = 5 where the #’s are 1 and 2. Since 3(1) +1(2) = 5, Factoring Trinomials II (Reversed FOIL Method) Let’s see how the above examples are related to factoring. Example B. Factor 3x2 + 5x + 2. The only way to get 3x2 is (3x ± #)(1x ± #). The #’s must be 1 and 2 to get the constant term +2. We need to place 1 and 2 as the #'s so the product will yield the correct middle term +5x. That is, (3x ± #)(1x ± #) must yields +5x, or that
  • 27. 3(± # ) +1(± #) = 5 where the #’s are 1 and 2. Since 3(1) +1(2) = 5, Factoring Trinomials II (Reversed FOIL Method) Let’s see how the above examples are related to factoring. Example B. Factor 3x2 + 5x + 2. The only way to get 3x2 is (3x ± #)(1x ± #). The #’s must be 1 and 2 to get the constant term +2. We need to place 1 and 2 as the #'s so the product will yield the correct middle term +5x. That is, (3x ± #)(1x ± #) must yields +5x, or that
  • 28. 3(± # ) +1(± #) = 5 where the #’s are 1 and 2. Since 3(1) +1(2) = 5, Factoring Trinomials II (Reversed FOIL Method) Let’s see how the above examples are related to factoring. Example B. Factor 3x2 + 5x + 2. The only way to get 3x2 is (3x ± #)(1x ± #). The #’s must be 1 and 2 to get the constant term +2. We need to place 1 and 2 as the #'s so the product will yield the correct middle term +5x. That is, (3x ± #)(1x ± #) must yields +5x, or that
  • 29. 3(± # ) +1(± #) = 5 where the #’s are 1 and 2. Since 3(1) +1(2) = 5, we see that 3x2 + 5x + 2 = (3x + 2)(1x + 1). Factoring Trinomials II (Reversed FOIL Method) Let’s see how the above examples are related to factoring. Example B. Factor 3x2 + 5x + 2. The only way to get 3x2 is (3x ± #)(1x ± #). The #’s must be 1 and 2 to get the constant term +2. We need to place 1 and 2 as the #'s so the product will yield the correct middle term +5x. That is, (3x ± #)(1x ± #) must yields +5x, or that
  • 30. 3(± # ) +1(± #) = 5 where the #’s are 1 and 2. Since 3(1) +1(2) = 5, we see that 3x2 + 5x + 2 = (3x + 2)(1x + 1). 5x Factoring Trinomials II (Reversed FOIL Method) Let’s see how the above examples are related to factoring. Example B. Factor 3x2 + 5x + 2. The only way to get 3x2 is (3x ± #)(1x ± #). The #’s must be 1 and 2 to get the constant term +2. We need to place 1 and 2 as the #'s so the product will yield the correct middle term +5x. That is, (3x ± #)(1x ± #) must yields +5x, or that
  • 31. Factoring Trinomials II Example C. Factor 3x2 – 7x + 2.
  • 32. Factoring Trinomials II Example C. Factor 3x2 – 7x + 2. We start with (3x ± #)(1x ± #).
  • 33. Factoring Trinomials II Example C. Factor 3x2 – 7x + 2. We start with (3x ± #)(1x ± #). We need to fill in 1 and 2 as #'s
  • 34. 3(± # ) + 1(± # ) = –7. Factoring Trinomials II Example C. Factor 3x2 – 7x + 2. We start with (3x ± #)(1x ± #). We need to fill in 1 and 2 as #'s so that
  • 35. 3(± # ) + 1(± # ) = –7. It's 3(–2) + 1(–1) = –7. Factoring Trinomials II Example C. Factor 3x2 – 7x + 2. We start with (3x ± #)(1x ± #). We need to fill in 1 and 2 as #'s so that
  • 36. 3(± # ) + 1(± # ) = –7. It's 3(–2) + 1(–1) = –7. So 3x2 – 7x + 2 = (3x –1)(1x – 2) Factoring Trinomials II Example C. Factor 3x2 – 7x + 2. We start with (3x ± #)(1x ± #). We need to fill in 1 and 2 as #'s so that
  • 37. 3(± # ) + 1(± # ) = –7. It's 3(–2) + 1(–1) = –7. So 3x2 – 7x + 2 = (3x –1)(1x – 2) Example D. Factor 3x2 + 5x – 2. Factoring Trinomials II Example C. Factor 3x2 – 7x + 2. We start with (3x ± #)(1x ± #). We need to fill in 1 and 2 as #'s so that
  • 38. 3(± # ) + 1(± # ) = –7. It's 3(–2) + 1(–1) = –7. So 3x2 – 7x + 2 = (3x –1)(1x – 2) Example D. Factor 3x2 + 5x – 2. We start with (3x ± #)(1x ± #). Factoring Trinomials II Example C. Factor 3x2 – 7x + 2. We start with (3x ± #)(1x ± #). We need to fill in 1 and 2 as #'s so that
  • 39. 3(± # ) + 1(± # ) = –7. It's 3(–2) + 1(–1) = –7. So 3x2 – 7x + 2 = (3x –1)(1x – 2) Example D. Factor 3x2 + 5x – 2. We start with (3x ± #)(1x ± #). We need to fill in 1 and 2 as #'s Factoring Trinomials II Example C. Factor 3x2 – 7x + 2. We start with (3x ± #)(1x ± #). We need to fill in 1 and 2 as #'s so that
  • 40. 3(± # ) + 1(± # ) = –7. It's 3(–2) + 1(–1) = –7. So 3x2 – 7x + 2 = (3x –1)(1x – 2) Example D. Factor 3x2 + 5x – 2. We start with (3x ± #)(1x ± #). We need to fill in 1 and 2 as #'s so that 3(± # ) + 1(± # ) = +5. Factoring Trinomials II Example C. Factor 3x2 – 7x + 2. We start with (3x ± #)(1x ± #). We need to fill in 1 and 2 as #'s so that
  • 41. 3(± # ) + 1(± # ) = –7. It's 3(–2) + 1(–1) = –7. So 3x2 – 7x + 2 = (3x –1)(1x – 2) Example D. Factor 3x2 + 5x – 2. We start with (3x ± #)(1x ± #). We need to fill in 1 and 2 as #'s so that 3(± # ) + 1(± # ) = +5. Since c is negative, they must have opposite signs . Factoring Trinomials II Example C. Factor 3x2 – 7x + 2. We start with (3x ± #)(1x ± #). We need to fill in 1 and 2 as #'s so that
  • 42. 3(± # ) + 1(± # ) = –7. It's 3(–2) + 1(–1) = –7. So 3x2 – 7x + 2 = (3x –1)(1x – 2) Example D. Factor 3x2 + 5x – 2. We start with (3x ± #)(1x ± #). We need to fill in 1 and 2 as #'s so that 3(± # ) + 1(± # ) = +5. It is 3(+2) + 1(–1) = +5. Since c is negative, they must have opposite signs . Factoring Trinomials II Example C. Factor 3x2 – 7x + 2. We start with (3x ± #)(1x ± #). We need to fill in 1 and 2 as #'s so that
  • 43. 3(± # ) + 1(± # ) = –7. It's 3(–2) + 1(–1) = –7. So 3x2 – 7x + 2 = (3x –1)(1x – 2) Example D. Factor 3x2 + 5x – 2. We start with (3x ± #)(1x ± #). We need to fill in 1 and 2 as #'s so that 3(± # ) + 1(± # ) = +5. It is 3(+2) + 1(–1) = +5. So 3x2 + 5x + 2 = (3x –1)(1x + 2) Since c is negative, they must have opposite signs . Factoring Trinomials II Example C. Factor 3x2 – 7x + 2. We start with (3x ± #)(1x ± #). We need to fill in 1 and 2 as #'s so that
  • 44. Example E. Factor 3x2 + 8x + 2. Factoring Trinomials II
  • 45. Example E. Factor 3x2 + 8x + 2. We start with (3x ± #)(1x ± #). Factoring Trinomials II
  • 46. Example E. Factor 3x2 + 8x + 2. We start with (3x ± #)(1x ± #). We need to fill in 1&2 so that 3(± # ) + 1(± # ) = +8. Factoring Trinomials II
  • 47. Example E. Factor 3x2 + 8x + 2. We start with (3x ± #)(1x ± #). We need to fill in 1&2 so that 3(± # ) + 1(± # ) = +8. This is impossible. Factoring Trinomials II
  • 48. Example E. Factor 3x2 + 8x + 2. We start with (3x ± #)(1x ± #). We need to fill in 1&2 so that 3(± # ) + 1(± # ) = +8. This is impossible. Hence the expression is prime. Factoring Trinomials II
  • 49. Example E. Factor 3x2 + 8x + 2. We start with (3x ± #)(1x ± #). We need to fill in 1&2 so that 3(± # ) + 1(± # ) = +8. This is impossible. Hence the expression is prime. Factoring Trinomials II If both the numbers a and c in ax2 + bx + c have many factors then there are many possibilities to check.
  • 50. Example E. Factor 3x2 + 8x + 2. We start with (3x ± #)(1x ± #). We need to fill in 1&2 so that 3(± # ) + 1(± # ) = +8. This is impossible. Hence the expression is prime. Factoring Trinomials II If both the numbers a and c in ax2 + bx + c have many factors then there are many possibilities to check. Example F. Factor 3x2 + 11x – 4.
  • 51. Example E. Factor 3x2 + 8x + 2. We start with (3x ± #)(1x ± #). We need to fill in 1&2 so that 3(± # ) + 1(± # ) = +8. This is impossible. Hence the expression is prime. Factoring Trinomials II If both the numbers a and c in ax2 + bx + c have many factors then there are many possibilities to check. Example F. Factor 3x2 + 11x – 4. We start with (3x ± #)(1x ± #).
  • 52. Example E. Factor 3x2 + 8x + 2. We start with (3x ± #)(1x ± #). We need to fill in 1&2 so that 3(± # ) + 1(± # ) = +8. This is impossible. Hence the expression is prime. Factoring Trinomials II If both the numbers a and c in ax2 + bx + c have many factors then there are many possibilities to check. Example F. Factor 3x2 + 11x – 4. We start with (3x ± #)(1x ± #). Since 4 = 2(2) = 1(4),
  • 53. Example E. Factor 3x2 + 8x + 2. We start with (3x ± #)(1x ± #). We need to fill in 1&2 so that 3(± # ) + 1(± # ) = +8. This is impossible. Hence the expression is prime. 3(± # ) + 1(± # ) = +11. Factoring Trinomials II If both the numbers a and c in ax2 + bx + c have many factors then there are many possibilities to check. Example F. Factor 3x2 + 11x – 4. We start with (3x ± #)(1x ± #). Since 4 = 2(2) = 1(4), we need to fill in 2&2 or 1&4 as #'s so that
  • 54. Example E. Factor 3x2 + 8x + 2. We start with (3x ± #)(1x ± #). We need to fill in 1&2 so that 3(± # ) + 1(± # ) = +8. This is impossible. Hence the expression is prime. 3(± # ) + 1(± # ) = +11. It can't be 2&2. Factoring Trinomials II If both the numbers a and c in ax2 + bx + c have many factors then there are many possibilities to check. Example F. Factor 3x2 + 11x – 4. We start with (3x ± #)(1x ± #). Since 4 = 2(2) = 1(4), we need to fill in 2&2 or 1&4 as #'s so that 3(± # ) + 1(± # ) = +11.
  • 55. Example E. Factor 3x2 + 8x + 2. We start with (3x ± #)(1x ± #). We need to fill in 1&2 so that 3(± # ) + 1(± # ) = +8. This is impossible. Hence the expression is prime. 3(± # ) + 1(± # ) = +11. It can't be 2&2. Factoring Trinomials II If both the numbers a and c in ax2 + bx + c have many factors then there are many possibilities to check. Example F. Factor 3x2 + 11x – 4. We start with (3x ± #)(1x ± #). Since 4 = 2(2) = 1(4), we need to fill in 2&2 or 1&4 as #'s so that Try 1&4, 3(± # ) + 1(± # ) = +11.
  • 56. Example E. Factor 3x2 + 8x + 2. We start with (3x ± #)(1x ± #). We need to fill in 1&2 so that 3(± # ) + 1(± # ) = +8. This is impossible. Hence the expression is prime. 3(± # ) + 1(± # ) = +11. It can't be 2&2. Factoring Trinomials II If both the numbers a and c in ax2 + bx + c have many factors then there are many possibilities to check. Example F. Factor 3x2 + 11x – 4. We start with (3x ± #)(1x ± #). Since 4 = 2(2) = 1(4), we need to fill in 2&2 or 1&4 as #'s so that Try 1&4, it is 3(+4) + 1(–1) = +11. 3(± # ) + 1(± # ) = +11.
  • 57. Example E. Factor 3x2 + 8x + 2. We start with (3x ± #)(1x ± #). We need to fill in 1&2 so that 3(± # ) + 1(± # ) = +8. This is impossible. Hence the expression is prime. 3(± # ) + 1(± # ) = +11. It can't be 2&2. Factoring Trinomials II If both the numbers a and c in ax2 + bx + c have many factors then there are many possibilities to check. Example F. Factor 3x2 + 11x – 4. We start with (3x ± #)(1x ± #). Since 4 = 2(2) = 1(4), we need to fill in 2&2 or 1&4 as #'s so that Try 1&4, it is 3(+4) + 1(–1) = +11. So 3x2 + 11x – 4 = (3x – 1)(1x + 4).
  • 58. Factoring Trinomials II It's not necessary to always start with ax2. If c is a prime number, we start with c.
  • 59. Example G. Factor 12x2 – 5x – 3. Factoring Trinomials II It's not necessary to always start with ax2. If c is a prime number, we start with c.
  • 60. Example G. Factor 12x2 – 5x – 3. Since 3 must be 3(1), Factoring Trinomials II It's not necessary to always start with ax2. If c is a prime number, we start with c.
  • 61. Example G. Factor 12x2 – 5x – 3. Since 3 must be 3(1), we need to find two numbers such that (#)(#) = 12 Factoring Trinomials II It's not necessary to always start with ax2. If c is a prime number, we start with c.
  • 62. Example G. Factor 12x2 – 5x – 3. Since 3 must be 3(1), we need to find two numbers such that (#)(#) = 12 and that Factoring Trinomials II It's not necessary to always start with ax2. If c is a prime number, we start with c. (± #)(± 3) + (± #)(±1) = – 5.
  • 63. Example G. Factor 12x2 – 5x – 3. Since 3 must be 3(1), we need to find two numbers such that (#)(#) = 12 and that Factoring Trinomials II It's not necessary to always start with ax2. If c is a prime number, we start with c. (± #)(± 3) + (± #)(±1) = – 5. 12 = 1(12) = 2(6) = 3(4)
  • 64. Example G. Factor 12x2 – 5x – 3. Since 3 must be 3(1), we need to find two numbers such that (#)(#) = 12 and that Factoring Trinomials II It's not necessary to always start with ax2. If c is a prime number, we start with c. (± #)(± 3) + (± #)(±1) = – 5. 12 = 1(12) = 2(6) = 3(4) 1&12 and 2&6 can be quickly eliminated.
  • 65. Example G. Factor 12x2 – 5x – 3. Since 3 must be 3(1), we need to find two numbers such that (#)(#) = 12 and that Factoring Trinomials II It's not necessary to always start with ax2. If c is a prime number, we start with c. (± #)(± 3) + (± #)(±1) = – 5. 12 = 1(12) = 2(6) = 3(4) 1&12 and 2&6 can be quickly eliminated. We get (3)(–3) + (4)(+1) = – 5.
  • 66. Example G. Factor 12x2 – 5x – 3. Since 3 must be 3(1), we need to find two numbers such that (#)(#) = 12 and that So 12x2 – 5x – 3 = (3x + 1)(4x – 3). Factoring Trinomials II It's not necessary to always start with ax2. If c is a prime number, we start with c. (± #)(± 3) + (± #)(±1) = – 5. 12 = 1(12) = 2(6) = 3(4) 1&12 and 2&6 can be quickly eliminated. We get (3)(–3) + (4)(+1) = – 5.
  • 67. Example G. Factor 12x2 – 5x – 3. Since 3 must be 3(1), we need to find two numbers such that (#)(#) = 12 and that So 12x2 – 5x – 3 = (3x + 1)(4x – 3). Factoring Trinomials II It's not necessary to always start with ax2. If c is a prime number, we start with c. (± #)(± 3) + (± #)(±1) = – 5. 12 = 1(12) = 2(6) = 3(4) 1&12 and 2&6 can be quickly eliminated. We get (3)(–3) + (4)(+1) = – 5. Remark: In the above method, finding (#)(± #) + (#)( ± #) = b does not guarantee that the trinomial will factor.
  • 68. Example G. Factor 12x2 – 5x – 3. Since 3 must be 3(1), we need to find two numbers such that (#)(#) = 12 and that So 12x2 – 5x – 3 = (3x + 1)(4x – 3). Factoring Trinomials II It's not necessary to always start with ax2. If c is a prime number, we start with c. (± #)(± 3) + (± #)(±1) = – 5. 12 = 1(12) = 2(6) = 3(4) 1&12 and 2&6 can be quickly eliminated. We get (3)(–3) + (4)(+1) = – 5. Remark: In the above method, finding (#)(± #) + (#)( ± #) = b does not guarantee that the trinomial will factor. We have to match the sign of c also.
  • 69. Example H. Factor 3x2 – 7x – 2 . Factoring Trinomials II
  • 70. Example H. Factor 3x2 – 7x – 2 . We start with (3x ± #)(1x ± #). Factoring Trinomials II
  • 71. Example H. Factor 3x2 – 7x – 2 . We start with (3x ± #)(1x ± #). We find that: 3(–2) + 1(–1) = –7. Factoring Trinomials II
  • 72. Example H. Factor 3x2 – 7x – 2 . We start with (3x ± #)(1x ± #). We find that: 3(–2) + 1(–1) = –7. But this won't work since (–2)(–1) = 2 = c. Factoring Trinomials II
  • 73. Example H. Factor 3x2 – 7x – 2 . We start with (3x ± #)(1x ± #). We find that: 3(–2) + 1(–1) = –7. But this won't work since (–2)(–1) = 2 = c. In fact this trinomial is prime. Factoring Trinomials II
  • 74. Example H. Factor 3x2 – 7x – 2 . We start with (3x ± #)(1x ± #). We find that: 3(–2) + 1(–1) = –7. But this won't work since (–2)(–1) = 2 = c. In fact this trinomial is prime. Factoring Trinomials II There might be multiple matchings for (#)(± #) + (#)( ± #) = b make sure you chose the correct one, if any.
  • 75. Example H. Factor 3x2 – 7x – 2 . We start with (3x ± #)(1x ± #). We find that: 3(–2) + 1(–1) = –7. But this won't work since (–2)(–1) = 2 = c. In fact this trinomial is prime. Factoring Trinomials II Example I: Factor 1x2 + 5x – 6 . There might be multiple matchings for (#)(± #) + (#)( ± #) = b make sure you chose the correct one, if any.
  • 76. Example H. Factor 3x2 – 7x – 2 . We start with (3x ± #)(1x ± #). We find that: 3(–2) + 1(–1) = –7. But this won't work since (–2)(–1) = 2 = c. In fact this trinomial is prime. Factoring Trinomials II Example I: Factor 1x2 + 5x – 6 . We have: 1(+3) + 1(+2) = +5 There might be multiple matchings for (#)(± #) + (#)( ± #) = b make sure you chose the correct one, if any.
  • 77. Example H. Factor 3x2 – 7x – 2 . We start with (3x ± #)(1x ± #). We find that: 3(–2) + 1(–1) = –7. But this won't work since (–2)(–1) = 2 = c. In fact this trinomial is prime. Factoring Trinomials II Example I: Factor 1x2 + 5x – 6 . We have: 1(+3) + 1(+2) = +5 1(+6) + 1(–1) = +5 There might be multiple matchings for (#)(± #) + (#)( ± #) = b make sure you chose the correct one, if any.
  • 78. Example H. Factor 3x2 – 7x – 2 . We start with (3x ± #)(1x ± #). We find that: 3(–2) + 1(–1) = –7. But this won't work since (–2)(–1) = 2 = c. In fact this trinomial is prime. Factoring Trinomials II Example I: Factor 1x2 + 5x – 6 . We have: 1(+3) + 1(+2) = +5 The one that works is x2 + 5x – 6 = (x + 6)(x – 1). 1(+6) + 1(–1) = +5 There might be multiple matchings for (#)(± #) + (#)( ± #) = b make sure you chose the correct one, if any.
  • 79. Factoring Trinomials II Finally, before starting the reverse-FOIL procedure
  • 80. Factoring Trinomials II Finally, before starting the reverse-FOIL procedure 1. make sure the terms are arranged in order.
  • 81. Factoring Trinomials II Finally, before starting the reverse-FOIL procedure 1. make sure the terms are arranged in order. 2. if there is any common factor, pull out the GCF first.
  • 82. Factoring Trinomials II Finally, before starting the reverse-FOIL procedure 1. make sure the terms are arranged in order. 2. if there is any common factor, pull out the GCF first. 3. make sure that x2 is positive, if not, factor out the negative sign first.
  • 83. Factoring Trinomials II Finally, before starting the reverse-FOIL procedure 1. make sure the terms are arranged in order. 2. if there is any common factor, pull out the GCF first. 3. make sure that x2 is positive, if not, factor out the negative sign first. Example J. Factor –x3 + 3x + 2x2
  • 84. Factoring Trinomials II Finally, before starting the reverse-FOIL procedure 1. make sure the terms are arranged in order. 2. if there is any common factor, pull out the GCF first. 3. make sure that x2 is positive, if not, factor out the negative sign first. Example J. Factor –x3 + 3x + 2x2 –x3 + 3x + 2x2 Arrange the terms in order = –x3 + 2x2 + 3x
  • 85. Factoring Trinomials II Finally, before starting the reverse-FOIL procedure 1. make sure the terms are arranged in order. 2. if there is any common factor, pull out the GCF first. 3. make sure that x2 is positive, if not, factor out the negative sign first. Example J. Factor –x3 + 3x + 2x2 –x3 + 3x + 2x2 Arrange the terms in order = –x3 + 2x2 + 3x Factor out the GCF = – x(x2 – 2x – 3)
  • 86. Factoring Trinomials II Finally, before starting the reverse-FOIL procedure 1. make sure the terms are arranged in order. 2. if there is any common factor, pull out the GCF first. 3. make sure that x2 is positive, if not, factor out the negative sign first. Example J. Factor –x3 + 3x + 2x2 –x3 + 3x + 2x2 Arrange the terms in order = –x3 + 2x2 + 3x Factor out the GCF = – x(x2 – 2x – 3) = – x(x – 3)(x + 1)
  • 87. Factoring Trinomials II Finally, before starting the reverse-FOIL procedure 1. make sure the terms are arranged in order. 2. if there is any common factor, pull out the GCF first. 3. make sure that x2 is positive, if not, factor out the negative sign first. Example J. Factor –x3 + 3x + 2x2 –x3 + 3x + 2x2 Arrange the terms in order = –x3 + 2x2 + 3x Factor out the GCF = – x(x2 – 2x – 3) = – x(x – 3)(x + 1)
  • 88. Ex. A. Factor the following trinomials. If it’s prime, state so. 1. 3x2 – x – 2 2. 3x2 + x – 2 3. 3x2 – 2x – 1 4. 3x2 + 2x – 1 5. 2x2 – 3x + 1 6. 2x2 + 3x – 1 8. 2x2 – 3x – 27. 2x2 + 3x – 2 15. 6x2 + 5x – 6 10. 5x2 + 9x – 2 B. Factor. Factor out the GCF, the “–”, and arrange the terms in order first. 9. 5x2 – 3x – 2 12. 3x2 – 5x – 211. 3x2 + 5x + 2 14. 6x2 – 5x – 613. 3x2 – 5x + 2 16. 6x2 – x – 2 17. 6x2 – 13x + 2 18. 6x2 – 13x + 2 19. 6x2 + 7x + 2 20. 6x2 – 7x + 2 21. 6x2 – 13x + 6 22. 6x2 + 13x + 6 23. 6x2 – 5x – 4 24. 6x2 – 13x + 8 25. 6x2 – 13x – 8 Factoring Trinomials II 25. 4x2 – 9 26. 4x2 – 49 27. 25x2 – 4 28. 4x2 + 9 29. 25x2 + 9 30. – 6x2 – 5xy + 6y2 31. – 3x2 + 2x3– 2x 32. –6x3 – x2 + 2x 33. –15x2 – 25x2 – 10x 34. 12x2y2 –14x2y2 + 4xy2